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Each waking moment, the human brain 
is inundated with nearly a gigabit 
per second of image data from the 

eyes. Massive cortical circuits within our 
occipital lobes must efficiently process this 
data stream to sift out the relevant pieces 
of information. Although neuroscience 
is still only beginning to understand the 
detail of how these cortical circuits work, 
some general principles underlying the 
process were proposed decades ago. One 
such principle is sparse coding, an idea 
initially proposed in the early 1970s by the 
neuroscientist Horace Barlow1.

Barlow hypothesized — based both on 
experimental observation and on theoretical 
grounds — that the cortex reformats sensory 
data to form a complete representation 
with the smallest number of active 
neurons. Importantly, this reformatting 
is adapted to the statistics of the input 
stream so that neurons become selective 
to commonly occurring patterns. In this 
way, a sparse code may facilitate learning 
and the forming of associations at higher 
levels of processing by making explicit the 
structure and features occurring in the input 
signal, with a high efficiency in terms of 
the energy consumption.

In the mid-1990s, it was shown through 
computer simulation of a neural network 
trained on a large database of natural image 

patches that sparse coding could account 
for the shapes of receptive fields of neurons 
in primary visual cortex2. Since then, the 
idea has not only gained acceptance in 
neuroscience but has also become a widely 
adopted tool in modern signal processing3 
and computer vision4, and it forms the basis 
of a number of deep unsupervised-learning 
algorithms5. Also in view of its energy 
efficiency, sparse coding is an extremely 
promising approach to deal with the data 
streams we face in modern technology.

A key challenge in employing sparse 
coding is that finding optimal codes for 
each input is a highly nonlinear, neural 
computation that also changes as the 
system learns by exposure to more data. In 
particular, the fundamental computations — 
when carried out on an ordinary central 
processing unit — involve a time-
consuming, iterative procedure consisting 
of repeated application of inner-products 
between neural weight vectors and input 
error signals. Although a central processing 
unit is reprogrammable, allowing adaptation 
with learning, it is particularly inefficient 
for the required iterative computations. 
This is because the signal flows occurring 
in a network of highly interconnected, 
asynchronous neurons need to be digitally 
simulated. In contrast, asynchronous analog 
circuits may be more efficient at performing 

the computation, but are generally not able 
to adapt the circuit structure to learn with 
exposure to new inputs.

Now, writing in Nature Nanotechnology, 
Sheridan et al. report on a promising 
approach to this problem by exploiting 
memristors, two-terminal devices whose 
resistance value can be dynamically adjusted 
analogously to a synapse between neurons6. 
The researchers fabricate a network of 
artificial neurons fully interconnected via 
a 32 × 32 crossbar array of WOx-based 
analog memristors. When a set of voltages 
is applied as input, the network allows for 
a natural and immediate computation of 
inner products by weighting each voltage 
by the corresponding synaptic conductance 
value via Ohm’s law and by subsequently 
summing each resulting current via 
Kirchhoff ’s law. Sheridan et al. program a set 
of learned image features in the memristors’ 
conductance values, which allows the circuit 
as a whole to compute the sparse code of an 
image when applied to the input.

The hardware discussed by 
Sheridan et al. implements a particular 
sparse coding algorithm called a locally 
competitive algorithm7, which has a 
straightforward mapping onto a recurrent 
neural network. Each neuron computes 
an inner product between its weight 
vector and the input, the result is passed 
through a threshold, and the output is fed 
back through the weights to reconstruct 
the input. The resulting error is treated as 
the next input signal and the process is 
repeated until the network converges to 
the optimal sparse code. In particular, after 
convergence, only a few output neurons 
corresponding to features contained in the 
input image are left active.

While ideally the network dynamics 
evolve in continuous-time, Sheridan et al. 
implement the feedforward and feedback 
phases by explicitly clocking each phase. 
In that sense, this constitutes something 
of a hybrid approach in which each 
neuron’s inner product is computed in 
an analog manner, but the network as a 
whole settles on a solution in a step by step, 
clocked fashion.

NEUROMORPHIC COMPUTATION

Sparse codes from memristor grids
The adjustable resistive state of memristors makes it possible to implement sparse coding algorithms naturally 
and efficiently.
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Figure 1 | Sparse coding of an image. Sparse coding transforms data (in this case, an image) into a 
representation in which only a small fraction of units (neurons) are active — the size of each dot denotes 
that unit’s activity. The data is thus compactly represented in terms of a small number of elementary 
patterns (shown on the right). Because sparse codes use few active units, they also consume less energy.
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The contribution by Sheridan et al. 
represents a critical missing piece required 
for a system that combines the computational 
efficiency previously seen in implementations 
of asynchronous analog circuits for sparse 
coding8 with the ability to learn the statistics 
of new data as it streams into the system. 
This combination could open a new avenue 
for computing approaches that merge the 
efficiency of neuromorphic computing with 
the data-driven learning that is critical to 
modern machine learning. Furthermore, 
beyond learning the statistics of data, 
advances toward such adaptive systems may 
allow the use of on-chip learning9 to achieve 

highly effective computations in analog 
systems by allowing chips to compensate 
for the significant device variations that are 
inherently present in the manufacturing 
process. To this end, sparse coding models 
that utilize fully local learning rules10 appear 
particularly promising.� ❐

Bruno A. Olshausen is at Helen Wills Neuroscience 
Institute and School of Optometry, University 
of California, Berkeley, California 94720, USA. 
Christopher J. Rozell is in the School of Electrical 
and Computer Engineering, Georgia Institute of 
Technology, Georgia 30332, USA. 
e-mail: baolshausen@berkeley.edu; crozell@gatech.edu

References
1.	 Barlow, H. B. Perception 1, 371–394 (1972).
2.	 Olshausen, B. A. & Field, D. J. Nature 381, 607–609 (1996).
3.	 Elad, M., Figueiredo, M. A. T. & Ma, Y. Proc. IEEE  

98, 972–982 (2010).
4.	 Wright, J. et al. Proc. IEEE 98, 1031–1044 (2010).
5.	 Zeiler, M. D., Taylor, G. W. & Fergus, R. in 2011 IEEE Int. Conf. 

Computer Vision http://doi.org/fzcf3f (2011).
6.	 Sheridan, P. M. et al. Nat. Nanotech. 12, 784–789 (2017).
7.	 Rozell, C. J., Johnson, D. H., Baraniuk, R. G. & Olshausen, B. A. 

Neural Comput. 20, 2526–2563 (2008).
8.	 Shapero, S., Charles, A. S., Rozell, C. & Hasler, P. IEEE J. Em. Sel. 

Top. C. 2, 530–541 (2012).
9.	 Prezioso, M. et al. Nature 521, 61–64 (2015).
10.	Zylberberg, J., Murphy, J. T. & DeWeese, M. R. PLoS Comput. Biol. 

7, e1002250 (2011).

Published online: 22 May 2017

PHOTODETECTORS

A heated junction
Resonant photonic structures made of thermoelectric materials can convert light into electricity without 
wavelength limitations.

Ming Zhou and Zongfu Yu

Photodetection is an essential process 
in cameras, light sensors, solar cells 
and optical communications, covering 

a wide spectral range from the visible 
to the far infrared. Most conventional 
photodetectors use either semiconductors 
or resistive bolometers. Semiconductor 
photodetectors are fast and sensitive 
but are unresponsive to energies below 
the semiconductor bandgap. Below this 
cutoff wavelength, resistive bolometry is 
used, providing efficient photodetection, 
but with slow speed. Writing in 
Nature Nanotechnology, Mauser et al. now 
report a new type of photodetector that 
combines the thermoelectric (TE) effect 
and plasmonic resonance, potentially 
offering fast photodetection without a 
cutoff wavelength1.

Figure 1 illustrates the structure of the 
resonant TE photodetector. The central 
nanowire made of bismuth telluride and 
antimony telluride is the photoactive 
region. This is connected to two metallic 
pads of p- and n-doped TE materials, 
acting as positive and negative electrodes, 
respectively. The nanowire is specifically 
designed to realize a unique thermophotonic 
function: it exploits the doped electrodes to 
form a TE junction in the middle; and, at the 
same time, it is shaped to support a guided 
optical resonance. When in operation, the 
optical resonance converts incident light 

into localized heat, which then drives the TE 
junction to produce an electrical signal.

This occurs because a temperature 
gradient creates a heat flow that carries 
electrons and holes. In p-doped materials, 
the heat flow carries holes from the hot to 
cold region, whereas in n-doped materials, 
electrons move from the hot to the cold 
region. By using both n- and p-doped 
materials, the TE junction generates a 
voltage when the temperature in the middle 
is higher than that at the two ends (Fig. 1).

However, a TE junction is generally 
insensitive to incident light. To use a TE 
junction for photodetection, light must be 
first converted to localized heat. And this is 
where the optical properties of the nanowire 
come into play. The nanowire is a nanoscale 
resonator and can collect incident light from 
an area much larger than its geometrical 
cross section. Such a concentration effect, 
already exploited2 in semiconductors for 
photodetectors, single molecule imaging 
and solar cells, is used by Mauser et al. in a 
metallic nanowire to convert light to heat 
through ohmic losses. The pads at the two 
ends of the device are highly reflective, and 
hence remain cool, creating a temperature 
gradient that drives the voltage across the 
TE junction.

This device offers a few advantages 
compared to conventional photodetectors. It 
can work over an extremely broad spectral 

Figure 1 | Schematic of the resonant 
thermoelectric (TE) photodetector and its light-
to-heat conversion mechanism. A nanowire made 
of TE p- and n-doped materials converts light 
into localized heat. The pads reflect most of the 
incident light and stay cool. The heat flow carries 
electrons to the n-doped pad and holes to the 
p-doped pad, generating an electrical voltage 
difference across the TE junction.
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