Reinforcement Learning

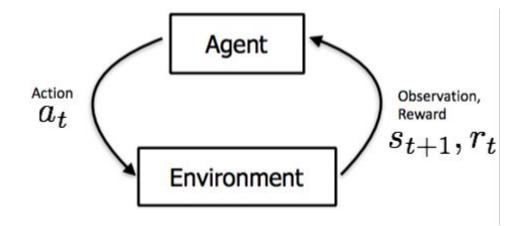
VS265 - Neural Computation, 2018

What we have covered

Passive Learning

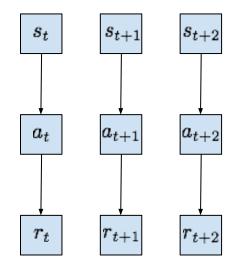
Today: Active Learning (RL)

What is Reinforcement Learning?

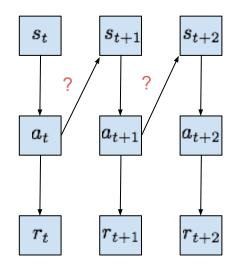


How is it different than other models?

Passive Learning



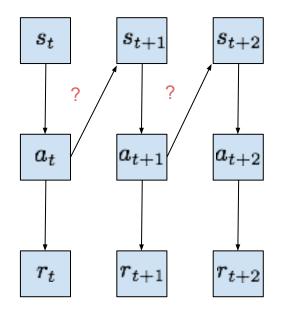
Active Learning (RL)



Why is this hard?

- Actions affect future data
- Rewards are sparse
- Feedback is delayed

Reinforcement Learning



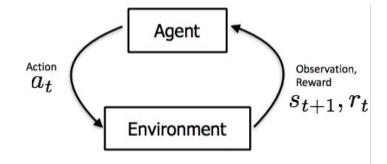
Outline

- Markov Decision Processes (MDPs)
- How to maximize reward (Q-Learning)
- Connection to neurons in the Ventral Tegmental Area (VTA)
- How to learn in large, unstructured**, environments
- Open Questions

Markov Decision Process

Markov Decision Process (MDP)

An MDP fully describes an Environment:



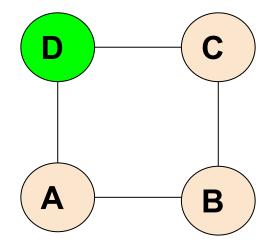
- S: State Space
- A: Action Space
- P: Transition Kernel $s_{t+1} \sim p(s_{t+1}|s_t, a_t)$
- R: Reward Function $r_t = R(s_t, a_t)$

Markov Decision Process (MDP)

- Markov
 - $\circ \ p(s_{t+1}|s_0...s_t,a_0...a_t) = p(s_{t+1}|s_t,a_t)$
- Decision
 - Decide on an action at each time point
 $a_t \in A$
- Process
 - States evolve over time
 $s_{t+1} \sim p(s_{t+1}|s_t, a_t)$

Markov Decision Process (MDP)

$$S = \{A, B, C, D\}$$
$$A = \{Up, Down, Left, Right\}$$
$$R = \{0, 0, 0, 1\}$$



Q-Learning - Algorithm

Q-Learning - Algorithm

• Find a good **policy**, $\pi: S \to A$, that maximizes the expected sum of rewards over time:

$$a_t = \pi(s_t)$$

$$s_{t+1} \sim P(s_{t+1}|s_t, a_t)$$

$$r_t = R(s_t, a_t)$$

$$\pi^* = \arg \max_{\pi} \mathbb{E} \Big[\sum_{\tau=0}^{\infty} \gamma^{\tau} r_{t+\tau} \Big]$$

Q-Learning - Algorithm

• **Q(s,a)** is the total expected reward starting from state s, taking action a, and then following optimal policy

$$a_t = \pi(s_t) = \underset{a}{argmax} \ Q_{\pi}(s_t, a)$$

$$\pi^* = \arg \max_{\pi} \mathbb{E} \Big[\sum_{\tau=0}^{\infty} \gamma^{\tau} r_{t+\tau} \Big]$$

State-Value Function: ∞ $V_{\pi}(s_t) = \mathbb{E} \left| \sum \gamma^{\tau} r_{t+\tau} \right|$ $\tau = 0$ $V_{\pi}(s_t) = \mathbb{E}\left[r_t + \sum_{t=\tau}^{\infty} \gamma^{\tau} r_{t+\tau}\right]$ $V_{\pi}(s_t) = \mathbb{E}\left[r_t\right] + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{\tau} r_{t+\tau}\right]$ $V_{\pi}(s_t) = \mathbb{E}\left[r_t\right] + \gamma V_{\pi}(s_{t+1})$

Action-Value Function:

$$V_{\pi}(s_t) = \mathbb{E}\left[r_t\right] + \gamma V_{\pi}(s_{t+1}), \quad r_t = R(s_t, \pi(s_t))$$
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[r_t\right] + \gamma V_{\pi}(s_{t+1}), \quad r_t = R(s_t, a_t)$$
$$a_t = \pi(s_t) = \underset{a}{argmax} \quad Q_{\pi}(s_t, a)$$
$$V_{\pi}(s_t) = \underset{a}{max} \quad Q(s_t, a)$$
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[r_t\right] + \gamma \underset{a}{max} \quad Q_{\pi}(s_{t+1}, a), \quad r_t = R(s_t, a_t)$$

$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[r_t\right] + \gamma \max_{a} Q_{\pi}(s_{t+1}, a), \quad r_t = R(s_t, a_t)$$
$$a_t = \arg\max_{a} Q(s_t, a)$$

Q-Learning - Update Rule

$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[r_t\right] + \gamma \max_a Q_{\pi}(s_{t+1}, a), \quad r_t = R(s_t, a_t)$$

 $Q(s_t, a_t) = 0$ // Initialize action-value beliefs to 0

Iterate:

$$a_{t} = \operatorname{argmax} Q_{\pi}(s_{t}, a) \quad r_{t} = R(s_{t}, a_{t}) \quad s_{t+1} \sim p(s_{t+1}|s_{t}, a_{t})$$

$$\Delta Q_{\pi}(s_{t}, a_{t}) = (\operatorname{New Belief}) - (\operatorname{Old Belief})$$

$$\Delta Q_{\pi}(s_{t}, a_{t}) = r_{t} + \gamma \max_{a} Q_{\pi}(s_{t+1}, a) - Q_{\pi}(s_{t}, a_{t})$$

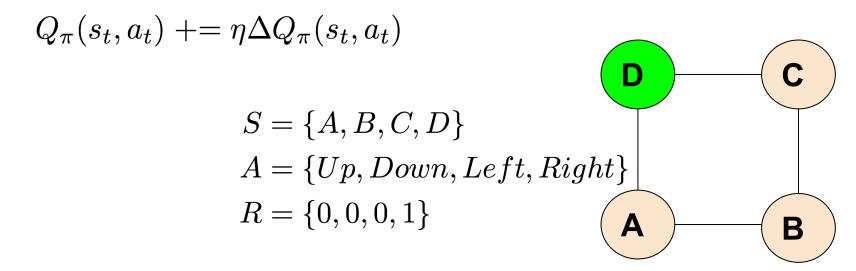
$$\mathsf{Temporal} \qquad \mathsf{Critic} \qquad \mathsf{Belief}$$
Difference (New Belief)

Q-Learning - Exercise

Q-Learning (Exercise)

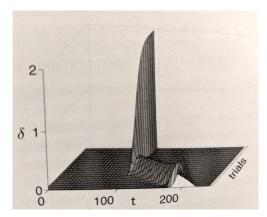
$$\Delta Q(s_t, a_t) = [r_t] + \max_a Q(s_{t+1}, a) - Q(s_t, a_t)$$

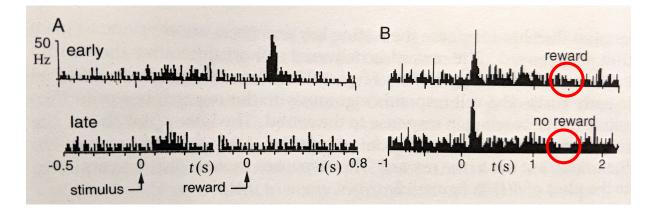
Temporal Difference



Connection to VTA

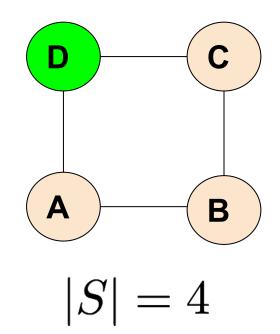
Connection to VTA





Theoretical Neuroscience, ch.9 (Dayan & Abbot) (Adapted from Mirenowicz & Schultz, '94 & Schultz '98)

 $|S| \ge 2^{100}$



 Deep Q-Networks (DQN): Estimate Q using a neural network

 $Q_{\theta}(s,a) \approx Q(s,a)$

• Objective Function: Use the temporal difference signal

$$E = [r_t + \gamma \max_a Q_\theta(s_{t+1}, a)] - Q_\theta(s_t, a_t)$$
$$\theta = \theta + \eta \frac{\partial E}{\partial \theta}$$

Deep-Q-Network

- Use a Convolutional Neural Network (CNN) as the function approximator
- Experience Replay Store experiences in a data-set and randomly sample them during learning

$$e_t = (s_t, a_t, r_t, s_{t+1})$$
$$\mathbb{D} = e_1, \dots, e_N$$

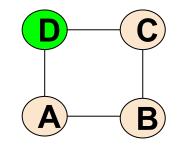
Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." *arXiv preprint arXiv:1312.5602* (2013).

Open Questions

Open Questions

- Credit assignment in worlds with sparse rewards
- Exploration vs. Exploitation
- Generalization to the real world
- Continual Learning

Q-Learning in even more complex worlds



Resources

- David Silver's Lectures
 - <u>http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.ht</u>
 <u>ml</u>
- CS294 Deep Reinforcement Learning
 - o <u>http://rll.berkeley.edu/deeprlcourse/</u>

Q-Learning

$$\Delta Q(s_t, a_t) = [r_t] + \max_a Q(s_{t+1}, a) - Q(s_t, a_t)$$

Temporal Difference

