Physics of Computation



The processes of drift and diffusion are the stuff of which
all information processing devices—both neural and
semiconductor—are made.

—Carver Mead (1989)




Nernst potential (aka ‘reversal potential’)
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Current-voltage relation of voltage-gated channels
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Current-voltage relation of MOS transistor
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All of these things are related by the same
fundamental physical law...



Its the Boltzmann distribution!

Example: atmospheric pressure vs. elevation
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Active devices

Voltage-gated channels

MQOS transistor
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MOS transistor
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FIGURE 3.4 Cross-section (a) and energy diagram (b) of an n-channel transistor.

In a typical 1988 process, the gate-oxide thickness is approximately 400 angstroms
(0.04 micron), and the minimum channel length /is approximately 1.5 microns. When
the circuit is in operation, the drain is biased positively; hence, the barrier for electrons
is greater at the drain than at the source. Applying a positive voltage at the gate lowers
the electron barrier at both source and drain, allowing electrons to diffuse from source

to drain.



aVgs a Vs Vgs = gate-source voltage
[ =1Ipe FT (1 —e *T ) v, - drain-source voltage
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The exponential current—voltage relation in the nerve is a result of the same
physical laws responsible for the exponential transistor characteristic. There is
an energy barrier between a state in which current can flow and one in which
current cannot flow. The height of that barrier is dependent on a control voltage.
The Boltzmann distribution determines the fraction of the total population that
is in the conducting state. In the transistor, the electrons in the channel form
the population in question, and these same electrons carry the current. In the
nerve membrane, the channels form the population in question, and ions in the
channels carry the current. In both cases, the number of individual charges in
transit is exponential in the control voltage, and the transport of these charges
results in a current that varies exponentially with the control voltage.



Transconductance amplifier



Differential pair

Il = ] erCV1—V
0 and fo = [pe®V2—V
}—OVp
L=1+ 1, = Igf!_v(f’nvl -+ E"cvz)
=> e.mv _ Ib_ ]. .
Iy exV1 4 ex V2
¥
=1 eyl
b and Iz = 1§ e




Differential pair
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Transconductance amplifier
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Silicon retina






HI horizontal cells connected via gap junctions

HI horizontal cells labeled following injection of one HI cell () %300
after Dacey, Lee, and Stafford, 1996



Hyperpolarization of photoreceptor results in
hyperpolarization of horizontal cells
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Hyperpolarization of horizontal cell results in
depolarization of photoreceptors
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Hyperpolarization of horizontal cell results in
depolarization of photoreceptors
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Hyperpolarization of horizontal cell spreads to
other horizontal cells via gap junctions
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Hyperpolarization of horizontal cell spreads to
other horizontal cells via gap junctions
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Hyperpolarization of horizontal cell spreads to
other horizontal cells via gap junctions
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Lateral inhibition




Lateral inhibition
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Analog VLS| retina
(Mead & Mahowald, 1989)
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“VYon Neumann” computing architecture
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Moore’s law is ending
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From: “After Moore’s Law,”
The Economist, March 12, 2016



Moore’s law is ending

Errors iIncrease as
device size decreases
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From: Borkar et al.
IEEE Micro 2005



Analog VLSI (or neuromorphic computing) exploits
intrinsic transistor physics and laws of electronics
(Kirchhoff’s law, Ohm’s law) to do computation
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3D RRAM crossbar array




