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The head-direction (HD) cells found in the limbic system in 
freely moving rats represent the instantaneous head direction 
of the animal in the horizontal plane regardless of the location 
of the animal. The internal direction represented by these cells 
uses both self-motion information for inet-tially based updating 
and familiar visual landmarks for calibration. Here, a model of 
the dynamics of the HD cell ensemble is presented. The sta- 
bility of a localized static activity profile in the network and a 
dynamic shift mechanism are explained naturally by synaptic 
weight distribution components with even and odd symmetry, 
respectively. Under symmetric weights or symmetric reciprocal 
connections, a stable activity profile close to the known direc- 
tional tuning curves will emerge. By adding a slight asymmetry 
to the weights, the activity profile will shift continuously without 

disturbances to its shape, and the shift speed can be controlled 
accurately by the strength of the odd-weight component. The 
generic formulation of the shift mechanism is determined 
uniquely within the current theoretical framework. The attractor 
dynamics of the system ensures modality-independence of the 
internal representation and facilitates the correction for cumu- 
lative error by the putative local-view detectors. The model 
offers a specific one-dimensional example of a computational 
mechanism in which a truly world-centered representation can 
be derived from observer-centered sensory inputs by integrat- 
ing self-motion information. 
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1 BACKGROUND 
The head-direction (HD) cells found in the brains of freely 
moving rats have remarkable properties. They signal the instan- 
taneous head direction of the animal in the horizontal plane 
regardless of the location of the animal in the environment 
(Ranck, 1985; Taube et al., 1990a). The system is striking in that 
its frame of reference is perfectly world-centered so that it can 
serve practically as a neural compass or gyroscope. The internal 
representation of head direction maintained by these cells is 
updated continually according to the head movement of the 
animal, even in total darkness (McNaughton et al., 1991; Mizu- 
mori and Williams, 1993). On the other hand, the system has a 
more “cognitive” aspect: It can use familiar landmarks to reset or 
calibrate the internal direction (Taube et al., 1990b; McNaughton 
et al., 1993; Goodridge and Taube, 1995; Taubc and Burton, 
1995). 

From a theoretical point of view, the HD system is very inter- 
esting. It provides compelling neurobiological evidence for stable 
attractor dynamics; at the same time, it forces consideration of the 
challenging problem of how to shift a stable activity profile (cf. 
Pouget and Scjnowski, 1995). The system is particularly appealing 
because it is intrinsically one-dimensional, and its operation is 
smooth and thus potentially subject to continuous analytical treat- 
ment. Finally, the properties of HD cells have clear parallels with 

Received Sept. 7, IWS; rcviscd Dee. It;, 19%; acccptcd Dee. 20, 19%. 

This research ww supported hy the McDonnell-Pew Center for Cognitive Ncuro- 
science at SW Diego and N;ttion:d Institutes of Health Grant MH47035 to M. I. 
Sercno. I cspcci;~lly thank M. 1. Scrcno and D. Zipscr for help snd support during the 
development of the model, .I. S. T;luhc for providing the data used in Figure 2, and 

M. 1. Serene for wluablc comments xnd corrections on an carlicr version of the 
manuscript. 

Corrcspondencc should hc addrcased to Kcchen Zhang, Dcpwtment of Cognitive 

Science, University of Glifornia at San Diego, La Jolla, CA ‘)2(1X3-05 IS. 

Copyright 0 19% Society for Ncurox%xx 0270-h474/Wl621 12.lS$OS.OO/O 

the phenomena of human spatial perception, and they are begin- 
ning to provide a firm biological foundation for human experi- 
ences of spatial orientation (cf. Howard and Templeton, 1966; 
Gallistel, 1990). 

Two major computational problems must be solved by the HD 
system. First, because the “sense of direction” reflects abstract 
qualities about spatial relationships, its neural representation 
must not depend on the modality of the sensory inputs. The 
biological system probably solves this problem by using sclf- 
sustaining activities in an attractor network. Second, as a truly 
world-centered representation, the “sense of direction” must be 
derived from primary sensory signals that arc all ccntcrcd to the 
body of the animal. This means that the overall reprcscntation is 
inherently dynamic and relies crucially on an updating mechanism 
that can compensate precisely for self-motion. 

Several thcorctical models related to the HD cells have been 
proposed. Their dynamic shift mechanisms have various fcaturcs, 
including, in broad terms, the conjunction of the current head 
direction and movement information (McNaughton et al., 1991, 
1995; Skaggs et al., 1995) the anticipatory activities in the thala- 
mus (Blair, in press), and the rotation of sinusoidal arrays 
(Touretzky et al., 1993). Although the model here is consistent 
with the existing idea about the integration of both static and 
movement information, it stresses the central role of the intrinsic 
dynamics of the HD cell ensemble, in the same spirit as the model 
independently proposed by Skaggs et al. (1995). The present 
model has several new features. It has an explicit, analytical 
formulation of the dynamics of the HD cell continuum, and it 
unifies the descriptions of both the static behaviors and the 
dynamic shift mechanism in terms of the symmetry of the synaptic 
weight distribution. In the static case, the shape of the tuning 
curves is treated quantitatively as an emergent property of the 
network. In the dynamic case, the continuous shift mechanism, 



the formulation of which can be determined uniquely, has accu- 
rate control over both the speed and the shape of traveling activity 
profile. 

The theory has been reported in abstract form (Zhang, 1995). 

2 BASIC PROPERTIES OF HD CELLS 

2.1 General descriptions 
HD cells were first found in the postsubiculum (also called dorsal 
presubiculum) in freely moving rats (Ranck, 1985). These cells 
have been studied systematically in several regions in rat brain, 
including the postsubiculum (Taube et al., 199Oa,b), the antero- 
dorsal (AD) and lateral dorsal (LD) nuclei in the limbic thalamus 
(Mizumori and Williams, 1993; Blair and Sharp, 1995; Taube, 
1995), and the posterior cingulate cortices (Chen et al., 1994a,b); 
in addition, there have been reports of a small number of HD cells 
in the striatum (Wiener, 1993; Mizumori and Cooper, 1995). See 
Figure 1 for a schematic summary. 

Directional tuning 
A typical HD cell fires rapidly only when the head of the animal 
is pointing in a particular preferred direction in the horizontal 
plane, regardless of the location of the animal (Taube et al., 
19YOa). As long as the animal is not disoriented, the preferred 
direction of an HD cell is the same everywhere, even if the animal 
is moved to different surroundings. The preferred directions of 
different cells seem to scatter uniformly. In contrast to the situa- 
tion in many neocortical areas, HD cells with similar preferred 
directions do not cluster, and no obvious topographic neural 
organization has been found (Taube et al., 1YYOa; Taube, 1995; 
Sharp, in press). 

Use of landmarks 
The preferred directions of HD cells arc based on the relative 
position of the animal with respect to the familiar stable land- 
marks. The rotation of a sole salient visual cue in a controlled 
environment would lead to an almost equal rotation of the prc- 
ferred directions of all HD cells (Taube et al., 1990b). A long- 
lasting association between the internal direction and a new 
environment can be established within minutes; when the internal 
direction is later in conflict with the familiar landmarks, the 
landmarks will dominate (Goodridge and Tdube, 1995; Taube and 
Burton, 1995). 

Inertia& based updating 
Despite the strong control exerted by visual landmarks, the direc- 
tional firings of HD cells persist in total darkness, presumably by 
integrating self-motion information (McNaughton et al., 1991; 
Mizumori and Williams, 1993). Understandably, the preferred 
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Figure I. A Papez-like circuit connects the major ana- 
tomical structures where HD cells have been found, with 
the highest percentages in the thalamus and the postsuh- 
iculum. References: [a] Tauhe (199.5), [b] Mizumori and 
Williams (1993), [c] cube et al. (1990a), [d] Tauhe 
(1993), [e] Sharp and Green (1994), [,f] Chen et al. 

. subiculum: 0% le) 
(1994a). Many references to the anatomy 
can he found in Vogt and Gabriel (1993). 

of the system 

directions may drift during prolonged recordings 
(Mizumori and Williams, 1993). 

Rigid frame 

in darkness 

The preferred directions of different HD cells are coupled tightly 
with one another so that the system can only bc rotated rigidly as 
a whole. That is, the rotation angles for the prcferrcd directions of 
different HD cells arc always the same, whether the rotation is 
caused by landmark rotation or disorientation of the animal 
(Taube et al., 1YYOb). The HD cells arc also rigidly coupled with 
the hippocampal place cells (Knierim et al., 1995). 

Behavioral significance 

The working hypothesis is that the internal direction represented 
by the HD cells corresponds to the internal “sense of direction” of 
the animal. The general manner in which the HD cells handle 
conflicting vestibular and the local-view information (Markus et 
al., 1990; McNaughton et al., 1993; Blair and Sharp, in press) is 
consistent with the behavioral results of spatial navigation (Mit- 
telstaedt and Mittelstaedt, 1980). After landmark rotation, both 
the choices of the animal in a behavioral task and the preferred 
directions of the HD cells rotated equally (Dudchenko and 
Taube, 1994). Finally, lesions to the postsubiculum (Taube et al., 
1992) or inactivation of the LD nucleus (Mizumori et al., 1994) 
impaired the performances of the animal in spatial tasks. 

Other properties of HD cells, including the anticipatory activ- 
ities in the thalamus (section 5.3) and the effects of restraint and 
lesion stud& (section 7.l), will be discussed later. 

2.2 Directional tuning curve 
WC seek an analytical description for typical directional tuning 
cuwes of the HD cells in the postsubiculum and anterior thalamus, 
which have been studied extcnsivcly by Taubc and colleagues 
(Taube et al., 199Oa; Taube, 1995). A tuning curve plots the firing 
rate f as a function of the head direction 8, and it has a stereotyped 
triangular or Gaussian-like shape that can be fitted by the 
function: 

f = A + Be~“O\~~~-fh) (1) 

where 8,) is the preferred direction, and A, B, and K are all positive 
parameters (Fig. 2). Roughly speaking, K determines the sharp- 
ness of the tuning, whereas A and BeK are the background and the 
peak firing rates, respectively. The function (Eq. 1) is related to 
the so-called circular normal distribution (Johnson and Kotz, 
1970). See Appendix 1 for more detailed discussion of the tuning 
curve. 

At any given time, the most active HD cells are the ones with 
preferred directions close to the current head direction. The 
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Figure 2. A typical HD cell has stereotyped direc- 
tional tuning curve. Its firing rate reaches maximum 
when the head direction fl is aligned with the preferred 
direction 0,). Data points and fitting curves are shown in 
both Cartesian and polar coordinates. A, An anterior 
thalamic HD cell with medium peak rate. Data from 
Figure 4B in Taubc (1995). Parameters: K = 8.08, A = 
2.53 Hz, and BeK = 34.8 Hz. B, A postsubicular HD cell 
with high ueak rate. Data from Figure 3C in Taube ct 
al. (lY%aj. Parameters: K = 5.2’): A = 1.72 Hz, and 
BeK = 94.8 Hz. (Digital data courtesy of J. S. Tauhc.) 

Head Direction 8 - 80 Head Direction 0 - 80 

spread of activities among the whole population of HD cells as a 
function of the preferred direction (i.e., same head direction, 
different cells) is basically cquivalcnt to the directional tuning curve 
(i.e., same cell, diferent head directions). This is rigorously true 
only as a statistical statement. Let the head direction 0 be fixed. 
The average firing ratef(O,,) for the subpopulation of HD cells with 
the same preferred direction O,, is the weighted sum f(O,,) = 
C,p (a)fa( IO,, - 01) , where 01 = {A, B, K} is the set of parameters 
for characterizing the tuning curves,p(ol) is the probability density 
of (Y in the whole HD cell population, and the tuning function 
f&O, - 01) is the same asf in Equation 1. 

3 BASIC DYNAMIC MODEL 
We consider a continuous formulation of the dynamics of the HD 
cell population. The model is concerned only with the average 
behaviors. For the time being, we do not distinguish HD cells in 
different anatomical regions. The average firing rate of all the HD 
cells with the same preferred direction 0 is described by a single 
scalar function f = f(0, t), which is also a function of time t. 
Similarly, u = ~(0, t) is the average net inputs or “synaptic 
currents” received by these units. They are assumed to be related 
by a sigmoid function: 

f = CT(u). 

The model is essentially one-dimensional with ring topology, and 
the distribution of the preferred directions is treated as continu- 
ous and uniform. It is important to note that the ring here is 
defined by the preferred directions, which are ultimately deter- 
mined by the connections between the cells instead of by their 
physical positions in the brain; in fact, there are good theoretical 
reasons why proximity of physical positions does not imply the 
similarity of preferred directions (section 4.5). 

The time evolution of the system has “standard” simplified 
continuous dynamics (Amari, 1972; Sejnowski, 1977; Hopfield, 
1984) governed by the equation: 

a11 

T -it 
=-u+w*f, (2) 

where the convolution is dcfincd by: 

w(0, t) * f(0, t) = :, 
I 

277 
WC0 - $3 r)f(4, t) d$. 

0 

The convolution is involved because the system is assumed to be 
rotation-invariant; that is, the average synaptic weight w between 
two units with the preferred directions 0, and O2 should depend 
only on the difference 0, - Oz. We use the synaptic weight distri- 
bution function ~(0, t) to describe the average strength of the 
synaptic weights between two units with preferred directions dif- 
fering by the angle 0, with 0 > 0 indicating projections to coun- 
terclockwise neighbors and 0 < 0, to clockwise neighbors. 

Parameter 7 is a time constant. We chose T = 10 msec in all 
simulations presented here. The behaviors of the system are not 
affected by the exact value of T, because the sole effect of changing 
T is equivalent to a change of the time scale. 

It must be emphasized that in this system the reciprocal con- 
nections between two units arc not always equal. This implies that 
the projections from a given unit to its clockwise and counter- 
clockwise neighbors can be different, or equivalently, the system in 
general is not reflection-invariant. In terms of the synaptic weight 
distribution function ~(0, t), this means that: 

w(-0, t) # w(0, t). 

The system is different from a Hopfield network, in which the 
existence of point attractors is guaranteed by the symmetry of the 
reciprocal connections (Cohen and Grossberg, 1983; Hopfield, 
1984). In general, an arbitrary ~(0, t) can always be decomposed 
uniquely into even (“symmetric”) and odd (“antisymmetric”) 
components: 

WC& t) = W,“,“(O> f) + w,,,,(O, t), (3) 

with w,,,,(- 0, 4 = w,,,,(@ t> and wodd(- 0, 4 = -w,,dO, 4. 
The decomposition has a special meaning here. We assume that 

W even is constant, whereas w Odd is modified rapidly during a head 
turn. When w,,‘,~, = 0, all the weights in the network are symmetric, 
and the system always settles into some static attractor state. This 
case corresponds to the self-sustaining HD cell firings in the absence 
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of movements. When PV,,~~ # 0, a continuous shift of the activity spot 
will occur, which corresponds to the case of head turn. In this model, 
the ultimate effect of motion signals such as the vestibular input is to 
induce a small nonzcro odd component of the weight distribution. In 
a realistic neural circuit, the asymmetry could be implemented in a 
number of different ways (section 5.2). 

Finally, we emphasize the close relationship between the con- 
tinuous model and the more familiar form of neural n&work 
models with discrete units. Numerical simulation shows that as 
long as there are more than -50 units, the smooth behaviors of 
the corresponding discrete model are virtually independent of the 
exact number of units; that is, the continuous model starts to 
provide an adequate description of the dynamics. Therefore, in 
the following sections we do not explicitly consider the size of the 
network, except in section 4.5 on the effects of noisy weights, 
where the actual network size becomes relevant. 

4 STATIONARY SELF-SUSTAINING ACTIVITIES 

4.1 Origin of directional tuning 
We consider the behavior of the model system in the absence of 
any external input. In this case, the synaptic weight distribution is 
symmetric (i.e., reciprocal connections are equal) with local exci- 
tation and longer-range inhibition. 

The key property of the model is that with appropriately chosen 
synaptic weight distribution function and the sigmoid function 
(details in the following sections), the network will always approach 
the same stereotyped activity profile regardless of the initial state (Fig. 
3). Although the system is rotation-invariant, namely, the connec- 
tion pattern is the same throughout the network, the symmetric 
state where every cell is equally silent is unstable. As illustrated in 
Figure 3A, any small noise will break the symmetry. 

The localized firing profile implies directional tuning because of 
the equivalence between directional tuning of individual cells and 
the spread of activities among the whole population (section 2.2). 
Of course, directional tuning is meaningful only with the support 
of a shift mechanism, which will be considered later. In the model, 
the firings of HD cells can be sustained indefinitely, solely by their 
mutual connections, which may be compared with the persistence 
of HD cell activities in total darkness. Note also that the rigid 
coupling of the preferred directions of different HD cells is 
automatically accounted for by the model. 

Because the peak of the stable profile can be centered at any 
unit as a result of the rotation-invariance of the system, the static 
state of the system is essentially in a neutral equilibrium, like a ball 
balanced on a perfectly horizontal table, in contrast to stable (ball 
at bottom of a bowl) and unstable equilibrium (ball at top of a 
dome). 

Figure 3. Snapshots of the time evolution of 
the model obtained by numerical integration of 
the continuous Equation 2, showing the emer- 
gence of the same stable firing profile from two 
arbitrary initial states. The final profile has ste- 
reotyped shape, but its peak potentially can be 
centered anywhere (neutral equilibrium). The 
HD cells are indexed by their preferred direc- 

360’ 
tions (ranging from 0” to 360”). Free parameter 
Q- = 10 msec. Other parameters arc as in Figure 
4 under the regularization A,, = 10 ‘. 

4.2 Sigmoid function 

The stability of the model system is sensitive to the shape of the 
sigmoid function, which describes the input-output characteris- 
tics of the individual units. The attractor dynamics of the model 
relies on the nonlinearity of the sigmoid function. The sigmoid 
used in the model is shown in Figure 4A. Compared with the 
conventional sigmoid of the type I/( I + e ‘). the current function 
looks more “realistic” in certain respects, and it also works better 
in the rcgularization solution considered in the next section, 
probably because the conventional sigmoid is unnecessarily sym- 
metric with respect to 180” rotations around its infection point, 
where the second derivative vanishes. 

The sigmoid in Figure 4A is defined by: 

(T(X) = a lnP( 1 + e’J@+c)). (4) 

The choice is based on the following observation. Consider the 
function: 

ln( 1 + er) . 

For large x > 0, it behaves simply like X, whereas for large x < 0, 
it behaves like the exponential function e-l”‘. Thus, in Equation 4, 
the positive half is essentially apowerfunction of exponent /3 (with 
scaling and shifting). Alternatively, if we want the positive half to 
behave like a logarithm function, we just need a function of the 
form: 

In(l + ln(1 + e’)), 

plus appropriate scaling and shifting. In all these cases, the neg- 
ative halves always show asymptotically exponential decay. More- 
over, explicit algebraic expressions of the inverse functions can be 
obtained readily. 

4.3 Synaptic weight distribution 
Once the sigmoid function is chosen, we want to find the weight 
distribution function under which the emergent firing profile will 
be similar to the known HD cell tuning curves. For simplicity, we 
directly use the tuning function (Eq. 1) with moderate parameters 
as the desired profile, with it understood that this is only a crude 
substitute for the true ensemble average (section 2.2). 

The basic empirical fact is that once an arbitrary sigmoid is 
chosen, the weight distribution that can exactly reproduce the 
desired firing profile almost surely does not exist. To be more 
precise, suppose the dynamic system (Eq. 2) does reach the 
desired stationary state; then we would have: 

u=w*f, (5) 
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Figure 4. Synaptic weight distribution supporting stable 
activity profiles assuming sigmoid function of the form in 
Equation A. In A, the input current is in arbitrary units. 
Large firing rate at zero current is caused by the constant 
bias c. Paramctcrs: p = O.&O = 10, c = 0.5, and a = 6.34 
(determined by the scaling condition ~(1 - c) = f,,,, = 40 
Hz). B, Synaptic weight distribution function w(0) solved at 
different levels of regularization for smallness. Function IV(~) 
describes the average strength of synaptic weights between 
units whose preferred directions differ by the angle 0. For 
appropriate scaling, we use h, = h/maxlQ,,l’ to quantify 
the regularization. The desired static profile is of the 
form in Equation 1 with K = 8, A = 1 Hz, andf,,,, = A 
+ BeK = 40 Hz. C, When the weight regularization is too 
strong, the actual stable firing profile tends to be blunter 
than the desired one, or even becomes totally flat (not 
shown). On the other hand, when the regularization is 
too weak, the stable profile may suddenly become 
multiple-peaked. 

A Sigmoid 

-1 -0.5 0 0.5 1 1.5 
input Current u 

B Weight Regularization 
1O‘5 

1o-4 I ’ 

-1800 -900 00 900 180’ 

0 

where the profilefis given by Equation 1, and II = a-‘(f). In the 
Fourier domain, the convolution equation becomes: 

11 !I  ̂ = I$,, j,,> 

where ir,,, )$,1, and i, are the Fourier coefficients for II, IV, and f, 
respectively. The problem is that the simple solution +,? = ti,,/‘, 
may not converge. The condition for the existence of a square- 
integrable solution is: 

The existence condition in more general form is attributed to 
Picard (Smithies, 1958; Groetsch, 1984). In my numerical exper- 
iments with various sigmoid functions, the Fourier components 
ti,/f” tend to have larger amplitudes for higher frequencies, and 
the maximum amplitude increases rapidly (faster than exponen- 
tial) as the number of sampling points in the discrete Fourier 
transform increases. This means that a well behaved continuous 
solution w(0) does not exist. Even in a discrete model of small size 
(e.g., of only 40 units), the nominal weight solution is already so 
wildly oscillatory that it cannot support any useful single-peaked 
activity (see below). Whether it is possible to find an exact solu- 
tion by making both the sigmoid and the weights as unknowns is 
an open question. 

Nonetheless, we can find good approximate solutions by en- 
couraging the smallness of the synaptic weights. In fact, the 
convolution equation (Eq. 5) is a special case of the Fredholm 
integral equations of the first kind, which are well known to be 
ill-posed (Groetsch, 1984). The standard remedy is to use regu- 
larization, for example, by minimizing the error function: 

277 
(u - w *f):do+& ‘k2de 

I 
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00 1800 360’ 

Population of Head Direction Cells 
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Parameter A controls the trade-off between the accuracy and the 
smallness or flatness of the solution. The final solution in the 
Fourier domain is: 

The corresponding synaptic weight distribution is readily obtained 
by inverse Fourier transform. 

As expected, the HD cells with similar preferred directions have 
mutual -excitatory connections, whereas those with sufficientlv 
different preferred directions have mutual inhibitory connections 
(Fig. 4B). That is, w(0) > 0 for small 101 and <O for large 101. The 
existence of the wiggles in flanks of the weight distributions is 
typical in my simulation with various sigmoid functions. They are 
especially prominent under weak regularization. 

It is important to consider the stability of the emergent activity 
profile in addition to the trade-off between the accuracy and 
smallness of the weight solution. As the regularization level h, + 
0, the increasingly more accurate weight solution has increasinglv 
larger wiggles (Fig. 4B). As a consequence, although the error”E 
defined by Equation 6 approaches zero monotonically as h, + 0, 
the emergence stable activity profile may not even be single- 
peaked (Fig. 4C). 

Thus, a “good” shape of the weight distribution has excitatory 
center and inhibitory surround, and it may also allow a few small 
wiggles. Weight distributions with large wiggles are undesirable, 
because they tend to cause multiple activity peaks. Finally, the 
desired weight distribution patterns can be learned by a gradient 
descent procedure of the error function (Eq. 6), the algorithm of 
which can be interpreted as a biologically plausible delta rule with 
weight decay (see Appendix 2). 
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4.4 Stability of self-sustaining activities 
As shown in Appendix 3, the local stability of an arbitrary station- 
ary activity profile can be determined by examining the linearized 
dynamic equation. As a special case, we can show that the sym- 
metry breaking in Figure 3A is inevitable, because the stability 
conditions for the flat state are violated. If the parameter c (bias 
in the sigmoid function) is sufficiently reduced (e.g., setting c = 0 
in the same example), however, both the single-peaked state and the 

flat state can become locally stable. 
The stability of the flat state might be controlled actively in 

the biological system. For example, by simply increasing the 
overall inhibition level and stabilizing the low-activity flat state, 
the whole system can effectively be shut down, which might be 
useful for preventing undesirable Hebbian learning induced by 
prolonged activation of a fixed group of HD cells, for example, 
during sleep. 

4.5 Effects of noises 
Several types of noise must be considered in more realistic, 
discrete models. One type of noise is randomness in cell firing. 
This type is benign, introducing essentially one-dimensional 
Brownian motion into the position of the activity peak but without 
impairing the rotation-invariance of the system. A second type of 
noise is more worrisome. Rigorously speaking, the introduction of 
any small noise in the weight profile always destroys the rotation- 
invariance, allowing only a few possible static activity profiles (Fig. 
5). In other words, neutral equilibrium is structurally unstable. 
Similar clustering effects have been reported in a hippocampal 
place-cell model (Tsodyks and Sejnowski, 1995). 

The relevant question with respect to the second type of noise 
is how fast the clustering drift is expected to be in a network of the 
size comparable to the real HD system. If it is very slow, then for 
all practical purposes the system still may be considered to be in 
a neutral equilibrium. In a network with N fully connected units, 
suppose the weight noise has Gaussian distribution with zero 
mean and a standard deviation that is E times the average absolute 
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F@re 5. A, With noisy but fised weights, an initial 
firing profile that would be stable in the noiseless case 
will drift and eventually approach one of the new static 
profiles (point attractors). The shaded areas highlight 
one single trial. The peak positions of the firing profiles 
(defined by circular “center of mass”) starting from a 
series of initial states are shown. Nehvork size N = 32 
and level of Gaussian weight noise E = 0.6. Other 
parameters are as in Figure 3. B, Mean drift-speed 
averaged over all peak trajectories in A. The initial 
speed is typically the largest. C, Log-log plot of the 
mean initial drift-speed for different network size N 
and noise level E. Each data point is an average of the 
initial speeds in 5-10 examples like that in B. The data 
are fitted by Formula 8 with the single parameter 
D = 113”. 

value of the noiseless weights. The sytsem is governed by the 
N-dimensional vector equation: 

ni = -u + (W + &R)f = &Rf, (7) 

where vectors u and f are simply the discretized versions of the 
functions II and f, W is a circulant matrix such that Wf is equivalent 
to the continuous convolution tv * f, and R is a fixed random 
matrix. The elements of both matrices W and R are proportional 
to l/N (weaker connections for larger network). The approxima- 
tion in the last step of Equation 7 is because of the quasi- 
equilibrium II - Wf. We have 

mean initial drift speed - DE/(TN) (8) 

where D is an arbitrary constant coefficient. Simulation confirms 
the scaling in the range tested and gives an estimate of the 
coefficient D - 10’ deg (Fig. SC). To see why Equation 8 is true, 
first note that the drift speed should be proportional to ~/r, 

because according to Equation 7, the effect of changing E or T is 
equivalent to changing the time scale. Now assume that the drift 
speed is proportional to the average magnitude of the low- 
frequency components of the two-dimensional Fourier transform 
of the random matrix R. This yields the factor 1/N2, and multipli- 
cation by f enlarges it to l/N, hence Equation 8. 

For a conservative estimate, suppose we have N - 10” HD cells 
with weight noise E - 1 and time constant 7 - 10 msec; then 
Equation 8 gives the speed l”/sec, the effect of which is observable. 
In the biological system, however, the drift can be reduced or even 
prevented by other factors. Because the drift is a secondary effect 
in a system that must first of all maintain itself in a state close to 
an equilibrium, very weak external direction-specific forces will 
suffice to anchor the peak at practically any desired place. A 
related example is the strong calibration effect of the local-view 
input (section 6). 

Suitable synaptic plasticity may reduce the weight noise. For 
example, in the Hebbian mechanisms considered before, learning 
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Figure 6. Dynamic activity shift occurs if and only il 
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the synaptic weight distribution function has a nonzero 
odd component. Intuitively, the odd components in 
these examples serve to cxcitc the right neighbors so as 
to move the activation toward the right, and at the 
same time inhibit the left neighbors so as to crasc the 
trail. A, C, When the odd component is proportional 
to the derivative of the static cvcn-weight distribution, 
the shift does not disturb the shape of the static 
activity profile. We chose y = -0.063, which yields the 
speed $7 = 3hO”isec. Other parameters including the 
even-weight distribution W(H) are identical to those in 
Figure 3. B, D, When the odd component is sinusoidal, 
the traveling profile has a different shape. We chose 01 
= 0.00201 so that the averages of Ia sin 01 and I$V’(0)l 
are equal. 
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only during the movement of the animal helps to smooth out the 
noisy component in the weight distribution. In addition, the PZOPZ- 
topographic organization of the HD cells may be advantageous for 
preserving rotation-invariance during a Hebbian learning process. 
In fact, if the cells with similar preferred directions were all close 
to each other in the brain, then during learning they would likely 
be affected together because of the chemical diffusion in the 
three-dimensional volume (Montague and Sejnowski, 3 994), 
which would encourage clustering rather than rotation-invariance 
of the weight distribution. 

5 DYNAMIC SHIFT MECHANISM 

5.1 Basic principles 
We consider the shift mechanism within the framework of the 
same dynamic equation (Eq. 2). The basic behavior is simple: 
Whenever the reciprocal connections between HD cells are all 
biased toward one direction, which is equivalent to saying that 
the weight distribution function has a nonzero odd (antisym- 
metric) component, then a shift of the activity profile will 
always occur. The problem is that in general the shape of the 
activity profile can be disturbed severely during the shift. As 
shown in Figure 6, adding some small odd-weight components 
may induce drastic effects. By contrast, in the biological system 
the shapes of the tuning curves of thalamic and postsubicular 
HD cells are typically remarkably insensitive to head move- 
ment (Blair and Sharp, 199.5). 

The main result of this section is the following. To shift the 
static activity profile rigidly without disturbing its shape, the 

18 

Population of 
HD Cells 

360' 

Time 
(msec) 

odd-weight component must be proportional to the derivative of 
the even-weight component. In other words, the required weight 
distribution function can always be written as: 

w(@, t) = w(e) + y(t)W’(fQ, (9) 

where W is the same weight distribution as in the static case consid- 
ered before, and w’ is its derivative. Because W is an even function: 

W(-0) = W(O), 

this automatically implies that W’ must be an odd function: 

W’( - 0) = -W’(O). 

Of course, Equation 9 is a special case of the universal and unique 
even-odd decomposition (Eq. 3). Now the sole time-dependent 
factor in the weights is y(t), which scales the magnitude of the odd 
component. 

The key property of the weight distribution (Eq. 9) is that it can 
rigidly shif or rotate the whole static activityprofile without disturbing its 
shape, and the instantaneous angular speed o(t) is simply proportional 
to the magnitude y(t) of the odd component, namely: 

o(t) = -y(t)/7, (10) 

where 7 is the time constant in the dynamic equation (Eq. 2). See 
Figure 6 for an example and see Appendix 4 for a proof. As usual, w 
> 0 corresponds to counterclockwise rotation. The negative sign 
means that y > 0 induces clockwise rotation and y < 0 induces 
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counterclockwise rotation. Of course, y = 0 is the static case we 
considered before. 

It is shown in Appendix 5 that Equation 9 is actually the OY+ 
generic form of weight distribution function that cun .support (I 
symmetric stuhle truveling profile. For cxamplc, in Figure hC, the 
shape of the traveling profile is necessarily symmetric with respect 
to its peak, bccausc it is identical to the shape of the static profile. 
By contrast, whenever the odd component is not a dcrivativc, the 
shape of the stable traveling profile becomes somewhat asymmet- 
ric (Fig. hD). 

It is emphasized that the speed formula (Eq. 10) holds true for 
arbitrary time-dcpendcnt r(t); that is, the system picks up the 
speed instuntaneously with no effective inertia and follows every 
change of y(t) perfectly. Another nice property of the speed 
formula is that its validity does not depend on the concrete details 
of the system. The generic mechanism (Eq. 9) can shift rigidly 
whatever static activity profile happens to be supported by the 
static weight. The shift speed is independent of the actual distri- 
bution of the static weights, the exact shape of the static activity 
profile (tuning curves), and the choice of the sigmoid function 
(input-output relation). 

In summary, once the static activity profile has been estab- 
lished, changing the strength y(t) of the odd-weight component 
has no further effects other than altering the speed of the rigid 
rotation of the whole profile. The actual result is stronger: 
Even if the initial activity pattern is random, the same final 
profile will emerge during the shift (Fig. 7). An intuitive expla- 
nation of this phcnomcnon is in Appendix 6. 

5.2 Biological mechanisms 
The actual shift mechanism in the biological system is still unclear, 
although among the existing thcorics there is a general consensus 
that movement information, especially the input from the vestibular 
system, could play a major role in the shift process (McNaughton et 
al., 1991, 199.5; Touretzky et al., 1993; Skaggs et al., 1995; Blair, in 
press). Within the current dynamic framework, the result in the 
preceding section gives us a rigorous formulation for the computa- 
tional goal that a plausible shift mechanism should achieve, regard- 
less of the actual implementation. 

It is realized that the decomposition into unique even and odd 
components in Equation 9 is for theoretical convenience, and it 
does not necessarily imply that the two components must corre- 
spond directly to two separate synaptic mechanisms. What really 
matters is the correct distribution of the total weights. Because 

W(0) + yW’(0) = W(0 + y), (11) 

Firi 
f 

F@r-e 7. Emcrgcnce of the stable travcliq activity 
profiles from arbitrary initial states. Everything is iden- 
tical to that in Figure 6 except the initial states. In A 
and B, the final shapes of the travelin!: profiles are 
identical to their c&tcrparts in Figul-c%i’, D. 

the net effect of adding the derivative is approximately a shift of 
the original weight distribution by an angle equal to y. This fact is 
apparent in Figure (,A, whcrc y = -0.063 = -3.0”. Compared 
with the stalic cast in which each ccl1 sends the strongest cxcita- 
tion to the cells with the same prcfcrrcd directions, now the 
strongest excitation goes to the right (countcrclockwisc) ncigh- 
bors whose prcfcrrcd directions ditfcr by 3.6”. 

Although the network hcrc is fully conncctcd. the final ctt’cct of 
the weight shift is reminiscent of that of a shifter circuit, which was 
proposed initially for feedforward dynamic routing (Anderson 
and Van Essen, 1987; Olshauscn ct al., 1993). In the HD system, 
it is not clear whether the weight shift can be implemented by 
appropriate presynaptic mechanisms, e.g., in the thalamus (cf. 
Jones, 1985; Par6 et al., 1991). 

Alternatively, an effective odd-weight component can also be 
induced by “ordinary” synaptic mechanisms. Such mechanisms 
require HD cells whose firing rates depend on both the head 
direction and its rotation (McNaughton et al., 1991, 1995; Skaggs 
et al., 1995; Blair, in press). We do not need a very strong bias to 
drive the shift. In principle, the moderate modulation effects 
found by Chen et al. (1994a,b) should be sufficient, provided we 
assume that the HD cells with peak rates higher during a clock- 
wise turn than during a counterclockwise turn should have stron- 
ger effective excitatory connections toward their clockwise friends, 
and so on. The overall picture involves two groups of HD cells (cf. 
Skaggs et al., 1995). In addition to the usual symmetric connec- 
tions, the cells in one group cxcrt additional excitation on their 
clockwise neighbors of both groups and additional inhibition on 

their counterclockwise neighbors of both grq~,s via some fixed 
connections, whereas another group of cells does the same thing 
in the reverse direction. In the static cast, the asymmetric con- 

nections from these two groups of cells cancel out, so that the 
average connections are effectively symmetric. When one group of 
cells is slightly inhibited or excited by external inputs (head 
motion signals), the new average connections will become slightly 
biased toward one direction, and a shift of activity will occur. 

More specifically, consider the following illustrative example. 
Suppose the weight distribution of the connections from one cell 
group to both groups is (w(0) + l+“(0))/2, and that from the other 
group to both groups is (w(0) - w’(0))/2. Here W(H) is the same 
static weight as in the standard model considered before. The 
total input currents received by both cell groups arc the same: 
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The trick is that now the firing rates of the two groups are 
modulated separately by the coefficients rl and r,. In the static 
case, r, = r2 = 1; that is, the hvo groups have equal firing rates, 
and the total input simply equals W *J This means that the overall 
effective weight distribution of the hvo groups is just W (symme- 
tric) if the head does not move. During head movement, we 
suppose the firing rate of one group is slightly increased, whereas 
that of the other is slightly decreased, say, r1 = 1 + y and r, = 1 
- y, then the total input becomes (W + yw’) *t In other words, 
the average effective weight distribution becomes W + yw’, which 
is precisely what is needed for the shift mechanism. 

In short, although now the system consists of two groups of cells, 
its average behaviors during dynamic shift are identical to the stan- 
dard model considered in the preceding section. Notice that only a 
small percentage of firing-rate modulation will be sufficient to move 
the activity lump at realistic turning speeds. So far the modulation of 
firing rates has been formulated simply as multiplicative coefficients. 
If the modulation is formulated as additive terms (by adding external 
current injection), the average behaviors of the system are no longer 
identical to the standard model. Simulation shows that the shapes of 
the traveling profiles will become slanted, especially at high speeds, 
with a tendency for the peak to bend in the direction opposite to the 
traveling direction. 

In general, all we need for the activity shift is to induce some 
weak anisotropy in the effective connections, presumably by ves- 
tibular inputs. Although many mechanisms are possible, the final 
net effect must be close to Equation 9. In addition, Hebbian-type 
plasticity might serve to ensure the structural stability of the 
system (cf. Appendix 2). For fine-tuning of the shift speed, the 
system also needs teaching signals obtained from sources other 
than the vestibular input itself, perhaps including the direct retinal 
projections to the AD nucleus (Itaya et al., 1986). 

5.3 Effect of acceleration and the anticipatory activities 
We have shown that the speed of the activity shift is proportional to 
the strength y of the odd (derivative) weight component. But how is 
y related to the real head movement? We now show two results. (1) 
If y is simply proportional to the angular speed of the head (with 
appropriate coefficient), the shift of the internal direction can mirror 
perfectly the true head movement; and (2) if -y also contains a 
component proportional to the angular acceleration of the head, 
then the internal direction will move faster than the true head 
direction by a constant time difference. (If the coefficient of the 
acceleration term is negative, then there will be a constant time lag 
instead of a constant time lead.) In this context, it is interesting to 
note that thalamic HD cell firings actually lead true head direction by 
20-40 msec (Blair and Sharp, 1995; Taube and Muller, 1995). 

Case 1 
Let 0 be the azimuth angle for the true head direction and 0 be 
the internal direction represented by the HD cells. According to 
Equation 10, if we assume: 

y(t) = -76(t), (12) 

that is, the magnitude of the odd-weight component is propor- 
tional to the instantaneous angular speed of the head, then we will 
have e(t) = b(t) and 

118 = A@, (13) 

where A6’ = 19(t) - 0(O) and A@ = O(t) - O(0). The exact 
coefficient -T in Equation 12 is needed for the equality. Now the 

True Head Direction 0 
Internal Direction 8 

I  I  

00 1 80° 360” 

Population of Head Direction Cells 

Figtire 8. If the odd component of the synaptic weight distribution is 
induced according to the angular speed of the head plus its mgular 
acceleration, the internal direction maintained by the network will move 
faster than the true head direction by a constant time difference. The 
internal direction is perfectly aligned with the true head direction at both 
the beginning and the end of the movement. 

nehvork is a perfect velocity integrator. Once the internal direction 
8 is initially aligned with the real head direction 0, they will always 
stay aligned no matter how the head moves. 

Case 2 

Now suppose the odd-weight component depends on the angular 
acceleration as well as on the angular speed of the head. For a 
linear approximation, we add an acceleration term to Equation 12 
and put: 

y(t) = -76(t) - 77,0(t), 

where T, is an arbitrary coefficient. By Equation 10, we have e(t) 
= o(t) + T,@(t) whose integration in the time interval (0, t) yields: 

be = A0 + T&t). (14) 

Here we have used the,fact that the initial speed at the beginning 
of a head turn is zero (O(0) = 0). At the end of the movement, we 
have zero speed again (6(t) = 0). Now the final result of Equation 
14 becomes identical to the previous formula (Eq. 13) 11s if the 
acceleration term hod no @ect. As illustrated in Figure 8, the 
difference shows up only during the course of the movement when 
the instantaneous speed 6(t) # 0. The internal direction 8 seems to 

lead the real head direction 0 by a constant time r,, because they 
differ by the angle -r,@(t), which is proportional to the instanta- 
neous head speed. This is exactly what has been found in the 
anticipatory firings of the anterior thalamic HD cells (Blair and 
Sharp, 1995). One limitation of the present argument is that it 
does not capture the tendency that some thalamic HD cells 
increase their firing rates at higher turning speeds (Blair and 
Sharp, 1995). 

In summary, in cases 1 and 2, the model yields perfect final 
result of velocity integration. Case 1 is actually a special case of 
case 2 with T, = 0. The acceleration term leads to the anticipatory 
activities with the time lead T, provided that TV > 0. As mentioned 
before, the odd-weight component is probably induced by vestib- 
ular inputs among other sources of movement information, e.g., 
the angular speed-sensitive cells found in the postsubiculum 
(Sharp, in press) and the parietal cortex (McNaughton et al., 
1994). The mammillary body might also be involved (Blair, in 
press). In general, neural head-motion signals may contain infor- 
mation about both the speed and the acceleration (Precht, 1978; 
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Figure 9. A two-dimensional network that is dynamically 
similar to the one-dimensional HD cell network. A, Emer- 
gence of a stereotyped stable firing profile from an arbi- 
trary initial state. The symmetric weight distribution is a 
Gaussian with constant inhibitory background. B, Dynamic 

t = 0 msec t = 80 msec t = 160msec 
activity shift without disturbances; y = 2.5 cm and r = 20 
msec. The sigmoid function is of the form in Equation 4. 

Wilson and Jones, 1979). If we treat the postsubicular and the scribed above is essentially analogous to the HD model: The lump 
thalamic HD cells as two separate ensembles, then our results of activity can be self-sustaining without sensory inputs, and 
would imply that the odd-weight component reflects the positive self-motion signals alone are sufficient to drive the lump to a new 
influences of acceleration only in the anterior thalamus. See location (cf. McNaughton et al., in press). A related problem is 
Discussion for a review of some relevant lesion studies. the possible moving spot of activity in the superior colliculus 

5.4 Two-dimensional analogy during eye movements (Munoz et al., 1991). Additional simula- 

It is straightforward to generalize the dynamic shift mechanism to tion shows that a modified model with more localized inhibitory 

higher dimensions. Consider a two-dimensional sheet of units background is able to move several Gaussian-like activity spots 

connected by synaptic weights with shift-invariant distribution. As simultaneously (cf. Mays and Sparks, 1980; Droulez and Berthoz, 

before, the firing rate f = f(x, y, t) and the net input u = U(X, y, t) 1991), although the profiles of the traveling activity spots can no 

at location (x, y) and time t are related by f = 4(u). The dynamic longer be preserved rigorously. 

equation has the same form as Equation 2, with the convolution 
now defined by: 6 CALIBRATION BY LOCAL-VIEW DETECTORS 

m m 

\I 

View-specific information is necessary for correcting for the cu- 

w k y, t) * f CG y, t) = w(x-x,y -Y,t) mulative errors in the inertially based updating process consid- 
-m -cc ered in the preceding sections (McNaughton et al., 1993; Skaggs 

et al., 1995). A rat probably relies on the integration of self- 
f (X, Y, t) fix dY. motion most of the time and uses only a few representative local 

As the counterpart of Equation 9, the weight distribution function views as the anchor points for calibration (cf. Mizumori and 

of the form: Williams, 1993; Goodridge and Taube, 1995; Taube and Burton, 
1995). Indeed, it is too expensive to compute head direction from 

w (x, y, t) = W(r) + y(t)2 - VW(r) local-view information alone, because different scenes seen from 

can shift a two-dimensional localized stable activity profile without all possible viewpoints with parallel sightlines must be considered 

disturbing its shape (Fig. 9). Here I = w, and 2. V is the as equivalent, whereas similar scenes associated with different 

directional derivative in the direction of an arbitrary unit vector 2. head directions must be distinguished. 

As the counterpart of Equation 10, the velocity of the shift is Because of the rotation-invariance of the model network, any 

simply: small direction-specific external input, as long as it is persistent, 
can eventually control the location of the final activity profile. A 

i; (t) = -y(t)jl/7. view-specific input may be obtained from detectors that respond 

The above mechanism might be relevant to the updating mech- to certain arbitrary features in the environment (Zipser, 1986; 

anism of the hippocampal place cells in the dead-reckoning mode Sharp, 1991; Redish and Touretzky, in press). It is reasonable to 

(e.g., in total darkness), especially in a small piece of environment expect the existence of local-view detectors in high-level visual 

(O’Keefe and Nadel, 1978; Muller et al., 1987; Quirk et al., 1990; areas. Without loss of generality, suppose we have only one such 

Wilson and McNaughton, 1993). Although place cells are not detector, and it is activated only for a particular local-view, which 

organized topographically in the hippocampus, we can conceptu- corresponds to the head direction 4. The connection weight c(0) 

ally attach each cell to its place field in the real two-dimensional from the detector to the HD cells with the preferred direction 0 

space. On this imaginary two-dimensional sheet covered with the can be established easily by the one-shot Hebbian learning: 
relocated place cells, there is always a localized lump of activities 
centered at the current location of the animal. The model de- c(O) lx uU(B - 4), 
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Figure 10. External input from a local-view detector 
calibrates the internal direction maintained by the 
HD cell network. In each of the three examples, the 
external input always starts at time 100 msec and 
holds constant for 0.5 sec. The distribution of the 
external input has the same shape as the distribution 
of the intrinsic input among the HD cells in the static 
state, but its magnitude is 25% as strong. Other 
parameters are as in Figure 3. 

600 

where a (presynaptic component) is the activity of the detector, 
and U (postsynaptic component) is the distribution of the synaptic 
current in the static profile at the moment of the first exposure. 

When the detector is activated again by the same local view, its 
input current to the HD cells with the preferred direction 8 is 
proportional to c( @)a m a’U( 0 - +), and its peak position (p is the 
same as the head direction at the moment of the first exposure. To 
incorporate the external input into the original dynamic Equation 
2, we need only to add the term U(0 - 4) with appropriate 
coefficient to its right-hand side. 

As shown in Figure 10, the new activity profile will always be 
developed at the location suggested by the detector, regardless of 
the initial internal direction. This is just what is needed for 
calibration. The exact form of the Hebb rule and the exact shape 
of input-current distribution are not crucial here. The essential 
requirement is that when the local-view detector is reactivated, 
the distribution of its inputs to the HD cell population should 
peak at those cells that were most active at the time of the first 
exposure. 

The actual calibration process probably uses sensory cues from 
various modalities (Goodridge et al., 1995). The calibration pro- 
cess may be automatic most of the time. Some spatial locations 
(e.g., those with salient landmarks in view) and some time periods 
(e.g., the moment of entering a room) might be used preferen- 
tially for calibration. Of course, the outputs of the local-view 
detectors as well as the calibration might also be affected by other 
factors not explicitly considered here, such as, for example, atten- 
tion. The development of the Hebbian connections from detectors 
to the HD system is also expected to be modulated by various 
factors, including the perceived stability of the landmarks 
(Knierim et al., 1995) and the geometry of the landmarks (Poucet 
et al., 1995). See Skaggs et al. (1995), Knierim et al. (in press), and 
Redish and Touretzky (in press) for related discussions. 

7 DISCUSSION 
7.1 Relation to the biological system 
The model system has highly simplified dynamics, yet, as we have 
seen, it is sufficient to capture some essential features of the HD 
cells, including the stereotyped directional tuning, the smooth and 
accurate shift process, and the strong calibration cffcct of vicw- 
specific inputs. In addition, the principle of the shift mechanism 
might be relevant to other computational problems in which 
accurate velocity integration is important. 

of 
Detector 
Input 

Firing Rate 

40 Hz 

Population of HD Cells 0 Hz 

A direct assessment of the appropriateness of the dynamic 
model is feasible with the current parallel recording techniques 
(cf. Wilson and McNaughton, 1993). The recording results can be 
compared readily with the model, which given any initial state and 
external input is able to predict quantitatively the time evolution 
of the average firing rates of the whole HD cell population (cf. 
Figs. 3, 6, 7, 10). The normal operation of the HD system is 
smooth, except perhaps during the calibration process, which is 
potentially a revealing moment for the underlying network 
dynamics. 

At the “cellular” level, the model shows that the shape of the 
tuning curve alone imposes surprisingly strong constraints on the 
admissible input-output characteristics (sigmoid) of the individ- 
ual units, in addition to the expected constraints on the synaptic 
weight distribution. This is related to the ill-posed nature of the 
weight solution and the subtle stability requirements of the sys- 
tem. The actual input-output characteristics of the HD cells in 
rats are still unknown. Such knowledge is important for any 
refined future theory. For example, whether the cells in the 
thalamic AD nucleus might behave differently from the cells in 
more familiar relay nuclei like the lateral geniculate nucleus 
(LGN) and the ventral posterolateral nucleus (VPL) has not been 
tested directly (cf. Zhuravleva et al., 1989). 

One crucial ingredient of the model is the dynamic shift mech- 
anism, the mathematical formulation of which can be determined 
uniquely by the minimal disturbance requirement and the sym- 
metry of the traveling activity profile. This result offers strong 
constraints on the plausible biological implementations of the 
shift mechanism. Detailed discussions are given in section 5.2 and 
will not be repeated here. The stability of the traveling activity 
profile is an emergent property of the model (Fig. 7). Such a 
phenomenon may potentially be observed experimentally. 

Although the original model offers a useful framework for 
describing average behaviors, it does not explicitly separate dif- 
ferent anatomical structures (with only a moderate exception in 
our consideration of the anticipatory activities). As a conse- 
quence, it cannot explain some important differences among HD 
cells, in particular, the variable behaviors in a restrained animal. 
During hand-held experiments, the firings of most cells were 
abolished in AD nucleus (Taube, 1995), but not in LD nucleus 
(Mizumori and Williams, 1993), and only reduced in postsubicu- 
lum. The actual results are more complex, depending on the 
degree of the restraint (cf. Foster et al., 1989; Taube et al., 1994). 
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Preliminary reports of lesion studies by Taube and colleagues 
revealed other interesting differences. For example, postsubicular 
HD cells vanished after lesions to the AD nucleus (Goodridge and 
Taube, 1993) but not to the LD nucleus (Golob and Taube, 1994). 
Conversely, some thalamic HD cells still could be found after lesions 
to the postsubiculum (Goodridge and Taube, 1994). The activities of 
thalamic HD cells were severely disrupted by vestibular lesions 
(Stackman and Taube, 1995). So it seems that the thalamic HD cells 
can survive without postsubiculum, but not the other way around. If 
we assume as before that the directional tuning curves (and HD 
cells) are a network property, and that the very existence of HD cells 
relies on an intact dynamic shift mechanism, then the lesion data may 
suggest that the thalamic HD cells are related more directly to the 
shift mechanism, whereas the postsubicular HD cells are not. This 
does not necessarily imply that the postsubicular cells cannot influ- 
ence the thalamic cells. For example, the postsubiculum might be 
more involved with the calibration process or the recognition of local 
views. The current model clearly needs to be extended to incorporate 
those phenomena explicitly involving different anatomical structures. 

Finally, as a simple generalization of the current model, WC can 
separate the excitatory (HD) cells and the inhibitory cells and 
assume that the inhibitory cells are not tuned to head direction: 

where f,, = v,..(u,,) and f,,, = pin(uin), andf,,(t) is the average of 
f,,(0, t) over all directions. The excitatory and inhibitory popula- 
tions are coupled by the connections Ci, and C,,. Compared with 
the original model, the major difference is that the overall inhib- 
itory level here is adjustable according to the activities of the HD 
cells. This does not change the static activity profile or the shift 
mechanism, however, because the average activation keeps con- 
stant in both cases. 

7.2 Relation to human perception 
The properties of the HD cells in rats are remarkably consistent 
with our own internal experiences or our common sense about the 
subjective sense of orientation. We seldom notice the existence of 
our sense of direction until it goes wrong. Disorientation often 
occurs after people ride passively in a vehicle, unaware of a slow 
turn. An important property revealed by the disorientation expe- 
riences is that without the help of familiar landmarks, one can 
hardly reset the internal direction at will, despite one’s conscious 
knowledge of the error based on other cues, e.g., the expected 
position of the sun. Another phenomenon is less frequent but 
more dramatic. In approaching a place with salient landmarks that 
was seen initially with an incorrect sense of direction, the currently 
correct sense of direction can suddenly flip back to the wrong 
orientation again when the landmarks are recognized, in what can 
feel like a sudden vertiginous rotation of the whole world (Jon- 
sson, 1993, and the references therein). 

All these phenomena can be explained naturally if we assume 
that HD cells similar to the ones found in rats also exist in humans 
and that the subjective sense of orientation is determined by the 
preferred directions of the currently active HD cells. In particular, 
the switching of HD-cell preferred directions between conflicting 
environments (Goodridge and Taube, 1995; Taube and Burton, 
1995) is an excellent animal model for the human phenomenon 
described by Jonsson (1993). Although HD cells may well exist in 

other species, recording experiments on freely moving animals 
have been performed most successfully in rats. The possible 
existence of HD cells in the homologous brain regions in other 
species has not been tested directly, although recent experi- 
ments in monkeys did reveal some view-dependent spatial 
representations in the hippocampus (Ono et al., 1993; Rolls et 
al., 1995). 

APPENDIX 

1. Directional tuning curve 
First notice that for realistic values of the parameters, the tuning 
function (Eq. 1) is very close to an ordinary Gaussian even though 
it is periodic, whereas a Gaussian is not. In fact, by Taylor 
expansion: 

which is a Gaussian with the standard deviation l/, K. The 
deviation may be used to characterize the width of the tuning 
curve. For example, to compare with the paramctcrs of the 
triangular model (Taube et al., 199Oa; Taube, 19%). WC: can 
obtain a triangle by drawing tangent lines at the two inflection 
points (ic., points with vanishing second derivatives) of the Gaus- 

sian curve; then the width of the base at the lcvcl of the back- 
ground firing rate is just 41 JK. In other words: 

directional firing range(or base width) - 230”/ ,{K. 

The firing range of a typical HD cell is roughly one quarter of the 
circle, which immediately gives the crude estimate K - 6.5. 

Given an HD cell, the exact values of the parameters {A, B, K, 
0,~) for the tuning curve can be determined by any numerical 
methods that yield the least mean square fit to the tuning data. 
Because the effectiveness of an iterative method typically depends 
on the initial values of the parameters, a quick good estimate is 
desirable. In the data, let fmin be the background firing rate, f,,, 
the peak rate, and f,,,,,, the mean rate over all directions, then: 

The first formula follows from the exact equationf,,,,;,,, = 112~ 
S$m f d0 = A + B&,(K) and the approximation I,,(K) = 8/ \%kK, 
where I,,(K) is a Bessel function of zero order of imaginary 
argument. 

2. Learning the synaptic weights 
The weight distribution solved by regularization in section 4.3 
can be learned by adjusting the weights according to the gra- 
dient of the error function (Eq. 6). This procedure is basically 
a delta rule with weight decay, and the level of regularization is 
controlled by the rate of the decay. (A modified learning rule 
with either the pre- or postsynaptic activation replaced by the 
corresponding time derivative can learn the derivative of the 
static weight distribution, which is related to the shift 
mechanism.) 

First, it is helpful to see how a simple Hebb rule should be 
formulated in a rotation-invariant system. Let w(H,, 0,) be the 
average weight for the connections from the units with preferred 
direction 0, to the units with preferred direction &. Consider the 
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ordinary simple H&b rule with arbitrary pre- and postsynaptic 
activation functions: 

Assuming that the learning process is the same for all directions, 
we put H = iY2 - 0, and write w(&, 0,) = ~(0~ - 0,) = w(0), which 
is just the average weight distribution function defined before. 
Averaging over 0, gives the overall weight change: 

$(B)“& I Post (0 + BJPre (OJdO, = Post (0) * Pre (f3). 

In the last step we used the assumption that Pre and Post are even 
functions. Thus, in a rotation-invariant system with symmetric Pre 
and Post activation functions, the simple Hebb rule has the form 
Post * Pre, with *: indicating convolution. 

Taking gradient descent of the error function (Eq. h), we have: 

iJt 7: Au *f - hw, (15) 

where 

We can identify Au with Post andfwith Pre. The additional linear 
weight decay term -Aw is responsible for the regularization. 

Formula 15 is essentially a delta rule rather than a Hebb rule 
because the learning is supervised. Here we need to assume that 
the desired tuning curvef(fI) and the corresponding current ~(0) 
are present constantly during the training while the weights are 
being adjusted according to Formula 15, starting from arbitrary 
initial weights. The correct training activity pattern is possible only 
with the help of external inputs (e.g., from the sensory system), 
which only excite subsets of HD cells. Otherwise, if we use 
whatever activity profile that is currently stable as the training 
profile, then weight distribution will tend to spread and flatten. 
Furthermore, the convolution in Formula 15 requires implicitly 
that the peak position of the training activity profile be distributed 
uniformly in all directions. When the distribution of the peak 
positions in the actual training set is not uniform, the learned 
weight patterns may not be strictly rotation-invariant. This prob- 
lem can be alleviated if we assume that the synaptic plasticity 
occurs mainly during the head movement of the animal (set 
section 4.5). 

3. Local stability of static activity profile 
We want to derive the stability conditions for any given static 
activity profile. Let U(H) bc any stationary solution of the dynamic 
Equation 2; that is, U = w * o(U). We slightly perturb the 
stationary solution by adding an arbitrary but small function 9. 
We set u( 0, t) = U( 0) + q( 8, t) and linearize the original Equation 
2 around U. The result is the linear system: 

where 2 is a linear operator defined by 

The stationary solution U is locally stable if and only if q always 
approaches zero, which is equivalent to that 

Reh,, < 1 (17) 

for all eigenvalues A,, of the linear operator Y’. 
As a special case, let U(0) = C be a constant (flat state), then 

C = WV(C), where W is the average of w( 0). After C is solved, the 
linear operator 2 in Equation 16 becomes 2~ = cr’(C)w * q. The 
eigenvalues of the linear operator w * are equal to the Fourier 
coefficients I+,, of w. Thus the stability conditions (Eq. 17) now 
become: 

a’(C)bc,, < 1) n = 1, 2, 3, . . . 

Intuitively this means that the flat state is stable only when the 
sigmoid is not too steep and the weights are not too strong. The 
system in Figure 3 violates the stability conditions (max w’(C)~,, = 
1.05 > 1). 

Finally, the bias in the sigmoid is not really equivalent to the 
background inhibition in the weight distribution. Although the 
simultaneous replacements w( 0) - w( 0) + w,, and U( fI) - U( 0) + 
w,,f leave the static equation U = w * f invariant, the stability of 
the stationary state in question can bc altcrcd. Hcrc w,, is an 
arbitrary constant and ,T is the avcragc of .f’ = CT(U). 

4. Speed formula 
To prove the speed formula (Eq. IO), consider the full dynamic 
equation: 

T;u(o: t) = -u(0, t) + [W(0) + y(t)W’(fl)] *f(B, t), 

(18) 
where f = a(u) as usual. First set y = 0 and let 14 approach the 
stationary profile U(0). As before, we have 

U(0) = W(0) *F(0), F(0) = a(U(0)). 

Because 

= y(t)/7, 
all we need to show is that 

is an exact solution of the full dynamic Equation 18. Tlk is 
qGalent to the statement that the stationnly pwfik U(H) is heirlg 
rigidly rotated at the instantwwous speed - y(t)/r. We insert (Eq. 
19) into the right-hand side of the dynamic equation and obtain: 

-U+(W+ yW’)“F= yU’, 

using W * F = U and w’ * F = (W * F)’ = U’. Here the prime 
unambiguously denotes the derivatives of single-variable func- 
tions. Similarly, the left-hand side becomes: 

;U’++;j,;~(s)ds] =yU’ 

This proves that Equation 19 is an exact solution of the full 
dynamic Equation 18. 
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5. Symmetry of traveling profile and uniqueness of the 
shift mechanism 

The symmetry of the traveling profile implies that during the 
dynamic shift, the weight distribution function must be of the 
unique form in Equation 9. To see this, we start with the constant 
weight distribution: 

and suppose ~(0, t) = U(0 - w t) is a symmetric stable traveling 
profile; that is, U(-0) = U(0). On substituting ~(0, t) with U(0 - 
w t) in the original dynamic Equation 2 and then putting t = 0, we 
have: 

U(0) + rU’(N = [w,“,,,(~) + ~,,‘Id(~)l * f(N: 

wheref’ = (r(U) as usual, and y = -WT. Because the even or odd 
components on both sides of the equation should be equal, we 
obtain U = w,,,,, *:J’and yU’ = w ,,‘, <I *$ Comparison of the latter 
with derivative of the former (U’ = w:,,,, :i:,f’) leads to: 

W ,,<,<, * f = yw :,,,, 4: 1’. 

In general, WC can assume thatf’has broad Fourier spectrum; that 
is, none of its Fourier cocficicnts is exactly zero. This implies that 
W odd = yw:,,,,, hcncc Equation 9. 

6. Discrete time approximation: iteration method 
Because 

u(0,r+7) = u(H,t)+T:):u(H,t), 

the continuous dynamical equation 

7 ,“, u(0, t) = -u(@t) + W(0) * cr(u(0, t)) 

can be approximated by the iteration 

u(H,t+7) = W(0) * cT(ll(H, t)). 

So, starting from the initial state ~,~(8), the successive iteration 

uk+,(H) = W(H) * a(uk(0)), k = 0, 1, 2, . . . (20) 

generates a sequence 

which can bc considered roughly as the snapshots of the solution 
of the continuous equation at the time instants 0, 7, 27, 3~, . . . , 
etc. If the iteration converges to a fixed point 11~ + U, then U is 
also an exuct stationary solution of the original continuous 
equation. 

The iteration method gives us a simple intcrprctation of the 
shift mechanism. In Equation 20, replace W(0) by lY(0 + y). Then 
the same iteration will now yield: 

UdN, u,(O + Y), 40 + 271, udfl + 3Y). . , (22) 

because of the property of the convolution. Note that the time 
evolution processes of the two sequences (21 and 22) arc identical, 
except for the successively larger rotations, and the speed of the 
rotation is clearly $7. This rotation is related to the continuous 
shift mechanism (Eq. 9) by the approximation W(H + y) = w(0) 
+ yW(0). 

The equivalence of the two sequences (21 and 22) also explains 

why the time course of the emergence of a stable travehg profile 

(Fig. 7A) looks so similar to its counterpart of a static profile (Fig. 
3A), except for the successive shifts. In fact, now the stability of 
the static profile implies the stability of the final traveling profile 

and vice versa. One problem of the iteration method is that it 

sometimes approaches a stable oscillation between two flat states, 

a phenomenon that has no counterpart in the continuous system, 
regardless of the value of 7. 
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