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Abstract

We derive a new self-organising learning algorithm which maximises

the information transferred in a network of non-linear units. The algo-

rithm does not assume any knowledge of the input distributions, and

is de�ned here for the zero-noise limit. Under these conditions, infor-

mation maximisation has extra properties not found in the linear case

(Linsker 1989). The non-linearities in the transfer function are able to

pick up higher-order moments of the input distributions and perform

something akin to true redundancy reduction between units in the out-

put representation. This enables the network to separate statistically

independent components in the inputs: a higher-order generalisation of

Principal Components Analysis.

We apply the network to the source separation (or cocktail party)

problem, successfully separating unknown mixtures of up to ten speak-

ers. We also show that a variant on the network architecture is able

to perform blind deconvolution (cancellation of unknown echoes and

reverberation in a speech signal). Finally, we derive dependencies of

information transfer on time delays. We suggest that information max-

imisation provides a unifying framework for problems in `blind' signal

processing.

�Please send comments to tony@salk.edu. This paper will appear as Neural Computation,

7, 6, 1004-1034 (1995). The reference for this version is: Technical Report no. INC-9501,

February 1995, Institute for Neural Computation, UCSD, San Diego, CA 92093-0523.
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1 Introduction

This paper presents a convergence of two lines of research. The �rst, the

development of information theoretic unsupervised learning rules for neural

networks has been pioneered by Linsker 1992, Becker & Hinton 1992, Atick &

Redlich 1993, Plumbley & Fallside 1988 and others. The second is the use,

in signal processing, of higher-order statistics, for separating out mixtures of

independent sources (blind separation) or reversing the e�ect of an unknown

�lter (blind deconvolution). Methods exist for solving these problems, but it

is fair to say that many of them are ad hoc. The literature displays a diversity

of approaches and justi�cations|for historical reviews see (Comon 1994) and

(Haykin 1994a).

In this paper, we supply a common theoretical framework for these prob-

lems through the use of information-theoretic objective functions applied to

neural networks with non-linear units. The resulting learning rules have en-

abled a principled approach to the signal processing problems, and opened a

new application area for information theoretic unsupervised learning.

Blind separation techniques can be used in any domain where an array of

N receivers picks up linear mixtures of N source signals. Examples include

speech separation (the `cocktail party problem'), processing of arrays of radar

or sonar signals, and processing of multi-sensor biomedical recordings. A pre-

vious approach has been implemented in analog VLSI circuitry for real-time

source separation (Vittoz et al 1989, Cohen et al 1992). The application areas

of blind deconvolution techniques include the cancellation of acoustic reverber-

ations (for example the `barrel e�ect' observed when using speaker phones),

the processing of geophysical data (seismic deconvolution) and the restoration

of images.

The approach we take to these problems is a generalisation of Linsker's

infomax principle to non-linear units with arbitrarily distributed inputs un-

corrupted by any known noise sources. The principle is that described by

Laughlin (1981) (see Fig.1a): when inputs are to be passed through a sigmoid

function, maximum information transmission can be achieved when the slop-

ing part of the sigmoid is optimally lined up with the high density parts of

the inputs. As we show, this can be achieved in an adaptive manner, using a

stochastic gradient ascent rule. The generalisation of this rule to multiple units

leads to a system which, in maximising information transfer, also reduces the

redundancy between the units in the output layer. It is this latter process, also

2



called Independent Component Analysis (ICA), which enables the network to

solve the blind separation task.

The paper is organised as follows. Section 2 describes the new information

maximisation learning algorithm, applied, respectively to a single input, an

N ! N mapping, a causal �lter, a system with time delays and a `exible'

non-linearity. Section 3 describes the blind separation and blind deconvolution

problems. Section 4 discusses the conditions under which the information

maximisation process can �nd factorial codes (perform ICA), and therefore

solve the separation and deconvolution problems. Section 5 presents results

on the separation and deconvolution of speech signals. Section 6 attempts to

place the theory and results in the context of previous work and mentions the

limitations of the approach.

A brief report of this research appears in Bell & Sejnowski (1995).

2 Information maximisation

The basic problem tackled here is how to maximise the mutual information

that the output Y of a neural network processor contains about its input X.

This is de�ned as:

I(Y;X) = H(Y )�H(Y jX) (1)

where H(Y ) is the entropy of the output, while H(Y jX) is whatever entropy

the output has which didn't come from the input. In the case that we have no

noise (or rather, we don't know what is noise and what is signal in the input),

the mapping between X and Y is deterministic and H(Y jX) has its lowest

possible value: it diverges to �1. This divergence is one of the consequences

of the generalisation of information theory to continuous variables. What we

callH(Y ) is really the `di�erential' entropy of Y with respect to some reference,

such as the noise-level or the accuracy of our discretisation of the variables in

X and Y 1. To avoid such complexities, we consider here only the gradient

of information theoretic quantities with respect to some parameter, w, in our

network. Such gradients are as well-behaved as discrete-variable entropies,

because the reference terms involved in the de�nition of di�erential entropies

disappear. The above equation can be di�erentiated as follows, with respect

1see the discussion in Haykin 1994b, chapter 11, also Cover & Thomas, chapter 9.
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Figure 1: Optimal information ow in sigmoidal neurons (a) Input x having

density function fx(x), in this case a gaussian, is passed through a non-linear

function g(x). The information in the resulting density, fy(y) depends on

matching the mean and variance of x to the threshold, w0, and slope, w, of

g(x) (see Schraudolph et al 1991). (b) fy(y) is plotted for di�erent values of

the weight w. The optimal weight, wopt transmits most information.

to a parameter, w, involved in the mapping from X to Y :

@

@w
I(Y;X) =

@

@w
H(Y ) (2)

because H(Y jX) does not depend on w. This can be seen by considering

a system which avoids in�nities: Y = G(X) + N , where G is some invert-

ible transformation and N is additive noise on the outputs. In this case,

H(Y jX) = H(N) (Nadal & Parga 1995). Whatever the level of this addi-

tive noise, maximisation of the mutual information, I(Y;X), is equivalent to

the maximisation of the output entropy, H(Y ), because (@=@w)H(N) = 0.

There is nothing mysterious about the deterministic case, despite the fact that

H(Y jX) tends to minus in�nity as the noise variance goes to zero.

Thus for invertible continuous deterministicmappings, the mutual informa-

tion between inputs and outputs can be maximised by maximising the entropy

of the outputs alone.
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2.1 For one input and one output

When we pass a single input x through a transforming function g(x) to give

an output variable y, both I(y; x) and H(y) are maximised when we align

high density parts of the probability density function (pdf) of x with highly

sloping parts of the function g(x). This is the idea of \matching a neuron's

input-output function to the expected distribution of signals" that we �nd in

(Laughlin 1981). See Fig.1a for an illustration.

When g(x) is monotonically increasing or decreasing (ie: has a unique

inverse), the pdf of the output, fy(y), can be written as a function of the pdf

of the input, fx(x), (Papoulis, eq. 5-5):

fy(y) =
fx(x)

j@y=@xj (3)

where the bars denote absolute value. The entropy of the output, H(y), is

given by:

H(y) = �E [ln fy(y)] = �
Z

1

�1

fy(y) ln fy(y)dy (4)

where E[:] denotes expected value. Substituting (3) into (4) gives

H(y) = E

"
ln

�����@y@x
�����
#
�E [ln fx(x)] (5)

The second term on the right (the entropy of x) may be considered to be

una�ected by alterations in a parameter w determining g(x). Therefore in

order to maximise the entropy of y by changing w, we need only concentrate on

maximising the �rst term, which is the average log of how the input a�ects the

output. This can be done by considering the `training set' of x's to approximate

the density fx(x), and deriving an `online', stochastic gradient ascent learning

rule:

�w / @H

@w
=

@

@w

 
ln

�����@y@x
�����
!
=

 
@y

@x

!
�1

@

@w

 
@y

@x

!
(6)

In the case of the logistic transfer function:

y =
1

1 + e�u
; u = wx+ w0 (7)

5



in which the input is multiplied by a weight w and added to a bias-weight w0,

the terms above evaluate as:

@y

@x
= wy(1� y) (8)

@

@w

 
@y

@x

!
= y(1� y)(1 + wx(1 � 2y)) (9)

Dividing (9) by (8) gives the learning rule for the logistic function, as calculated

from the general rule of (6):

�w / 1

w
+ x(1� 2y) (10)

Similar reasoning leads to the rule for the bias-weight:

�w0 / 1� 2y (11)

The e�ect of these two rules can be seen in Fig.1a. For example, if the input pdf

fx(x) were gaussian, then the �w0-rule would centre the steepest part of the

sigmoid curve on the peak of fx(x), matching input density to output slope, in

a manner suggested intuitively by (3). The �w-rule would then scale the slope

of the sigmoid curve to match the variance of fx(x). For example, narrow pdf's

would lead to sharply-sloping sigmoids. The �w-rule is anti-Hebbian2, with an

anti-decay term. The anti-Hebbian term keeps y away from one uninformative

situation: that of y being saturated at 0 or 1. But an anti-Hebbian rule alone

makes weights go to zero, so the anti-decay term (1=w) keeps y away from the

other uninformative situation: when w is so small that y stays around 0.5.

The e�ect of these two balanced forces is to produce an output pdf, fy(y),

that is close to the at unit distribution, which is the maximum entropy dis-

tribution for a variable bounded between 0 and 1. Fig.1b shows a family of

these distributions, with the most informative one occurring at wopt.

A rule which maximises information for one input and one output may

be suggestive for structures such as synapses and photoreceptors which must

position the gain of their non-linearity at a level appropriate to the average

value and size of the input uctuations (Laughlin 1981). However, to see the

advantages of this approach in arti�cial neural networks, we now analyse the

case of multi-dimensional inputs and outputs.

2If y = tanh(wx+ w0) then �w / 1

w
� 2xy
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2.2 For an N ! N network

Consider a network with an input vector x, a weight matrixW, a bias vector

w0 and a monotonically transformed output vector y = g(Wx+w0). Analo-

gously to (3), the multivariate probability density function of y can be written

(Papoulis, eq. 6-63):

fy(y) =
fx(x)

jJ j (12)

where jJ j is the absolute value of the Jacobian of the transformation. The

Jacobian is the determinant of the matrix of partial derivatives:

J = det

2
664

@y1

@x1
� � � @y1

@xn

...
...

@yn

@x1
� � � @yn

@xn

3
775 (13)

The derivation proceeds as in the previous section except instead of maximising

ln j@y=@xj, now we maximise ln jJ j. This latter quantity represents the log of

the volume of space in y into which points in x are mapped. By maximising

it, we attempt to spread our training set of x-points evenly in y.

For sigmoidal units, y = g(u), u = Wx + w0, with g being the logistic

function: g(u) = (1 + e�u)�1, the resulting learning rules are familiar in form

(proof given in the Appendix):

�W /
h
W

T

i
�1

+ (1� 2y)xT (14)

�w0 / 1� 2y (15)

except that now x, y, w0 and 1 are vectors (1 is a vector of ones), W is a

matrix, and the anti-Hebbian term has become an outer product. The anti-

decay term has generalised to an anti-redundancy term: the inverse of the

transpose of the weight matrix. For an individual weight, wij, this rule amounts

to:

�wij /
cof wij

detW
+ xj(1� 2yi) (16)

where cof wij, the cofactor of wij , is (�1)i+j times the determinant of the

matrix obtained by removing the ith row and the jth column from W.

This rule is the same as the one for the single unit mapping, except that

instead of w = 0 being an unstable point of the dynamics, now any degenerate
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weight matrix is unstable, since detW = 0 if W is degenerate. This fact

enables di�erent output units yi to learn to represent di�erent things in the

input. When the weight vectors entering two output units become too similar,

detW becomes small and the natural dynamic of learning causes these weight

vectors to diverge from each other. This e�ect is mediated by the numera-

tor, cof wij . When this cofactor becomes small, it indicates that there is a

degeneracy in the weight matrix of the rest of the layer (ie: those weights not

associated with input xj or output yi). In this case, any degeneracy in Whas

less to do with the speci�c weight wij that we are adjusting. Further discussion

of the convergence conditions of this rule (in terms of higher-order moments)

is deferred to section 6.2.

The utility of this rule for performing blind separation is demonstrated in

section 5.1.

2.3 For a causal �lter

It is not necessary to restrict our architecture to weight matrices. Consider

the top part of Fig.3b, in which a time series x(t), of length M , is convolved

with a causal �lter w1; : : : ; wL of impulse response w(t), to give an output time

series u(t), which is then passed through a non-linear function g, to give y(t).

We can write this system either as a convolution or as a matrix equation:

y(t) = g(u(t)) = g(w(t) � x(t)) (17)

Y = g(U) = g(WX) (18)

in which Y , X and U are vectors of the whole time series, and W is a M �M

matrix. When the �ltering is causal, W will be lower triangular:

W =

2
66666666664

wL 0 � � � 0 0

wL�1 wL 0 � � � 0
...

...

w1 � � � wL � � � 0
...

...

0 � � � w1 � � � wL

3
77777777775

(19)
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At this point, we take the liberty of imagining there is an ensemble of such

time series, so that we can write,

fY (Y ) =
fX(X)

jJ j (20)

where again, jJ j is the Jacobian of the transformation. We can `create' this

ensemble from a single time series by chopping it into bits (of length L for

example, making W in (19) an L�L matrix). The Jacobian in (20) is written

as follows:

J = det

"
@y(ti)

@x(tj)

#
ij

= (detW )
MY
t=1

y0(t) (21)

and may be decomposed into the determinant of the weight matrix (19), and

the product of the slopes of the squashing function, y0(t) = @y(t)=@u(t), for all

times t [see Appendix (53)]. Because W is lower-triangular, its determinant

is simply the product of its diagonal values, which is wM

L
. As in the previous

section, we maximise the joint entropy H(Y ) by maximising ln jJ j, which can

then be simply written as:

ln jJ j = ln jwM

L
j+

MX
t=1

ln jy0(t)j (22)

If we assume that our non-linear function g is the hyperbolic tangent (tanh),

then di�erentiation with respect to the weights in our �lter w(t), gives two

simple3 rules:

�wL /
MX
t=1

�
1

wL

� 2xt yt

�
(23)

�wL�j /
MX
t=j

(�2xt�j yt) (24)

Here, wL is the `leading' weight, and the wL�j, where j > 0, are tapped delay

lines linking xt�j to yt. The leading weight thus adjusts just as would a weight

connected to a neuron with only that one input (see section 2.1). The delay

weights attempt to decorrelate the past input from the present output. Thus

the �lter is kept from `shrinking' by its leading weight.

The utility of this rule for performing blind deconvolution is demonstrated

in section 5.2.

3The corresponding rules for non-causal �lters are substantially more complex.
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2.4 For weights with time delays

Consider a weight, w, with a time delay, d, and a sigmoidal non-linearity, g,

so that:

y(t) = g[wx(t� d)] (25)

We can maximise the entropy of y with respect to the time delay, again by

maximising the log slope of y [as in (6)] :

�d / @H

@d
=

@

@d
(ln jy0j) (26)

The crucial step in this derivation is to realise that

@

@d
x(t� d) = � @

@t
x(t� d): (27)

Calling this quantity simply � _x, we may then write:

@y

@d
= �w _xy0 (28)

Our general rule is therefore given as follows:

@

@d
(ln jy0j) = 1

y0
@y0

@y

@y

@d
= �w _x

@y0

@y
(29)

When g is the tanh function, for example, this yields the following rule for

adapting the time delay:

�d / 2w _xy: (30)

This rule holds regardless of the architecture in which the network is embedded,

and it is local, unlike the �w rule in (16). It bears a resemblance to the rule

proposed by Platt & Faggin (1992) for adjustable time delays in the network

architecture of Jutten & Herault (1991).

The rule has an intuitive interpretation. Firstly, if w = 0, there is no

reason to adjust the delay. Secondly, the rule maximises the delivered power

of the inputs, stabilising when h _xyi = 0. As an example, if y received several

sinusoidal inputs of the same frequency, !, and di�erent phase, each with its

own adjustable time delay, then the time delays would adjust until the phases

of the time-delayed inputs were all the same. Then, for each input, h _xyi would
be proportional to hcos!t � tanh(sin!t)i which would be zero.
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In adjusting delays, therefore, the rule will attempt to line up similar signals

in time, and cancel time delays caused by the same signal taking alternate

paths.

We hope to explore, in future work, the usefulness of this rule for adjusting

time delays and tap-spacing in blind separation and blind deconvolution tasks.

2.5 For a generalised sigmoid function

In section 4, we show how it is sometimes necessary not only to train the

weights of the network, but also to select the form of the non-linearity, so that

it can `match' input pdf's. In other words, if the input to a neuron is u, with a

pdf of fu(u), then our sigmoid should approximate, as closely as possible, the

cumulative distribution of this input:

y = g(u) '
Z

u

�1

fu(v)dv (31)

One way to do this is to de�ne a `exible' sigmoid which can be altered to �t

the data, in the sense of (31). An example of such a function is the asymmetric

generalised logistic function (see also Baram & Roth 1994) described by the

di�erential equation:

y0 =
dy

du
= yp(1 � y)r (32)

where p and r are positive real numbers. Numerical integration of this equa-

tion produces sigmoids suitable for very peaked (as p; r > 1, see Fig.2b) and

at, unit-like (as p; r < 1, see Fig.2c) input distributions. So by varying these

coe�cients, we can mold the sigmoid so that its slope �ts unimodal distribu-

tions of varying kurtosis. By having p 6= r, we can also account for some skew

in the distributions. When we have chosen values for p and r, perhaps by some

optimisation process, the rules for changing a single input-output weight, w,

and a bias, w0, are subtly altered from (10) and (11), but clearly the same

when p = r = 1:

�w / 1

w
+ x(p(1 � y)� ry) (33)

�w0 / p(1 � y)� ry (34)

The importance of being able to train a general function of this type will be

explained in section 4.
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Figure 2: The generalised logistic sigmoid (top row) of (32), and its slope, y0,

(bottom row), for (a) p = r = 1, (b) p = r = 5 and (c) p = r = 0:2. Compare

the slope of (b) with the pdf in Fig.5a: it provides a good match for natural

speech signals.

3 Background to blind separation and blind

deconvolution

Blind separation and blind deconvolution are related problems in signal pro-

cessing. In blind separation, as introduced by Herault & Jutten (1986), and

illustrated in Fig.3a, a set of sources, s1(t); : : : ; sN (t), (di�erent people speak-

ing, music etc) are mixed together linearly by a matrix A. We do not know

anything about the sources, or the mixing process. All we receive are the N

superpositions of them, x1(t); : : : ; xN(t). The task is to recover the original

sources by �nding a square matrix,W, which is a permutation and rescaling

of the inverse of the unknown matrix, A. The problem has also been called

the `cocktail-party' problem4

In blind deconvolution, described in (Haykin 1991, 1994a) and illustrated

in Fig.3b, a single unknown signal s(t) is convolved with an unknown tapped

delay-line �lter a1; : : : ; aK, giving a corrupted signal x(t) = a(t)�s(t) where a(t)
is the impulse response of the �lter. The task is to recover s(t) by convolving

4though for now, we ignore the problem of signal propagation delays.
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Figure 3: Network architectures for (a) blind separation of 5 mixed signals,

and (b) blind deconvolution of a single signal.

x(t) with a learnt �lter w1; : : : ; wL which reverses the e�ect of the �lter a(t).

There are many similarities between the two problems. In one, sources

are corrupted by the superposition of other sources. In the other, a source

is corrupted by time-delayed versions of itself. In both cases, unsupervised

learning must be used because no error signals are available. In both cases,

second-order statistics are inadequate to solve the problem.

For example, for blind separation, a second-order decorrelation technique

such as that of Barlow & F�oldi�ak (1989) would �nd uncorrelated, or linearly

independent, projections, y, of the input data, x. But it could only �nd a

symmetric decorrelation matrix, which would not su�ce if the mixing matrix,

A, were asymmetric (Jutten & Herault 1991). Similarly, for blind deconvolu-

tion, second-order techniques based on the autocorrelation function, such as

prediction-error �lters, are phase-blind. They do not have su�cient informa-

tion to estimate the phase of the corrupting �lter, a(t), only its amplitude

(Haykin 1994a).

The reason why second-order techniques fail is that these two `blind' signal

processing problems are information theoretic problems. We are assuming,

in the case of blind separation, that the sources, s, are statistically inde-

pendent and non-gaussian, and in the case of blind deconvolution, that the

original signal, s(t), consists of independent symbols (a white process). Then

blind separation becomes the problem of minimising the mutual information
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between outputs, ui, introduced by the mixing matrix A; and blind deconvo-

lution becomes the problem of removing from the convolved signal, x(t), any

statistical dependencies across time, introduced by the corrupting �lter a(t).

The former process, the learning of W, is called the problem of Independent

Component Analysis, or ICA (Comon 1994). The latter process, the learning

of w(t) is sometimes called the whitening of x(t). Henceforth, we use the term

redundancy reduction when we mean either ICA or the whitening of a time

series.

In either case, it is clear in an information-theoretic context, that second-

order statistics are inadequate for reducing redundancy, because the mutual

information between two variables involves statistics of all orders, except in

the special case that the variables are jointly gaussian.

In the various approaches in the literature, the higher-order statistics re-

quired for redundancy reduction have been accessed in two main ways. The

�rst way is the explicit estimation of cumulants and polyspectra. See Comon

(1994) and Hatzinakos & Nikias (1994) for the application of this approach to

separation and deconvolution respectively. The drawbacks of such direct tech-

niques are that they can sometimes be computationally intensive, and may be

inaccurate when cumulants higher than 4th order are ignored, as they usually

are. It is currently not clear why direct approaches can be surprisingly suc-

cessful despite errors in the estimation of the cumulants, and in the usage of

these cumulants to estimate mutual information.

The second main way of accessing higher-order statistics is through the

use of static non-linear functions. The Taylor series expansions of these non-

linearities yield higher-order terms. The hope, in general, is that learning

rules containing such terms will be sensitive to the right higher-order statistics

necessary to perform ICA or whitening. Such reasoning has been used to justify

both the Herault-Jutten (or `H-J') approach to blind separation (Comon et al

1991) and the so-called `Bussgang' approaches to blind deconvolution (Bellini

1994). The drawback here is that there is no guarantee that the higher-order

statistics yielded by the non-linearities are weighted in a way relating to the

calculation of statistical dependency. For the H-J algorithm, the standard

approach is to try di�erent non-linearities on di�erent problems to see if they

work.

Clearly, it would be of bene�t to have some method of rigorously link-

ing our choice of a static non-linearity to a learning rule performing gradient

ascent in some quantity relating to statistical dependency. Because of the in-
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�nite number of higher-order statistics involved in statistical dependency, this

has generally been thought to be impossible. As we now show, this belief is

incorrect.

4 When does information maximisation re-

duce statistical dependence?

In this section, we consider under what conditions the information maximisa-

tion algorithm presented in section 2 minimises the mutual information be-

tween outputs (or time points) and therefore performs redundancy reduction.

Consider a system with two outputs, y1 and y2 (two output channels in the

case of separation, or two time points in the case of deconvolution). The joint

entropy of these two variables may be written as (Papoulis, eq. 15-93):

H(y1; y2) = H(y1) +H(y2)� I(y1; y2): (35)

Maximising this joint entropy consists of maximising the individual entropies

while minimising the mutual information, I(y1; y2), shared between the two.

When this latter quantity is zero, the two variables are statistically indepen-

dent, and the pdf can be factored: fy1y2(y1; y2) = fy1(y1)fy2(y2). Both ICA

and the `whitening' approach to deconvolution are examples of minimising

I(y1; y2) for all pairs y1 and y2. This process is variously known as factorial

code learning (Barlow 1989), predictability minimisation (Schmidhuber 1992)

as well as independent component analysis (Comon 1994) and redundancy

reduction (Barlow 1961, Atick 1992).

The algorithm presented in section 2 is a stochastic gradient ascent algo-

rithmwhich maximises the joint entropy in (35). In doing so, it will, in general,

reduce I(y1; y2), reducing the statistical dependence of the two outputs.

However, it is not guaranteed to reach the absolute minimum of I(y1; y2),

because of interference from the other terms, the H(yi). Fig.4 shows one

pathological situation where a `diagonal' projection, 4c, of two independent,

uniformly-distributed variables x1 and x2 is preferred over an `independent'

projection, 4b. This is because of a `mismatch' between the input pdf's and

the slope of the sigmoid non-linearity. The learning procedure is able to achieve

higher values in 4c for the individual output entropies, H(y1) and H(y2), be-

cause the pdf's of x1 + x2 and x1 � x2 are triangular, more closely matching

the slope of the sigmoid. This interferes with the minimisation of I(y1; y2).
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Figure 4: An example of when joint entropy maximisation fails to yield statis-

tically independent components. (a) Two independent input variables, x1 and

x2, having uniform (at) pdf's are input into an entropy maximisation net-

work with sigmoidal outputs. Because the input pdf's are not well-matched to

the non-linearity, the `diagonal' solution (c) has higher joint entropy than the

`independent-component' solution (b), despite its having non-zero mutual in-

formation between the outputs. The values given are for illustration purposes

only.

In many practical situations, however, such interference will have minimal

e�ect. We conjecture that only when the pdf's of the inputs are sub-gaussian

(meaning their kurtosis, or 4th order standardised cumulant, is less than 0),

may unwanted higher entropy solutions for logistic sigmoid networks be found

by combining inputs in the way shown in 4c (Kenji Doya, personal commu-

nication). Many real-world analog signals, including the speech signals we

used, are super-gaussian. They have longer tails and are more sharply peaked

than gaussians (see Fig.5). For such signals, in our experience, maximising

the joint entropy in simple logistic sigmoidal networks always minimises the

mutual information between the outputs (see the results in section 5).

We can tailor conditions so that the mutual information between outputs is

minimised, by constructing our non-linear function, g(u), so that it matches,

in the sense of (31), the known pdf's of the independent variables. When

this is the case, H(y) will be maximised (meaning fy(y) will be the at unit
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(a) (b) (c)

Figure 5: Typical probability density functions for (a) speech (b) rock music

and (c) gaussian white noise. The kurtosis of pdf's (a) and (b) was greater

than 0, and they would be classi�ed as super-gaussian.

distribution) only when u carries one single independent variable. Any linear

combination of the variables will produce a `more gaussian' fu(u) (due to

central limit tendencies) and a resulting suboptimal (non-at) fy(y).

We have presented, in section 2.5, one possible `exible' non-linearity. This

suggests a two-stage algorithm for performing Independent Component Anal-

ysis. First, a non-linearity such as that de�ned by (32) is optimised to approx-

imate the cumulative distributions, (31), of known independent components

(sources). Then networks using this non-linearity are trained using the full

weight matrix and bias vector generalisation of (33) and (34):

�W /
h
W

T

i
�1

+ [p(1� y)� ry]xT (36)

�w0 / p(1� y)� ry (37)

This way, we can be sure that the problem of maximising the mutual infor-

mation between the inputs and outputs, and the problem of minimising the

mutual information between the outputs, have the same solution.

This argument is well-supported by the analysis of Nadal & Parga (1995),

who independently reached the conclusion that in the low-noise limit, infor-

mation maximisation yields factorial codes when both the non-linear function,

g(u), and the weights, w, can be optimised. Here, we provide a practical

optimisation method for the weights and a framework for optimising the non-

linear function. Having discussed these caveats, we now present results for

blind separation and blind deconvolution using the standard logistic function.
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5 Methods and results

The experiments presented here were obtained using 7 second segments of

speech recorded from various speakers (only one speaker per recording). All

signals were sampled at 8 kHz from the output of the auxiliary microphone

of a Sparc-10 workstation. No special post-processing was performed on the

waveforms, other than that of normalising their amplitudes so they were appro-

priate for use with our networks (input values roughly between -3 and 3). The

method of training was stochastic gradient ascent, but because of the costly

matrix inversion in (14), weights were usually adjusted based on the summed

�W's of small `batches' of length B, where 5 � B � 300. Batch training was

made e�cient using vectorised code written in MATLAB. To ensure that the

input ensemble was stationary in time, the time index of the signals was per-

muted. This means that at each iteration of the training, the network would

receive input from a random time point. Various learning rates5 were used

(0.01 was typical). It was helpful to reduce the learning rate during learning

for convergence to good solutions.

5.1 Blind separation results

The architecture in Fig.3a and the algorithm in (14) and (15) was su�cient

to perform blind separation. A random mixing matrix , A, was generated

with values usually uniformly distributed between -1 and 1. This was used to

make the mixed time series, x from the original sources, s. The matrices s

and x, then, were both N �M matrices (N signals, M timepoints), and x was

constructed from s by (1) permuting the time index of s to produce sy, and

(2) creating the mixtures, x by multiplying by the mixing matrix: x = As
y.

The unmixing matrix,W, and the bias vector w0 were then trained.

An example run with �ve sources is shown in Fig.6. The mixtures, x,

formed an incomprehensible babble. This unmixed solution was reached after

around 106 time points were presented, equivalent to about 20 passes through

the complete time series.6, though much of the improvement occurred on the

�rst few passes through the data. Any residual interference in u is inaudible.

5The learning rate is de�ned as the proportionality constant in (14)-(15) and (23)-(24).
6This took on the order of 5 minutes on a Sparc-10. Two hundred data points were

presented at a time in a `batch', then the weights were changed with a learning rate of 0.01

based on the sum of the 200 accumulated �w's.
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This �gure contains speech waveforms

arranged in 3 columns: the original

waveforms, the mixed signals, and the

unmixed signals. The postscript of

this �gure is 4MB, hence its

omission from this electronic version.

Figure 6: A 5� 5 information maximisation network performed blind separa-

tion, learning the unmixing matrix W. The outputs, u, are shown here un-

squashed by the sigmoid. They can be visually matched to their corresponding

sources, s, even though their order was di�erent and some (for example u1)

were recovered as negative (upside down).

This is reected in the permutation structure of the matrixWA:

WA =

2
66666664

-4.09 0:13 0:09 �0:07 �0:01
0:07 -2.92 0:00 0:02 �0:06
0:02 �0:02 �0:06 �0:08 -2.20

0:02 0:03 0:00 1.97 0:02

�0:07 0:14 -3.50 �0:01 0:04

3
77777775

(38)

As can be seen, only one substantial entry (boxed) exists in each row and

column. The interference was attenuated by between 20 and 70dB in all cases,

and the system was continuing to improve slowly with a learning rate of 0.0001.

In our most ambitious attempt, ten sources (six speakers, rock music, rau-
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cous laughter, a gong and the Hallelujah chorus) were successfully separated,

though the �ne tuning of the solution took many hours and required some

annealing of the learning rate (lowering it with time). For two sources, conver-

gence is normally achieved in less than one pass through the data (50,000 data

points), and on a Sparc-10 on-line learning can occur at twice the speed at

which the sounds themselves are played. Real-time separation for more than,

say, 3 sources, may require further work to speed convergence, or special-

purpose hardware.

In all our attempts at blind separation, the algorithm has only failed under

two conditions:

1. when more than one of the sources were gaussian white noise, and

2. when the mixing matrix, A was almost singular.

Both are understandable. Firstly, no procedure can separate out independent

gaussian sources since the sum of two gaussian variables has itself a gaussian

distribution. Secondly, ifA is almost singular, then any unmixingW must also

be almost singular, making the learning in (14) quite unstable in the vicinity

of a solution.

In contrast with these results, our experience with tests on the H-J network

of Jutten & Herault (1991) has been that it occasionally fails to converge for

two sources and only rarely converges for three, on the same speech and music

signals we used for separating ten sources. Cohen & Andreou (1992) report

separation of up to six sinusoidal signals of di�erent frequencies using analog

VLSI H-J networks. In addition, in Cohen & Andreou (1995), they report

results with mixed sine waves and noise in 5x5 networks, but no separation

results for more than two speakers.

How does convergence time scale with the number of sources, N? The dif-

�culty in answering this question is that di�erent learning rates are required

for di�erent N and for di�erent stages of convergence. We expect to address

this issue in future work, and employ useful heuristic or explicit 2nd order

techniques (Battiti 1992) to speed convergence. For now, we present rough

estimates for the number of epochs (each containing 50,000 data vectors) re-

quired to reach an average signal to noise ratio on the ouput channels of 20dB.

At such a level, approximately 80% of the each output channel amplitude is

devoted to one signal. These results were collected for mixing matrices of unit

determinant, so that convergence would not be hampered by having to �nd
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an unmixing matrix with especially large entries. Therefore these convergence

times may be lower than for randomly-generated matrices. The batch size, B,

was in each case, 20.

The average numbers of epochs to convergence (over 10 trials) and the

computer times consumed per epoch (on a Sparc-10) are given in the following

table:

no. of sources, N 2 3 4 5 6 7 8 9 10

learning rate 0.1 0.1 0.1 0.05 0.05 0.025 0.025 0.025 0.0125

epochs to convergence <1 <1 2.25 5.0 9.0 9.2 13.8 14.9 30.6

time in secs./epoch 12.1 13.3 14.6 15.6 16.9 18.4 19.9 21.7 23.6

5.2 Blind deconvolution results

Speech signals were convolved with various �lters and the learning rules in

(23) and (24) were used to perform blind deconvolution. Some results are

shown in Fig.7. The convolving �lters generally contained some zero values.

For example, 7e is the �lter [0.8,0,0,0,1]. In addition, the taps were sometimes

adjacent to each other 7a-d and sometimes spaced out in time 7i-l. The `leading

weight' of each �lter is the rightmost bar in each histogram.

For each of the three experiments shown in Fig.7, we display the convolving

�lter, a(t), the truncated inverting �lter, wideal(t), the �lter produced by our

algorithm, w(t), and the convolution of w(t) and a(t). The latter should be

a delta-function (ie: consist of only a single high value, at the position of the

leading weight) if w(t) correctly inverts a(t).

The �rst example, Fig.7a-d, shows what happens when one tries to `de-

convolve' a speech signal that has not actually been corrupted (�lter a(t) is

a delta function). If the tap spacing is close enough, (in this case, as close

as the samples), the algorithm learns a whitening �lter 7c which attens the

amplitude spectrum of the speech right up to the Nyquist limit, the frequency

corresponding to half the sampling rate. The spectra before and after such

`deconvolution' are shown in Fig.8. Whitened speech sounds like a clear sharp

version of the original signal since the phase structure is preserved. Using

all available frequency levels equally is another example of maximising the

information throughput of a channel.

This shows that when the original signal is not white, we may recover a

whitened version of it, rather than the exact original. However, when the taps

21



4 5 6

-1

5

1 3 4 6 9 10 11

-4

4

1 4 7 10 13 16 19 22

1

6

-0.75

1

1 9

-0.75

1

15

1

15

1

2 5 7 9 11 13 15

-10

10

2 5 7 9 11 13 15

-10

10

WHITENING BARREL  EFFECT MANY ECHOEStask

no. of
taps

tap

15 25 30

spacing
1 ( = 0.125ms) 10 ( = 1.25ms) 100 ( = 12.5ms)

learnt
deconvolv-
ing filter
‘w’

ideal
deconvolv-
ing filter
‘w       ’ideal

convolving
filter
‘a’

w * a

(a) 0.8

1

(e) (i)

(b) (f) (j)

(c) (g)

6 8

-4

4 (k)

(d) (h)

2 6 7 8

4 (l)

Figure 7: Blind deconvolution results. (a,e,i) Filters used to convolve speech

signals, (b,f,j) their inverses, (c,g,k) deconvolving �lters learnt by the algo-

rithm, and (d,h,l) convolution of the convolving and deconvolving �lters. See

text for further explanation.

are spaced out further, as in 7e-l, there is less opportunity for simple whitening.

In the second example, 7e, a 6.25 ms echo is added to the signal. This

creates a mild audible \barrel e�ect"7 Because �lter 7e is �nite in length, its

inverse, 7f, is in�nite in length, shown here truncated. The inverting �lter

learnt in 7g resembles it, though the resemblance tails o� towards the left

since we are really learning an optimal �lter of �nite length, not a truncated

in�nite �lter. The resulting deconvolution, 7h, is quite good.

The cleanest results, though, come when the ideal deconvolving �lter is of

7An example of the barrel e�ect are the acoustic echoes heard when someone talks into

a `speaker-phone'.
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Figure 8: Amplitude spectra of a speech signal (a) before and (b) after the

`whitening' performed in Fig.7c.

�nite length, as in our third example. A set of exponentially decaying echoes

spread out over 275 ms, 7i, may be inverted by a two-point �lter, 7j, with

a small decaying correction on its left, an artifact of the truncation of the

convolving �lter 7i. As seen in 7k, the learnt �lter corresponds almost exactly

to the ideal one, and the deconvolution in 7l is almost perfect. This result shows

the sensitivity of the learning algorithm in cases where the tap-spacing is great

enough (12.5 ms) that simple whitening does not interfere noticeably with the

deconvolution process. The deconvolution result, in this case, represents an

improvement of the signal-to-noise ratio from -23dB to 12dB. In all cases,

convergence was relatively rapid, with these solutions being produced after on

the order of 70,000 data points were presented, which amounts to 2 seconds

training on 8 seconds of speech, amounting to four times as fast as real-time

on a Sparc-10.

5.3 Combining separation and deconvolution

The blind separation rules in (14) and (15) and the blind deconvolution rules

in (23) and (24) can be easily combined. The objective then becomes the max-

imisation of the log of a Jacobian with local lower triangular structure. This

yields exactly the learning rule one would expect: the leading weights in the

�lters follow the blind separation rules and all the others follow a decorrelation

rule similar to (24) except that now there are tapped weights wikj between an

input xj(t� k) and an output yi(t).
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We have performed experiments with speech signals in which signals have

been simultaneously separated and deconvolved using these rules. We used

mixtures of two signals with convolution �lters like those in 7e and 7i, and

convergence to separated, deconvolved speech was almost perfect.

6 Discussion

We will consider these techniques �rstly in the context of previous information

theoretic approaches within neural networks, and then in the context of related

approaches to `blind' signal processing problems.

6.1 Comparison with previous work on information

maximisation

Many authors have formulated optimality criteria similar to ours, for both

neural networks and sensory systems (Barlow 1989, Atick 1992, Bialek, Ru-

derman & Zee 1991). However, our work is most similar to that of Linsker,

who in 1989 proposed an `infomax' principle for linear mappings with various

forms of noise. Linsker (1992) derived a learning algorithm for maximising the

mutual information between two layers of a network. This `infomax' criterion

is the same as ours [see eq.(1)]. However, the problem as formulated here is

di�erent in the following respects:

1. There is no noise, or rather, there is no noise model in this system.

2. There is no assumption that inputs or outputs have gaussian statistics.

3. The transfer function is in general non-linear.

These di�erences lead to quite a di�erent learning rule. Linsker's 1992 rule uses

(for input signal X and output Y ) a Hebbian term to maximise H(Y ) when

the network receives both signal and noise, an anti-Hebbian term to minimise

H(Y jX) when the system receives only noise, and an anti-Hebbian lateral

interaction to decorrelate the outputs Y . When the network is deterministic,

however, theH(Y jX) term does not contribute. A deterministic linear network

can increase its information throughput without bound, as the [WT ]�1 term

in (14) suggests.
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However, the information capacity in the networks we have considered is

bounded, not by noise, but by the saturation of a squashing function. Our

network shares with Linsker's the property that this bound gives rise to an

anti-Hebbian term in the learning rule. This is true for various squashing

functions (see the table in the Appendix).

This non-linear, non-gaussian, deterministic formulation of the `infomax'

problem leads to more powerful algorithms, since, as demonstrated, the non-

linear function enables the network to compute with non-gaussian statistics,

and �nd higher-order forms of redundancy inherent in the inputs. (As empha-

sised in section 3, linear approaches are inadequate for solving the problems of

blind separation and blind deconvolution.) These observations also apply to

the approaches of Atick & Redlich (1993) and Bialek, Ruderman & Zee (1991).

The problem of information maximisation through non-linear sigmoidal

neurons has been considered before without a learning rule actually being

proposed. Schraudolph et al (1991), in work that inspired this approach, con-

sidered it as a method for initialising weights in a neural network. Before this,

Laughlin (1981) used it to characterise as optimal, the exact contrast sensitiv-

ity curves of interneurons in the insect's compound eye. Various other authors

have considered unsupervised learning rules for non-linear units, without justi-

fying them in terms of information theory (see Karhunen & Joutsensalo 1994,

and references therein).

Several recent papers, however, have touched closely on the work presented

in this paper. Deco & Brauer (1995) use cumulant expansions to approximate

mutual information between outputs. Parra & Deco (1995) use symplectic

transforms to train non-linear information-preserving mappings. Most no-

tably, Baram & Roth (1994) perform substantially the same analysis as ours,

but apply their networks to probability density estimation and time series fore-

casting. None of this work was known to us when we developed our approach.

Finally, another group of information theoretic algorithms have been pro-

posed by Becker & Hinton (1992). These employ non-linear networks to max-

imise mutual information between di�erent sets of outputs. This increasing

of redundancy enables the network to discover invariants in separate groups

of inputs (see also Schraudolph & Sejnowski 1992). This is, in a sense, the

opposite of our objective, though some way may be found to view the two in

the same light.
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6.2 Comparison with previous work on blind separa-

tion

As indicated in section 3, approaches to blind separation and blind deconvolu-

tion have divided into those using non-linear functions (Jutten & Herault 1991,

Bellini 1994) and those using explicit calculations of cumulants and polyspectra

(Comon 1994, Hatzinakos & Nikias 1994). We have shown that an information

maximisation approach can provide a theoretical framework for approaches of

the former type.

In the case of blind separation, the architecture of our N ! N network,

although it is a feedforward network, maps directly onto that of the recurrent

Herault-Jutten network. The relationship between our weight matrix,W, and

the H-J recurrent weight matrix,WHJ , can be written as: W = (I+WHJ)
�1,

where I is the identity matrix. From this we may write

�WHJ = �
�
W

�1
�
=
�
W

�1
�
�W

�
W

�1
�

(39)

so that our learning rule, (14), forms part of a rule for the recurrent H-J

network. Unfortunately, this rule is complex and not obviously related to the

non-linear anti-Hebbian rule proposed for the H-J net:

�WHJ / �g(u)h(u)T (40)

where g and h are odd non-linear functions. It remains to conduct a detailed

performance comparison between (40) and the algorithm presented here. We

have performed many simulations in which the H-J net failed to converge, but

because there is substantial freedom in the choice of g and h in (40), we cannot

be sure that our choices were good ones.

We now compare the convergence criteria of the two algorithms in order to

show how they are related. The explanation (Jutten & Herault 1991) for the

success of the H-J network is that the Taylor series expansion of g(u)h(u)T in

(40) yields odd cross moments, such that the weights stop changing when:

X
i;j

bijpqhu2p+1i
u
2q+1

j
i = 0 (41)

for all output unit pairs i 6= j, for p; q = 0; 1; 2; 3 : : :, and for the coe�cients

bijpq coming from the Taylor series expansion of g and h. This, they argue,

provides an \approximation of an independence test".
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This can be compared with the convergence criterion of our algorithm. For

the tanh non-linearity, we derive:

�W /
h
W

T

i
�1

� 2yxT (42)

This converges in the mean when (ignoring bias weights and assuming x to be

zero mean): h
W

T

i
�1

= 2htanh(Wx)xTi: (43)

This condition can be readily rewritten (multiplying in by W
T and using

u =Wx) as:

I = 2htanh(u)uT i: (44)

Since tanh is an odd function, its series expansion is of the form tanh(u) =P
j
bju

2p+1, the bj being coe�cients, and thus the convergence criterion (44)

amounts to the condition

X
i;j

bijphu2p+1i
uji = 0 (45)

for all output unit pairs i 6= j, for p = 0; 1; 2; 3 : : :, and for the coe�cients bijp
coming from the Taylor series expansion of the tanh function.

The convergence criterion (45) involves fewer cross moments than that of

(41) and in this sense, may be viewed as a less restrictive condition. More

relevant, however, is the fact that the weighting, or relative importance, bijp,

of the moments in (45) is determined by the information theoretic objective

function in conjunction with the non-linear function g, while in (41), the bijpq
values are accidents of the particular non-linear functions, g and h, that we

choose. These observations may help to explain the existence of spurious solu-

tions for H-J, as revealed, for example, in the stability analysis of Sorouchyari

(1991).

Several other approaches to blind separation exist. Comon (1994) expands

the mutual information in terms of cumulants up to order 4, amounting to

a truncation of the constraints in (45). A similar proposal which combines

separation with deconvolution is to be found in Yellin & Weinstein (1994).

Such cumulant-based methods seem to work, though they are complex. It is

not clear how the truncation of the expansion a�ects the solution. In addition,

Molgedey & Schuster (1994) have proposed a novel technique that uses time

delayed correlations to constrain the solution. Finally, Hop�eld (1991) has
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applied a variant of the H-J architecture to odor separation in a model of the

olfactory bulb.

6.3 Comparison with previous work on blind deconvo-

lution

In the case of blind deconvolution, our approach most resembles the `Bussgang'

family of techniques (Bellini 1994, Haykin 1991). These algorithms assume

some knowledge about the input distributions in order to sculpt a non-linearity

which may be used in the creation of a memoryless conditional estimator for

the input signal. In our notation, the non-linearly transformed output, y, is

exactly this conditional estimator:

y = g(u) = E[sju] (46)

and the goal of the system is to change weights until u, the actual output is

the same as y, our estimate of s. An error is thus de�ned, error = y � u,

and a stochastic weight update rule follows directly from gradient descent in

mean-squared error. This gives the blind deconvolution rule for a tapped delay

weight at time t [compare with (24)]:

�wL�j(t) / xt�j(yt � ut) (47)

If g(u) = tanh(u) then this rule is very similar to (24). The only di�erence is

that (24) contains the term tanh(u) where (47) has the term u� tanh(u), but

as can be easily veri�ed, these terms are of the same sign at all times, so the

algorithms should behave similarly.

The theoretical justi�cations for the Bussgang approaches are, however, a

little obscure, and, as with the Herault-Jutten rules, part of their appeal derives

from the fact that they have been shown to work in many circumstances. The

primary di�culty lies in the consideration, (46), of y as a conditional estimator

for s. Why, a priori, should we consider a non-linearly transformed output to

be a conditional estimator for the unconvolved input? The answer comes from

Bayesian considerations. The output, u, is considered to be a noisy version of

the original signal, s. Models of the pdf's of the original signal and this noise

are then constructed, and Bayesian reasoning yields a non-linear conditional

estimator of s from u, which can be quite complex [see (20.39) in Haykin 1991].

It is not clear, however, that the `noise' introduced by the convolving �lter, a,
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is well-modelled as gaussian. Nor will we generally have justi�able estimates

of its mean and variance, and how they compare with the means and variances

of the input, s.

In short, the selection of a non-linearity, g, is a black art. Haykin does

note, though, that in the limit of high convolutional noise, g, can be well

approximated by the tanh sigmoid non-linearity [(20.44) in Haykin 1991], ex-

actly the non-linearity we have been using. Could it be that the success of the

Bussgang approaches using Bayesian conditional estimators are due less to the

exact form of the conditional estimator than to the general goal of squeezing

as much information as possible through a sigmoid function? As noted, a sim-

ilarity exists between the information maximisation rule (24), derived without

any Bayesian modelling, and the Bussgang rule (47) when convolutional noise

levels are high. This suggests that the higher-order moments and information

maximisation properties may be the important factors in blind deconvolution,

rather than the minimisation of a contrived error measure, and its justi�cation

in terms of estimation theory.

Finally, we note that the idea of using a variable-slope sigmoid function for

blind deconvolution was �rst described in Haykin (1992).

6.4 Conclusion

In their current forms, the algorithms presented here are limited. Firstly, since

only single layer networks are used, the optimal mappings discovered are con-

strained to be linear, while some multi-layer system could be more powerful.

With layers of hidden units, the Jacobian in (13) becomes more complicated,

as do the learning rules derived from it. Secondly, the networks require, for

N inputs, that there be N outputs, which makes them unable to perform

the computationally useful tasks of dimensionality reduction or optimal data

compression. Thirdly, realistic acoustic environments are characterised by sub-

stantial propagation delays. As a result, blind separation techniques without

adaptive time delays do not work for speech recorded in a natural environ-

ment. An approach to this problem using `beamforming' may be found in (Li

& Sejnowski 1994). Fourthly, no account has yet been given for cases where

there is known noise in the inputs. The beginning of such an analysis may be

found in Nadal & Parga (1995), and Schuster (1992) and it may be possible

to de�ne learning rules for such cases.

Finally, and most seriously from a biological point of view, the learning rule
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in equation (16) is decidedly non-local. Each `neuron' must know the cofactors

either of all the weights entering it, or all those leaving it. Some architectural

trick may be found which enables information maximisation to take place

using only local information. The existence of local learning rules such as the

H-J network, suggests that it may be possible to develop local learning rules

approximating the non-local ones derived here. For now, however, the network

learning rule in (14) remains unbiological.

Despite these concerns, we believe that the information maximisation ap-

proach presented here could serve as a unifying framework that brings together

several lines of research, and as a guiding principle for further advances. The

principles may also be applied to other sensory modalities such as vision, where

Field (1994) has recently argued that phase-insensitive information maximisa-

tion (using only second order statistics) is unable to predict local (non-Fourier)

receptive �elds.

Appendix | proof of learning rule (14)

Consider a network with an input vector x, a weight matrixW, a bias vector

w0 and a non-linearly transformed output vector y = g(u), u = Wx + w0.

ProvidingW is a square matrix and g is an invertible function, the multivariate

probability density function of y can be written (Papoulis, eq. 6-63):

fy(y) =
fx(x)

jJ j (48)

where jJ j is the absolute value of the Jacobian of the transformation. This

simpli�es to the product of the determinant of the weight matrix and the

derivatives, y0
i
, of the outputs, yi, with respect to their net inputs:

J = (detW)
NY
i=1

y0
i

(49)

For example, in the case where the non-linearity is the logistic sigmoid,

yi =
1

1 + e�ui
and y0

i
=

@yi

@ui
= yi(1 � yi): (50)

We can perform gradient ascent in the information that the outputs trans-

mit about inputs by noting that the information gradient is the same as the
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entropy gradient (2) for invertible deterministic mappings. The joint entropy

of the outputs is:

H(y) = �E[lnfy(y)] (51)

= E[ln jJ j]� E[ln fx(x)] from (48) (52)

Weights can be adjusted to maximise H(y). As before, they only a�ect the

E[ln jJ j] term above, and thus, substituting (49) into (52):

�W / @H

@W
=

@

@W
ln jJ j = @

@W
ln jdetWj+ @

@W
ln
Y
i

jy0
i
j (53)

The �rst term is the same regardless of the transfer function, and since detW =P
j
wij cof wij for any row i, (cof wij being the cofactor of wij), we have, for a

single weight:
@

@wij

ln jdetWj = cofwij

detW
(54)

For the full weight matrix, we use the de�nition of the inverse of a matrix,

and the fact that the adjoint matrix, adjW, is the transpose of the matrix of

cofactors. This gives:

@

@W
ln jdetWj = (adjW)T

detW
=
h
W

T

i�1
(55)

For the second term in (53), we note that the product, ln
Q

i
y0
i
, splits up

into a sum of log-terms, only one of which depends on a particular wij. The

calculation of this dependency proceeds as in the one unit case of (8) and (9).

Di�erent squashing functions give di�erent forms of anti-Hebbian terms. Some

examples are given in Table 1.

Thus, for units computing weighted sums, the information-maximisation

rule consists of an anti-redundancy term which always has the form of (55),

and an anti-Hebb term which keeps the unit from saturating.

Several points are worth noting in Table 1:

1. The logistic (A) and tanh (B) functions produce anti-Hebb terms which

use higher-order statistics. The other functions use the net input ui as

their output variable, rather than the actual, non-linearly transformed

output yi. Tests have shown the erf function (D) to be unsuitable for

blind separation problems. In fact, it can be shown to converge in the

mean when [compare with (44)]: I = 2huuT i, showing clearly that it is

just a decorrelator.
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2. The generalised cumulative gaussian function (E) has a variable expo-

nent, r. This can be varied between 0 and 1 to produce squashing

functions suitable for symmetrical input distributions with very high or

low kurtosis. When r is very large, then g(ui) is suitable for unit in-

put distributions such as those in Fig.4. When close to zero, it �ts high

kurtosis input distributions, which are peaked with long tails.

3. Analogously, it is possible to de�ne a generalised `tanh' sigmoid (F), of

which the hyperbolic tangent (B) is a special case (r = 2). The values

of function F can in general only be attained by numerical integration

(in both directions) of the di�erential equation, g0(u) = 1� jg(u)jr, from
a boundary condition of g(0) = 0. Once this is done, however, and the

values are stored in a look-up table, the slope and anti-Hebb terms are

easily evaluated at each presentation. Again, as in section 2.5, it should

be useful for data which may have at (r > 2) or peaky (r < 2) pdf's.

4. The learning rule for a gaussian radial basis function node (G) shows the

unsuitability of non-monotonic functions for information maximisation

learning. The ui term on the denominator would make such learning

unstable when the net input to the unit was zero.
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Function : Slope : Anti�Hebb term :

yi = g(ui) y0
i
=

@yi

@ui

@

@wij

ln jy0
i
j

A
1

1 + e�ui
yi(1� yi) xj(1 � 2yi)

B tanh(ui) 1� y2
i

�2xjyi

C arctan(ui)
1

1 + u2
i

� 2xjui

1 + u2
i

D erf(ui)
2p
�
e�ui

2 �2xjui

E
R
ui

�1
e�jvj

r

dv e�juij
r �rxjjuijr�1sgn(ui)

F
R
ui

�1
(1 � jg(v)jr)dv 1 � jyijr �rxjjyijr�1sgn(yi)

G e�u
2

i �2uiyi xj
1 + 2u2

i

ui

Table 1: Di�erent non-linearities, g(ui), give di�erent slopes and anti-Hebbian

terms that appear when deriving information maximisation rules using eq.(53).
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