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Figure 2. A simple, one-dimensional dynamic routing circuit. a, Connections are shown for the leftmost node in each layer. The connections for 
the other nodes are the same, but merely shifted. N denotes the number of nodes within each layer, and I denotes the layer number. A set of control 
units (not explicitly shown) provide the necessary signals for modulating connection strengths so that the image within the window of attention in 
the input is mapped onto the output nodes. b and c, Some examples of how connection strengths would be set for different positions and sizes of 
the window of attention. The gray level of each connection denotes its strength. Each node, Zf, essentially interpolates from the nodes below by 
forming a linear weighted sum of its inputs: 

where W: denotes the strength of the connection from node j in level 1 to node i in level 1 + 1. If  a gaussian is used as the interpolation function, 
then wt, is given by 

WI, = exp (j - cqi - d,)> - 
24 

where the parameters d,, (Y,, and Q, denote the amount of translation, scaling, and blurring, respectively, in the transformation from level 1 to level 
I + 1. The overall translation, scaling, and blurring of the entire circuit (d, 01, and u) is then given by d = d, + cu,(d, + cr,d,), a! = LY~(Y,(Y~, (~2 = 
u; + (Y&J: + c+J:). Note that the lowest layers are best suited for small, fine-scale adjustments to the position and size of the attentional window, 
while the upper layers are better suited for large, coarse-scale adjustments. 

used when the window is small. Thus, much of the image 
smoothing could be accomplished by using a set of hardwired 
filters, and then switching between these filters depending on 
the size of the attentional window. 

The challenge in controlling the routing circuit lies in properly 
setting the synaptic weights to yield the desired position and 
size of the window of attention. Low levels of the circuit are 
well suited for making fine adjustments in the position and scale 
of the window of attention, whereas higher levels are best suited 
for coarse control. In general, though, there are an infinite num- 
ber of possible solutions in terms of the combinations of weights 
that could achieve any particular input-output transformation. 

Control 
Our analysis of how information flow can be controlled is aided 
by visualizing the routing circuit in “connection space,” as shown 
in Figure 3a. This diagram shows the connection matrix for a 
simple one-dimensional routing circuit composed of two lay- 
ers-an input layer and an output layer. The horizontal axis 
represents the nodes constituting the input layer of the network, 
the vertical axis represents the nodes constituting the output 
layer. An “x ” at coordinate (j, i) in connection space denotes 
that a physical connection exists from node j in the input to 
node i in the output; the lack of an “ x ” at (j, i) implies that 
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Visualizing and Understanding Convolutional Neural Networks

of the original input image, with structures weighted
according to their contribution toward to the feature
activation. Since the model is trained discriminatively,
they implicitly show which parts of the input image
are discriminative. Note that these projections are not
samples from the model, since there is no generative
process involved.
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Figure 1. Top: A deconvnet layer (left) attached to a con-
vnet layer (right). The deconvnet will reconstruct an ap-
proximate version of the convnet features from the layer
beneath. Bottom: An illustration of the unpooling oper-
ation in the deconvnet, using switches which record the
location of the local max in each pooling region (colored
zones) during pooling in the convnet.

3. Experiments

We start by training a large convolutional network
model on the ImageNet dataset, using the exact ar-
chitecture specified in (Krizhevsky et al., 2012) and
attempt to replicate their result on the validation set.
The ImageNet dataset (Deng et al., 2009) consists
of 1.3M/65k/100k training/validation/test examples,
spread over 1000 categories. Details of the training
procedure are given in Section 3.1 below. As shown
in Table 2, we achieve error rate within 0.1% of their
reported value on the ImageNet 2012 validation set.

We now explore a range of di↵erent model architec-
tures in an attempt to understand the relative impor-
tance of each layer. In Table 1, we modify the size
of (a) the convolutional layers, (b) the fully connected
layers and (c) both sections of the model. Decreas-
ing each part separately only results in a modest per-
formance drop. This is surprising for the fully con-

nected layers, given that they contain the majority
of the model’s parameters. However, decreasing both
severely a↵ects performance, showing the importance
of having a minimum depth to the model. Altering the
number of units in the fully connected layers (2048 or
8192 vs 4096) makes little di↵erence to performance.
Increasing the size of the convolutional layers 3,4,5 to
512-1024-512 maps, from 384-384-256, does give a gain
in performance, but the model starts to over-fit due to
the big increase in number of parameters. The over-
fitting is more pronounced when increasing the size of
both the convolutional and fully connected layers.

Train Val Val

Error % Top-1 Top-1 Top-5

Our replication of

(Krizhevsky et al., 2012), 1 convnet 35.1 40.5 18.1
With removed layers 3,4 41.8 45.4 22.1
With removed layer 7 27.4 40.0 18.4
With removed layers 6,7 27.4 44.8 22.4
With removed Layers 3,4,6,7 71.1 71.3 50.1
With layers 6,7: 2048 units 40.3 41.7 18.8
With layers 6,7: 4096 units

as per (Krizhevsky et al., 2012) 35.1 40.5 18.1
With layers 6,7: 8192 units 26.8 40.0 18.1
Our model 28.7 38.3 16.4
Our model, layers 6,7: 8192 units 21.4 38.0 16.5

Table 1. ImageNet 2012 classification error rates with var-
ious architectural changes to our ImageNet model.

The experiments in Table 1 show that by increasing
the number of feature maps in the middle layers, the
model of (Krizhevsky et al., 2012) may be improved
upon. Fig. 2 shows the best performing architecture,
which has a dramatically larger layers 3,4 and 5. When
evaluated on the Imagenet 2012 validation set, it sig-
nificantly outperforms (Krizhevsky et al., 2012), beat-
ing their single model result by 1.8% (see Table 2).
When we combine multiple models, we obtain a test
error of 15.3%, which matches the absolute best per-
formance on this dataset, despite only using the much
smaller 2012 training set. We note that this error is
almost half that of the top non-convnet entry in the
ImageNet 2012 classification challenge, which obtained
26.1% error.

3.1. Training Details

The models were trained on the ImageNet 2012 train-
ing set (1.3 million images, spread over 1000 di↵erent
classes). Each RGB image was preprocessed by resiz-
ing the smallest dimension to 256, cropping the center
256x256 region, subtracting the per-pixel mean (across
all images) and then using 10 di↵erent sub-crops of size
224x224 (corners + center with(out) horizontal flips).
Stochastic gradient descent with a mini-batch size of
128 was used to update the parameters, starting with
a learning rate of 10�2, in conjunction with a momen-
tum term of 0.9. Dropout (Hinton et al., 2012) is used
in the fully connected layers (6 and 7) with a rate of

Dynamic routing in deep networks

(Zeiler & Fergus, 2013)
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Layer 2

Figure 8. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.
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Layer 5
Figure 8. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.
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2. The problem

The abstract problem solved by the map-seeking circuit is
the discovery of a composition of transformations
between an input pattern and a stored pattern (or between
two input patterns, as in the case of stereovision). In
general the transformations express the generating process
of the problem. Define correspondence c between vectors
r and w through a composition of L transformations
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Let C be an L dimensional matrix of values of c(j) whose
dimensions are n1…nL. The problem, then is to find

( )arg max c=x j eq. 2
The indices x specify the sequence of transformations that
best correspondence between vectors r and w. The
problem is that C is too large a space to be searched by
conventional means. Instead, map-seeking circuits search
a superposition space Q defined
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Q(G) is the hypersurface defining the value of the inner
product of forward and backward superpositions for all
values of g. In Q space, the solution lies along a single
axis in each layer. Superposition culling uses the
components of grad Q to compute a path in steps !g to the
axis in each layer l which corresponds to the best fitting
transformation txl

, where xl is the lth element of x in eq. 2.
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The function f preserves the maximal component and
reduces the others: in neuronal terms, lateral inhibition.
This reformulation of the problem into the superposition
space Q permits a search with resources proportional to
the sum of sizes of the dimensions of C instead of their
product.

The price for moving the problem into superposition
space is that collusions of components of the
superpositions can result in better matches for incorrect
mappings than for the mappings of the correct solution.
The ordering property of superpositions [4] gives a
probabilistic description of the occurrence of collusion for
pattern vectors which satisfy the distribution properties of
decorrelating encodings, for which there is reasonable

Proceedings of the 33rd Applied Imagery Pattern Recognition Workshop (AIPR’04) 
1550-5219/04 $ 20.00 IEEE

Map-seeking circuit (Arathorn 2002)
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Figure 1: Given a labeled training set of observations in multiple styles (e.g.,
fonts) and content classes (e.g., letters), we want to (A) classify content observed
in a new style, (B) extrapolate a new style to unobserved content classes, and (C)
translate from new content observed only in new styles into known styles or
content classes.

Model dimensionality can be adjusted to accommodate data that arise from
arbitrarily complex interactions of style and content factors. In contrast to
hierarchical factorial models, model fitting can be carried out by efficient
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function of a
s and b

c given most generally by the form

ysc
k =

I∑

i=1

J∑

j=1
wijkas

i b
c
j . (2.1)

Here i, j, and k denote the components of style, content, and observation
vectors, respectively.1 The wijk terms are independent of style and content
and characterize the interaction of these two factors. Their meaning becomes
clearer when we rewrite equation 2.1 in vector form. Letting Wk denote the
I × J matrix with entries {wijk}, equation 2.1 can be written as

ysc
k = a

sT
Wkb

c. (2.2)

In equation 2.2, the K matrices Wk describe a bilinear map from the style
and content vector spaces to the K-dimensional observation space.

The interaction terms have another interpretation, which can be seen
by writing the symmetric model in a different vector form. Letting wij de-
note the K-dimensional vector with components {wijk}, equation 2.1 can be
written as

y
sc =

∑

i,j
wijas

i b
c
j . (2.3)

In equation 2.3, the wijk terms represent I × J basis vectors of dimension K,
and the observation y

sc is generated by mixing these basis vectors with
coefficients given by the tensor product of a

s and b
c.

Of course, all of these interpretations are formally equivalent, but they
suggest different intuitions which we will exploit later. As a concrete exam-
ple, Figure 2 illustrates a symmetric model of face images of different people
in different poses (sampled from the complete data in Figure 6). Here the
basis vector interpretation of the wijk terms is most natural, by analogy to the
well-known work on eigenfaces (Kirby & Sirovich, 1990; Turk & Pentland,
1991). Each pose is represented by a vector of I parameters, apose

i , and each
person by a vector of J parameters, bperson

j . To render an image of a particular
person in a particular pose, a set of I × J basis images wij is linearly mixed
with coefficients given by the tensor product of these two parameter vectors
(see equation 2.3). The symmetric model can exactly reproduce the obser-
vations when I and J equal the numbers of observed styles S and content
classes C, respectively, as is the case in Figure 2. The model provides coarser
but more compact representations as these dimensionalities are decreased.

1 The model in equation 2.1 may appear trilinear, but we view the wijk terms as de-
scribing a fixed bilinear mapping from a

s and b
c to y

sc.

Bilinear models 
(Tenenbaum & Freeman 2000)
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ABSTRACT
Previous work on unsupervised learning has shown that it is possible to learn Gabor-like feature representations,

similar to those employed in the primary visual cortex, from the statistics of natural images. However, such

representations are still not readily suited for object recognition or other high-level visual tasks because they

can change drastically as the image changes to due object motion, variations in viewpoint, lighting, and other

factors. In this paper, we describe how bilinear image models can be used to learn independent representations

of the invariances, and their transformations, in natural image sequences. These models provide the foundation

for learning higher-order feature representations that could serve as models of higher stages of processing in the

cortex, in addition to having practical merit for computer vision tasks.

Keywords: Natural images, sparse coding, bilinear models, invariance, motion

1. INTRODUCTION
The problem of feature extraction—i.e., parsing an image into a set of local descriptors which reflect its

structure—is central to both neurophysiological investigations of vision and computer vision. Neuroscientists

have traditionally probed the response properties of visual neurons by asking what features of the visual scene

they encode. Early studies began with spots of light, and later Hubel and Wiesel discovered orientation selectivity

in neurons within the primary visual cortex (area V1) which shifted the emphasis toward shape and other local

image properties. In the field of computer vision, the most successful methods for object recognition and tracking

depend upon extracting key feature points from an image, which are then matched to an object (represented

in terms of the same features).1 For example, the popular method of SIFT2 (scale-invariant feature transform)

utilizes a bank of multiscale, oriented gradient filters to find keypoints which are candidates for matching to an

object.

Despite the initial successes of the feature-based approach in both realms, investigators in neuroscience and

computer vision are increasingly faced with the question of how to choose the features to be extracted to be-

gin with. In both realms this process has mostly been guided by good intuitions and guesswork (e.g., Hubel

and Wiesel’s discovery of orientation selectivity was more accidental than the purposeful test of an hypothesis).

Beyond V1, though, there is very little agreement and few concrete ideas about what features are being repre-

sented. And although SIFT features appear to be robust to changes in viewpoint and other variations, it begs

the question of whether there is a more principled set of features or method for extracting them that would

exhibit even greater robustness.

In recent years, a growing community of researchers in both biological and machine vision has been addressing

the question of what features to represent by asking, what is the structure of natural images? This problem

may be approached within the principled framework of density estimation, or maximum likelihood, in which one

attempts to derive, via unsupervised learning, a model that best captures the statistical structure of natural

scenes. Using this approach, for example, it has been possible to account for the feature selective properties of

neurons in primary visual cortex in terms a sparse coding strategy adapted to the statistics of natural images.3–5

Our goal in this paper is to build upon this work in order to learn higher-order representations that could serve

as models of higher stages of processing in the cortex, in addition to having practical merit for computer vision

tasks.

Send correspondence to B.A.O.: baolshausen@berkeley.edu

In: SPIE Proceedings vol. 6492: Human Vision and Electronic Imaging XII, (B.E. 
Rogowitz, T.N. Pappas, S.J. Daly, Eds.), Jan 28-Feb 1, 2007, San Jose, California

In this paper, we explore two di⇤erent types of bilinear models for learning separate representations of the

invariances and their transformations in time-varying natural images. The first, based on remapping, has the

same bilinear form of equation 3 but makes explicit the manner in which invariant and variant components are

being modeled, which also suggests how the model can be made more e⌃cient. This leads to the development

of the second model, which is based on interpolation among the basis function coe⌃cients via phase shifting,

utilizing fewer multiplicative couplings. This model also points the way toward learning higher-order feature

representations which could provide rich descriptions of the invariant and variant components in natural images.

2. BILINEAR MODELS
2.1. Remapping
We first consider the problem of modeling the small transformations that occur from one frame to the next in

natural image sequences. Let us assume that each frame of the image sequence may be described as a remapping

of the previous frame via

I(x, t + 1) =
⌦

x�

T (x,x⇥, t) I(x⇥, t) + ⇥(x, t) (4)

where ⇥ is included to account for residual structure not well described by remapping. The map, T , is modeled

using a basis function decomposition:

T (x,x⇥, t) =
⌦

k

ck(t) ⌃k(x,x⇥) (5)

The problem of modeling transformations in natural image sequences thus amounts to one of finding a good

set of basis functions {⌃k} for generating the appropriate remappings T (x,x⇥). By “good” we mean intuitively

that the ⌃k should be well-matched to describe the transformations that typically occur. That is, only a small

number of non-zero ck should be needed to describe any given transformation. In the same way that we learned

a sparse code of image content, then, we seek to learn a sparse representation of the space of transformations.

Sparseness is enforced on the coe⌃cients, ck, by imposing a cost function on their activity. The basis functions

⌃k(x,x⇥) are then adapted to an image sequence by forcing each frame transition to be described using the fewest

non-zero coe⌃cients ck. This is accomplished by the following optimization procedure:

{⌃̂k} = arg min
{⌅k}

⇤
min

c

⇧

⌥
⌦

x,t

[I(x, t + 1) �
⌦

x�

⌦

k

ck(t) ⌃k(x,x⇥) I(x⇥, t)]2 +
⌦

k,t

S(ck(t))

⌃

�
⌅

where �  denotes ‘average over many image sequences.’ The sparseness penalty S is of the form S(x) = log(1+x2).

The minimization with respect ot the basis functions ⌃k and coe⌃cients ck may be accomplished via gradient

descent methods similar to those described previously.3

Now, if we represent the image at each time, t, using the basis function decomposition of the sparse coding

model:

I(x, t) =
⌦

i

ai(t) ⇧i(x)

we obtain from equations 4 and 5:

I(x, t + 1) =
⌦

x�

⌦

k

ck(t) ⌃k(x,x⇥)
⌦

i

ai(t) ⇧i(x⇥) (6)

=
⌦

i

⌦

k

ai ck Bik(x) (7)

where Bik(x) =
 

x� ⌃k(x,x⇥) ⇧i(x⇥). Thus, it can be seen that the remapping model is equivalent to the

bilinear model of Grimes & Rao, described above (eq. 3), when the image being remapped is represented by the

coe⌃cients of a basis function expansion. The di⇤erence here is that we are learning the remapping components
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2. BILINEAR MODELS
2.1. Remapping
We first consider the problem of modeling the small transformations that occur from one frame to the next in

natural image sequences. Let us assume that each frame of the image sequence may be described as a remapping

of the previous frame via

I(x, t + 1) =
⌦

x�

T (x,x⇥, t) I(x⇥, t) + ⇥(x, t) (4)

where ⇥ is included to account for residual structure not well described by remapping. The map, T , is modeled

using a basis function decomposition:

T (x,x⇥, t) =
⌦

k

ck(t) ⌃k(x,x⇥) (5)

The problem of modeling transformations in natural image sequences thus amounts to one of finding a good

set of basis functions {⌃k} for generating the appropriate remappings T (x,x⇥). By “good” we mean intuitively

that the ⌃k should be well-matched to describe the transformations that typically occur. That is, only a small

number of non-zero ck should be needed to describe any given transformation. In the same way that we learned

a sparse code of image content, then, we seek to learn a sparse representation of the space of transformations.

Sparseness is enforced on the coe⌃cients, ck, by imposing a cost function on their activity. The basis functions

⌃k(x,x⇥) are then adapted to an image sequence by forcing each frame transition to be described using the fewest

non-zero coe⌃cients ck. This is accomplished by the following optimization procedure:
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where �  denotes ‘average over many image sequences.’ The sparseness penalty S is of the form S(x) = log(1+x2).

The minimization with respect ot the basis functions ⌃k and coe⌃cients ck may be accomplished via gradient

descent methods similar to those described previously.3

Now, if we represent the image at each time, t, using the basis function decomposition of the sparse coding

model:

I(x, t) =
⌦

i

ai(t) ⇧i(x)

we obtain from equations 4 and 5:
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⌦
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ai(t) ⇧i(x⇥) (6)

=
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ai ck Bik(x) (7)

where Bik(x) =
 

x� ⌃k(x,x⇥) ⇧i(x⇥). Thus, it can be seen that the remapping model is equivalent to the

bilinear model of Grimes & Rao, described above (eq. 3), when the image being remapped is represented by the

coe⌃cients of a basis function expansion. The di⇤erence here is that we are learning the remapping components

Figure 4. Four of the remapping bases, ⇥k(x,x⇥), learned from the transformations contained in natural image sequences.
Each basis function shows how a pixel in one frame is mapped into the next frame—i.e., each patch within a basis function
corresponds to a pixel within the originating frame (ordered according to its position in the frame), and the values within
the patch denote how it is weighted into the next frame. For example, the identity function (third from left) simply maps
each pixel into itself.

gradients with di⇤erent orientations. This solution to can be understood as a first-order approximation to the

Lie group operator for translation.21 That is, one can approximate a translated image as

I(x + ⇥x) ⌅= I(x) + ⇥x ·↵xI(x)

Thus, the model has essentially learned the basis functions needed to translate an image patch by adding a copy

of the image patch to its derivative along a certain direction (⇥x).

3.2. Phase-shifting
Figure 5a shows two examples of complex basis functions learned as a result of adapting the model to natural

image sequences. The basis functions take on a similar form as before (localized, oriented, bandpass), except

now they come in pairs that appear roughly in quadrature. When added together weighted by the cosine and

sine of the phase, �i, they combine to form a set of shiftable basis functions. One can see the range of variation

expressed by each function by holding the amplitude of its coe⌃cient fixed and spinning the phase from 0 to

2⇤ (see http://redwood.berkeley.edu/bruno/complexbfs). As can be seen from the joint histograms of real

and imaginary coe⌃cients in figure 5b, the phases have a uniform distribution over the interval 0 : 2⇤, indicating

that each complex basis function is being utilized in all of its shifts.

Figure 6 shows the result of coding a time-varying natural image sequence using the complex basis function

model. Note that the local invariances are now made explicit via the complex amplitudes, ⌅i(t), which change

relatively slowly over time, typically sustaining their value over 5-10 frames. By comparison, the real and imagi-

nary coe⌃cients, ui(t), vi(t), tend to undulate with each frame. In addition, motion is explicitly represented as a

linear ramp in phase during the periods when the corresponding amplitude is significant. Importantly, the joint

distribution of the amplitudes and phases of neighboring complex basis functions exhibits strong dependencies

(fig. 5c), suggesting that another layer of sparse coding could learn higher-order features based on this structure.

4. DISCUSSION
We have shown in this work how bilinear models may be used to learn independent representations of ’what’

(invariances) and ’where’ (transformations) components of time-varying natural images. In constrast to previous

models that focus either on forming invariant representations of objects6–8 or representations of motion and optic

flow,22–24 our approach combines both of these into the same model. Moreover, computing the transformations is

necessary for extracting the invariances, and vice-versa. Together, both the invariances and their transformations

provide a complete description of the content of time-varying images.

Interestingly, the complex basis function model bears a strong resemblance to models of ‘complex cells’ in

primary visual cortex. However the models are actually very di⇤erent in terms of how they achieve invariance. In
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Fig. 1. Three capsules of a transforming auto-encoder that models translations. Each
capsule in the figure has 3 recognition units and 4 generation units. The weights on the
connections are learned by backpropagating the discrepancy between the actual and
target outputs.

a pure translation of the retinal image and the cortex has non-visual access to
information about eye-movements.

2 Learning the First Level of Capsules

Once pixel intensities have been converted into the outputs of a set of active,
first-level capsules each of which produces an explicit representation of the pose
of its visual entity, it is relatively easy to see how larger and more complex visual
entities can be recognized by using agreements of the poses predicted by active,
lower-level capsules. But where do the first-level capsules come from? How can
an artificial neural network learn to convert the language of pixel intensities
to the language of pose parameters? That is the question addressed by this
paper and it turns out that there is a surprisingly simple answer which we call a
“transforming auto-encoder”. We explain the idea using simple 2-D images and
capsules whose only pose outputs are an x and a y position. We generalize to
more complicated poses later.

Consider the feedforward neural network shown in figure 1. The network is
deterministic and, once it has been learned, it takes as inputs an image and
desired shifts, ∆x and ∆y, and it outputs the shifted image. The network is
composed of a number of separate capsules that only interact at the final layer
when they cooperate to produce the desired shifted image. Each capsule has its
own logistic “recognition units” that act as a hidden layer for computing three
numbers, x, y, and p, that are the outputs that the capsule will send to higher
levels of the vision system. p is the probability that the capsule’s visual entity is

Transforming Auto-encoders 
(Hinton, Krizhevsky & Wang 2011)
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Fig. 2. Left: A scatterplot in which the vertical axis represents the x output of one
of the capsules for each digit image and the horizontal axis represents the x output
from the same capsule if that image is shifted by +3 or −3 pixels in the x direction.
If the original image is already near the limit of the x positions that the capsule can
represent, shifting further in that direction causes the capsule to produce the wrong
answer, but this does not matter if the capsule sets its probability to 0 for data outside
its domain of competence. Right: The outgoing weights of 10 of the 20 generative
units for 9 of the capsules.

present in the input image. The capsule also has its own “generation units” that
are used for computing the capsule’s contribution to the transformed image. The
inputs to the generation units are x + ∆x and y + ∆y, and the contributions
that the capsule’s generation units make to the output image are multiplied by
p, so inactive capsules have no effect.

For the transforming auto-encoder to produce the correct output image, it
is essential that the x and y values computed by each active capsule correspond
to the actual x and y position of its visual entity and we do not need to know
this visual entity or the origin of its coordinate frame in advance.

As a simple demonstration of the efficacy of the transforming auto-encoder,
we trained a network with 30 capsules each of which had 10 recognition units
and 20 generation units. Each capsule sees the whole of an MNIST digit image.
Both the input and the output images are shifted randomly by -2, -1, 0, +1, or
+2 pixels in the x and y directions and the transforming auto-encoder is given
the resulting ∆x and ∆y as an additional input. Figure 2 shows that the capsules
do indeed output x and y values that shift in just the right way when the input
image is shifted. Figure 2 shows that the capsules learn generative units with
projective fields that are highly localized. The receptive fields of the recognition
units are noisier and somewhat less localized.



Dynamic routing between capsules 
(Sabour, Frosst & Hinton 2017)Figure 1: A simple CapsNet with 3 layers. This model gives comparable results to deep convolutional

networks (such as Chang and Chen [2015]). The length of the activity vector of each capsule
in DigitCaps layer indicates presence of an instance of each class and is used to calculate the
classification loss. Wij is a weight matrix between each ui, i 2 (1, 32⇥ 6⇥ 6) in PrimaryCapsules
and vj , j 2 (1, 10).

Figure 2: Decoder structure to reconstruct a digit from the DigitCaps layer representation. The
euclidean distance between the image and the output of the Sigmoid layer is minimized during
training. We use the true label as reconstruction target during training.

fields overlap with the location of the center of the capsule. In total PrimaryCapsules has [32⇥ 6⇥ 6]
capsule outputs (each output is an 8D vector) and each capsule in the [6 ⇥ 6] grid is sharing their
weights with each other. One can see PrimaryCapsules as a Convolution layer with Eq. 1 as its block
non-linearity. The final Layer (DigitCaps) has one 16D capsule per digit class and each of these
capsules receives input from all the capsules in the layer below.

We have routing only between two consecutive capsule layers (e.g. PrimaryCapsules and DigitCaps).
Since Conv1 output is 1D, there is no orientation in its space to agree on. Therefore, no routing is used
between Conv1 and PrimaryCapsules. All the routing logits (bij) are initialized to zero. Therefore,
initially a capsule output (ui) is sent to all parent capsules (v0...v9) with equal probability (cij).
Our implementation is in TensorFlow (Abadi et al. [2016]) and we use the Adam optimizer (Kingma
and Ba [2014]) with its TensorFlow default parameters, including the exponentially decaying learning
rate, to minimize the sum of the margin losses in Eq. 4.

4.1 Reconstruction as a regularization method

We use an additional reconstruction loss to encourage the digit capsules to encode the instantiation
parameters of the input digit. During training, we mask out all but the activity vector of the correct
digit capsule. Then we use this activity vector to reconstruct the input image. The output of the digit
capsule is fed into a decoder consisting of 3 fully connected layers that model the pixel intensities as
described in Fig. 2. We minimize the sum of squared differences between the outputs of the logistic
units and the pixel intensities. We scale down this reconstruction loss by 0.0005 so that it does not
dominate the margin loss during training. As illustrated in Fig. 3 the reconstructions from the 16D
output of the CapsNet are robust while keeping only important details.
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of the vector to represent the properties of the entity1. We ensure that the length of the vector output
of a capsule cannot exceed 1 by applying a non-linearity that leaves the orientation of the vector
unchanged but scales down its magnitude.

The fact that the output of a capsule is a vector makes it possible to use a powerful dynamic routing
mechanism to ensure that the output of the capsule gets sent to an appropriate parent in the layer
above. Initially, the output is routed to all possible parents but is scaled down by coupling coefficients
that sum to 1. For each possible parent, the capsule computes a “prediction vector” by multiplying its
own output by a weight matrix. If this prediction vector has a large scalar product with the output of
a possible parent, there is top-down feedback which increases the coupling coefficient for that parent
and decreasing it for other parents. This increases the contribution that the capsule makes to that
parent thus further increasing the scalar product of the capsule’s prediction with the parent’s output.
This type of “routing-by-agreement” should be far more effective than the very primitive form of
routing implemented by max-pooling, which allows neurons in one layer to ignore all but the most
active feature detector in a local pool in the layer below. We demonstrate that our dynamic routing
mechanism is an effective way to implement the “explaining away” that is needed for segmenting
highly overlapping objects.

Convolutional neural networks (CNNs) use translated replicas of learned feature detectors. This
allows them to translate knowledge about good weight values acquired at one position in an image
to other positions. This has proven extremely helpful in image interpretation. Even though we are
replacing the scalar-output feature detectors of CNNs with vector-output capsules and max-pooling
with routing-by-agreement, we would still like to replicate learned knowledge across space. To
achieve this, we make all but the last layer of capsules be convolutional. As with CNNs, we make
higher-level capsules cover larger regions of the image. Unlike max-pooling however, we do not throw
away information about the precise position of the entity within the region. For low level capsules,
location information is “place-coded” by which capsule is active. As we ascend the hierarchy,
more and more of the positional information is “rate-coded” in the real-valued components of the
output vector of a capsule. This shift from place-coding to rate-coding combined with the fact that
higher-level capsules represent more complex entities with more degrees of freedom suggests that the
dimensionality of capsules should increase as we ascend the hierarchy.

2 How the vector inputs and outputs of a capsule are computed

There are many possible ways to implement the general idea of capsules. The aim of this paper is not
to explore this whole space but simply to show that one fairly straightforward implementation works
well and that dynamic routing helps.

We want the length of the output vector of a capsule to represent the probability that the entity
represented by the capsule is present in the current input. We therefore use a non-linear "squashing"
function to ensure that short vectors get shrunk to almost zero length and long vectors get shrunk to a
length slightly below 1. We leave it to discriminative learning to make good use of this non-linearity.

vj =
||sj ||2

1 + ||sj ||2
sj

||sj ||
(1)

where vj is the vector output of capsule j and sj is its total input.

For all but the first layer of capsules, the total input to a capsule sj is a weighted sum over all
“prediction vectors” ûj|i from the capsules in the layer below and is produced by multiplying the
output ui of a capsule in the layer below by a weight matrix Wij

sj =
X

i

cijûj|i , ûj|i = Wijui (2)

where the cij are coupling coefficients that are determined by the iterative dynamic routing process.

The coupling coefficients between capsule i and all the capsules in the layer above sum to 1 and are
determined by a “routing softmax” whose initial logits bij are the log prior probabilities that capsule i

1This makes biological sense as it does not use large activities to get accurate representations of things that
probably don’t exist.
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represented by the capsule is present in the current input. We therefore use a non-linear "squashing"
function to ensure that short vectors get shrunk to almost zero length and long vectors get shrunk to a
length slightly below 1. We leave it to discriminative learning to make good use of this non-linearity.

vj =
||sj ||2

1 + ||sj ||2
sj

||sj ||
(1)

where vj is the vector output of capsule j and sj is its total input.

For all but the first layer of capsules, the total input to a capsule sj is a weighted sum over all
“prediction vectors” ûj|i from the capsules in the layer below and is produced by multiplying the
output ui of a capsule in the layer below by a weight matrix Wij

sj =
X

i

cijûj|i , ûj|i = Wijui (2)

where the cij are coupling coefficients that are determined by the iterative dynamic routing process.

The coupling coefficients between capsule i and all the capsules in the layer above sum to 1 and are
determined by a “routing softmax” whose initial logits bij are the log prior probabilities that capsule i

1This makes biological sense as it does not use large activities to get accurate representations of things that
probably don’t exist.
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Dynamic routing between capsules 
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