
Supervised learning



Perceptron model
(Rosenblatt, ca. 1960)
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Perceptron learning rule
(Rosenblatt 1962)
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Linear neuron learning rule
(Widrow & Hoff 1960)
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Gradient descent in weight space
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Linear neuron with output non-linearity
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Single-layer network



Two-layer network
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Learning rule for output layer
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Learning rule for hidden layer
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Second-order methods

This approximation will be minimized when 

gradient Hessian

Thus 
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Momentum
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NetTalk
(Sejnowski & Rosenberg 1987)





“LeNet”
(Yann LeCun et al., 1989) 
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Figure 1: ALVINN Architecture 

is lighter or darker than the non-road in the current image. During testing, the activation 
of the output road intensity feedback unit is recirculated to the input layer in the style 
of Jordan [Jordan, 1988] to aid the network's processing by providing rudimentary in-
formation concerning the relative intensities of the road and the non-road in the previous 
image. 

TRAINING 
Training on actual road images is logistically difficult, because in order to develop a 
general representation, the network must be presented with a large number of training 
exemplars depicting roads under a wide variety of conditions. Collection of such a 
data set would be difficult, and changes in parameters such as camera orientation would 
require collecting an entirely new set of road images. To avoid these difficulties we have 
developed a simulated road generator which creates road images to be used as training 
exemplars for the network. The simulated road generator uses nearly 200 parameters 
in order to generate a variety of realistic road images. Some of the most important 
parameters are listed in figure 2. 

Figure 3 depicts the video images of one real road and one artificial road generated with a single set of values for the parameters from Figure 2. Although not shown in Figure 3, the road generator also creates corresponding simulated range finder images. 
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Gain Fields
(Zipser & Anderson, 1987)



Gain Fields
(Zipser & Anderson, 1987)



be difficult to achieve ([71]; see also Figure 7 in [72]). The
precise lower limit on compartment size in the thin
dendrites of pyramidal cells remains to be determined,
perhaps through the use of voltage-sensitive dyes [73] and
highly focal uncaging techniques [74].

Getting at the inner neuron
What are the implications of these findings for single-
neuron computation? Could there be an underlying prin-
ciple that permits the full complexity of a dendritic tree to
be represented in highly simplified terms? The available
data suggest that the thin terminal branches of the apical
and basal trees of pyramidal cells provide a set of inde-
pendent non-linear ‘subunits’ that sum up their synaptic
inputs and then apply a sigmoidal thresholding non-
linearity to the output. In this scenario, how should the
outputs of multiple subunits be combined to influence
the cell’s overall response? In the few experimental
studies that have addressed the question of location
dependent synaptic summation, so far only involving

simple spatial integration scenarios, the data are most
consistent with a linear or sublinear summation rule for
signals that originate in different dendritic branches
[30,75 –78]. Building on these findings, one can formulate
a working model in which the thin branches are the
integrative subunits of pyramidal neurons. According to
this model, each thin-branch subunit sums up its synaptic
drive and then applies a sigmoidal thresholding non-
linearity to the result, and the subunit outputs are
summed linearly within the main trunks and cell body
before output spike generation. This hypothesis is inter-
esting, in that it states that an individual pyramidal
neuron functions something like a conventional two-layer
abstract ‘neural network’ [12], in which the thin dendritic
branches themselves act like classical point neurons
(Figure 3b).

Poirazi and co-workers [79 !!] used a detailed CA1 pyr-
amidal cell model [80!] to test the two-layer neural net-
work hypothesis. The authors used a complex set of

Figure 3
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Current Opinion in Neurobiology

Simplified models of pyramidal cells. (a) CA1 pyramidal cell morphology [123]. A grey triangular soma was added for clarity. (b) Two-layer sum-of-
sigmoids model as discussed by Poirazi et al. [79!!]. All thin branches are treated as independent subunits with sigmoidal thresholds whose outputs
are summed linearly in the main trunks and cell body. Small grey circles labelled ai represent subunit weights, which might vary as a function of
location or branch order. (c) A next generation single neuron model could include a multiplicative interaction between proximal and distal integrative
regions of the cell. Overall output of such a three-layer model might be expressed using the form y1 þ ay2.

Dendrites, bug or feature? Häusser and Mel 377

www.current-opinion.com Current Opinion in Neurobiology 2003, 13:372–383

Dendritic nonlinearities
(Hausser & Mel, 2003)



Consider:

u = w1 x1 + w2 x2 + w12 x1 x2

y = �(u)


