
Sparse coding via a locally competitive algorithm
(LCA)

Bruno A. Olshausen

September 25, 2018

Recall that the sparse coding image model is of the form

I(x, y) =
∑
i

ai φi(x, y) + ε(x, y) (1)

where I(x, y) denotes the pixel intensities within an image patch (x and y are spatial
coordinates), and the φi(x, y) are a set of basis functions or ‘features’ for describing
the image. The ai correspond to neural activity (the subscript i denotes the index of
the neuron). The goal is to find a set of features that allow images to be described
using as few non-zero ai as possible.

The energy function governing this system is as follows:

E =
1

2

∑
x,y

[
I(x, y)−

∑
i

ai φi(x, y)

]2
+ λ

∑
i

C(ai) (2)

The neural activities ai for a given image I(x, y) are computed by finding a minimum
of this energy function. In the original sparse coding algorithm (Olshausen & Field
1996), they were computed by direct gradient descent. However this it not very
efficient in terms of a numerical (algorithmic) implementation. In addition, we would
like to have a physical implementation that corresponds more closely to what a neural
population could do.

In Rozell et al. (2008), we derived a dynamical system for efficiently computing
the ai which descends the energy, but not according to steepest descent per se. This
system is described by the following equations:

τ u̇i + ui = bi −
∑
j 6=i

Gij aj (3)

ai = g(ui) (4)

where bi =
∑

x,y φi(x, y) I(x, y) and Gij =
∑

x,y φi(x, y)φj(x, y). The nonlinearity g()
is determined by the form of the cost function C(). In the case where C is the L1
norm over the coefficients, i.e., C(ai) = |ai|, then g is a ‘soft-thresholding’ function
of the form

g(ui) =


ui − λ ui > λ

0 −λ < ui < λ
ui + λ ui < −λ

(5)

1

This is plotted below for λ = 1. It is also called a “shrinkage” function because it
shrinks the values below threshold to zero, and those above threshold by λ.

-5 0 5
-5

0

5

We called this method a “locally competitive algorithm” (LCA) because it com-
putes the coefficients through a local competition (lateral inhibition) and threshold-
ing. The LCA has a simple neural implementation as follows: each neuron is a leaky
integrator that is driven by a feedforward term - the bi, which is the inner product
between the neuron’s receptive field φi(x, y) and image I(x, y) - and inhibited by
other neurons in the population by lateral connection strengths Gij. The resulting
subthreshold potential from the leaky integrator, ui is passed through a threshold
function g to give the neurons output ai.

The learning rule for the φi(x, y) is the same as in the original algorithm. It is
derived via direct gradient descent on E using the coefficient values âi computed from
the LCA. This yields the update rule

∆φi(x, y) = η r(x, y) âi (6)

where r(x, y) = I(x, y) − ∑
i âi φi(x, y) and η is the learning rate. Note that the

equations given above for LCA are conditioned on the basis functions having unit
length, so after each update they must be renomalized so that

∑
x,y φi(x, y)2 = 1 ∀i.

To summarize the above, the LCA computes for each image

â = arg min
a
E(I, a; Φ) (7)

and the learning rule seeks to solve

Φ∗ = arg min
Φ
〈E(I, â; Φ)〉 (8)

where the brackets 〈 〉 denote average over many (millions) images.

2

