Sparse coding via a locally competitive algorithm

(LCA)

Bruno A. Olshausen

September 25, 2018

Recall that the sparse coding image model is of the form

where I(x,y) denotes the pixel intensities within an image patch (x and y are spatial
coordinates), and the ¢;(z,y) are a set of basis functions or ‘features’ for describing
the image. The a; correspond to neural activity (the subscript ¢ denotes the index of
the neuron). The goal is to find a set of features that allow images to be described
using as few non-zero a; as possible.

The energy function governing this system is as follows:

2
E:;Z I(z,y) = > a;i¢i(z,y)| +AD_Cla;) (2)
.,y i i
The neural activities a; for a given image I(x,y) are computed by finding a minimum
of this energy function. In the original sparse coding algorithm (Olshausen & Field
1996), they were computed by direct gradient descent. However this it not very
efficient in terms of a numerical (algorithmic) implementation. In addition, we would
like to have a physical implementation that corresponds more closely to what a neural
population could do.
In Rozell et al. (2008), we derived a dynamical system for efficiently computing
the a; which descends the energy, but not according to steepest descent per se. This
system is described by the following equations:

Tuﬁ—ul = bi—ZGijaj (3)
j#i
a; = g(u;) (4)

where b; = 32, , ¢i(z,y) I(z,y) and Gi; = >, , éi(z,y) ¢j(z,y). The nonlinearity g()
is determined by the form of the cost function C(). In the case where C is the L1
norm over the coefficients, i.e., C(a;) = |a;|, then g is a ‘soft-thresholding’ function

of the form

g(u;) = 0 “A<u; <A (5)

1

This is plotted below for A = 1. It is also called a “shrinkage” function because it
shrinks the values below threshold to zero, and those above threshold by .

We called this method a “locally competitive algorithm” (LCA) because it com-
putes the coefficients through a local competition (lateral inhibition) and threshold-
ing. The LCA has a simple neural implementation as follows: each neuron is a leaky
integrator that is driven by a feedforward term - the b;, which is the inner product
between the neuron’s receptive field ¢;(x,y) and image I(x,y) - and inhibited by
other neurons in the population by lateral connection strengths G;;. The resulting
subthreshold potential from the leaky integrator, u; is passed through a threshold
function ¢ to give the neurons output a;.

The learning rule for the ¢;(x,y) is the same as in the original algorithm. It is
derived via direct gradient descent on E using the coefficient values a; computed from
the LCA. This yields the update rule

Adi(w,y) =nr(z,y)a (6)

where r(z,y) = I(z,y) — >, a; ¢;(x,y) and n is the learning rate. Note that the
equations given above for LCA are conditioned on the basis functions having unit
length, so after each update they must be renomalized so that 3, , ¢;i(, y)?:=1V,

To summarize the above, the LCA computes for each image
a = argmin E(I, a; ®) (7)
and the learning rule seeks to solve

®* = arg mlgn (E(I,a;®)) (8)

where the brackets () denote average over many (millions) images.

