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Abstract

The Bayesian framework for model comparison and regularisation is demonstrated by study-
ing interpolation and classification problems modelled with both linear and non–linear mod-
els. This framework quantitatively embodies ‘Occam’s razor’. Over–complex and under–
regularised models are automatically inferred to be less probable, even though their flexi-
bility allows them to fit the data better.

When applied to ‘neural networks’, the Bayesian framework makes possible (1) objective
comparison of solutions using alternative network architectures; (2) objective stopping rules
for network pruning or growing procedures; (3) objective choice of type of weight decay
terms (or regularisers); (4) on–line techniques for optimising weight decay (or regularisation
constant) magnitude; (5) a measure of the effective number of well–determined parameters
in a model; (6) quantified estimates of the error bars on network parameters and on network
output. In the case of classification models, it is shown that the careful incorporation of
error bar information into a classifier’s predictions yields improved performance.

Comparisons of the inferences of the Bayesian framework with more traditional cross–
validation methods help detect poor underlying assumptions in learning models.

The relationship of the Bayesian learning framework to ‘active learning’ is examined.
Objective functions are discussed which measure the expected informativeness of candidate
data measurements, in the context of both interpolation and classification problems.

The concepts and methods described in this thesis are quite general and will be appli-
cable to other data modelling problems whether they involve regression, classification or
density estimation.



iv CONTENTS

Contents

1 Summary 1

1.1 The need for Occam’s razor . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 What is Bayesian modelling? . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 What are neural networks and why do they need Occam’s razor? . . . . . . 4

2 Bayesian Interpolation 7

2.1 Data modelling and Occam’s razor . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The evidence and the Occam factor . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The noisy interpolation problem . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Selection of parameters α and β . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 A Practical Bayesian Framework for Backpropagation Networks 34

3.1 The gaps in backprop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Review of Bayesian regularisation and model comparison . . . . . . . . . . . 38

3.3 Adapting the framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Information-based Objective Functions for Active Data Selection 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Choice of information measure . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Maximising total information gain . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Maximising information about the interpolant in a region of interest . . . . 58

4.5 Maximising the discrimination between two models . . . . . . . . . . . . . . 61

4.6 Demonstration and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 The Evidence Framework applied to Classification Networks 65

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Every classifier should have two sets of outputs . . . . . . . . . . . . . . . . 67

5.3 Evaluating the evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Active learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Inferring an Input-dependent Noise Level 79



CONTENTS v

7 Postscript 82
7.1 The closed hypothesis space . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2 For approximation, are probabilities relevant? . . . . . . . . . . . . . . . . . 83
7.3 Having to make too much explicit . . . . . . . . . . . . . . . . . . . . . . . . 84
7.4 An alternative interpretation of weight decay . . . . . . . . . . . . . . . . . 84
7.5 Future tasks, open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography 87



vi LIST OF FIGURES

List of Figures

1.1 Abstraction of the data modelling process . . . . . . . . . . . . . . . . . . . 2

2.1 Where Bayesian inference fits into the data modelling process . . . . . . . . 8
2.2 Why Bayes embodies Occam’s razor . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The Occam factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 How the best interpolant depends on α . . . . . . . . . . . . . . . . . . . . . 17
2.5 Choosing α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Good and bad parameter measurements . . . . . . . . . . . . . . . . . . . . 22
2.7 The evidence for data set X . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Data set ‘Y’, interpolated with splines . . . . . . . . . . . . . . . . . . . . . 28
2.9 Typical samples from the prior distributions of six models . . . . . . . . . . 29

3.1 Typical neural network output . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Data error versus number of hidden units . . . . . . . . . . . . . . . . . . . 42
3.3 Test error versus number of hidden units . . . . . . . . . . . . . . . . . . . . 42
3.4 Test error vs. data error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Log evidence for solutions using the first regulariser . . . . . . . . . . . . . 43
3.6 The number of well–determined parameters . . . . . . . . . . . . . . . . . . 44
3.7 Data misfit versus γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8 Log evidence versus test error for the first regulariser . . . . . . . . . . . . . 45
3.9 Comparison of two test errors . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.10 The three classes of weights under the second prior . . . . . . . . . . . . . . 48
3.11 Log evidence versus number of hidden units for the second prior . . . . . . 48
3.12 Log evidence for the second prior versus test error . . . . . . . . . . . . . . 49

4.1 Demonstration of total and marginal information gain . . . . . . . . . . . . 63

5.1 Approximation to the moderated probability . . . . . . . . . . . . . . . . . 69
5.2 Comparison of most probable outputs and moderated outputs . . . . . . . . 70
5.3 Moderation is a good thing! . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Test error versus data error . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Test error versus evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6 Correlation between test error and evidence as the amount of data varies . 73
5.7 Demonstration of expected mean marginal information gain . . . . . . . . . 77



1

Chapter 1

Summary

1.1 The need for Occam’s razor

There are countless problems in science, statistics and technology which require that, given
a limited data set, preferences be assigned to alternative models of differing complexities.
For example, two alternative hypotheses accounting for planetary motion are the geocen-
tric ‘epicyclic’ model, and the simpler Copernican model of the solar system. In the less
theologically contentious but similar problem of fitting a curve to data, alternative mod-
els assign different functional forms to the curve, for example ‘a linear function with two
free parameters’, ‘a quadratic with three’, or ‘a cubic function with four parameters’. It
would be nice if we could just rank the models by how well they ‘fit’ the data, but it is
a familiar difficulty that a more complex model typically fits the data better: when we fit
a curve to data, a quadratic curve with three parameters can always fit the data better
than a linear model with two parameters, and a polynomial with a hundred terms fits the
data even better; preferring the ‘best fit’ model leads us to choose implausibly detailed and
over–parameterised models, which interpolate and generalise poorly. ‘Occam’s razor’ is the
principle that states that unnecessarily complex models should not be preferred to simpler
ones. How can we quantify this intuitive principle so as to make it an objective part of our
modelling method?

Bayesian probability theory provides a framework for inductive inference which has
been called ‘common sense reduced to calculation’; it is a poorly known fact that Bayesian
methods actually embody Occam’s razor automatically and quantitatively [26, 38]. Bayesian
model comparison is the central theme of this thesis. In particular, the power of the Bayesian
Occam’s razor is demonstrated on ‘neural networks’. Neural networks are novel modelling
tools capable of ‘learning from examples’. These currently popular models are notorious for
their lack of an objective grounding; the main goal of this thesis is to provide an objective
and practical framework for the use of neural network techniques by applying the methods of
Bayesian model comparison. In the process several enhancements to current neural network
methods arise.

1.2 What is Bayesian modelling?

Bayesian methods for inductive inference were first developed in detail early this century
by the Cambridge geophysicist, Sir Harold Jeffreys [38]. At that time, Jeffreys’ ideas were
opposed by Fisher and others, and since then a debate has persisted between the ‘orthodox’
view of statistics and the minority Bayesian camp. I will not dwell here on the details of
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Figure 1.1: Abstraction of the data modelling process.

The two central boxes are the inference steps, where Bayesian methods can be applied.

the philosophical argument, which goes deep down to the meaning of a probability [17, 36];
rather, this thesis will demonstrate that it is possible using Bayesian methods to solve
problems in neural networks which have otherwise been found laborious or impossible.
Since the 1960’s, the Bayesian minority has been steadily growing, especially in the fields
of economics [89] and pattern processing [20]. At this time, the state of the art for the
problem of speech recognition is a Bayesian technique (Hidden MarkovModels), and the best
image reconstruction algorithms are also based on Bayesian probability theory (Maximum
Entropy), but Bayesian methods are still viewed with mistrust by the orthodox statistics
community; the framework for model comparison is especially poorly known, even to most
people who call themselves Bayesians. This thesis therefore takes some time to thoroughly
review the flavour of Bayesianism that I am using. To some, the word Bayesian denotes
a decision strategy that minimises the expectation of a cost [24]; to others, a Bayesian is
someone who tries to incorporate prior knowledge into their inference and decision process
[8]. In fact, according to Good, there are 46656 varieties of Bayesian!1 This thesis presents
a flavour of Bayesianism in which decisions are not involved. Inference and decision are
cleanly separated. The terms ‘Bayes risk’ and ‘Bayes optimal’ are not in the vocabulary of
this thesis. The genealogy of this flavour is Laplace–Jeffreys–Cox–Jaynes–Gull [80, 38, 17,
36, 26]. A further difference between this approach and other work known as Bayesian is
that the emphasis is on inverse rather than forward probability. Forward probability uses
probabilities and priors, but it does not make use of Bayes’ rule. Forward probability is
used for example to evaluate the typical performance of a modelling procedure averaged
over different data sets from a defined ensemble [82, 32]. Here the philosophy is, using
inverse probability, to evaluate the relative plausibilities of several alternative models in the
light of the single data set that we actually observe.

1Good was unaware of the Bayesian Occam’s razor.
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Where inference fits into the data modelling process

Figure 1.1 illustrates an abstraction of the data modelling process; this summary applies
for example to the tasks of fitting a curve to data, reconstructing a blurred image, and
making an automatic pattern recognition system; the figure is also descriptive of the general
scientific method.

We start by gathering data and creating models to account for those data. There are
then two levels of inference, which are marked by the double–framed boxes. At the first
level, ‘fitting each model to the data’, the task is to infer what the free parameters of
each model might be given the data. The second level of inference is the task of model
comparison. Here, we wish to rank how plausible the alternative models are in the light of
the data.

Having fitted the models and compared them, we can then decide to gather more data
or to invent new models for the data, and we can repeat the inference process. We can also
use the knowledge we have gained from the data to make decisions about our future actions
in the world.

Bayesian methods can be used to solve the two inductive inference problems, which
are the two central boxes in the figure; the other tasks in the modelling process are not
directly addressed by Bayes’ rule, which applies to inductive inference problems only. The
first level of inference, fitting each model to the data, is usually a straightforward task, and
differences between Bayesian and non–Bayesian solutions are often not pronounced at this
level. This thesis will especially emphasise the second level of inference, the task of model
comparison. This inference problem is not straightforward because a quantitative Occam’s
razor is needed to penalise over–complex models. The other boxes in this diagram will also
be visited during the thesis.

Bayes’ rule

The fundamental concept of Bayesian analysis is that the plausibilities of alternative hy-
potheses are represented by probabilities, and inference is performed by evaluating those
probabilities. Suppose that we have a collection of models, H1,H2, . . .HL competing to
account for the data we gather. Our initial beliefs about the relative plausibility of these
models are quantified by a list of probabilities, P (H1), P (H2), . . .P (HL), which sum to 1.
Each model Hi makes predictions about how likely different data sets ‘D’ are, if that model
is true. These predictions are described by a probability distribution P (D|Hi) (‘the proba-
bility of D given Hi’). When we observe the actual data D, Bayes’ rule describes how we
should update our beliefs in the models in the light of the data. The plausibility of model
Hi, given that we have observed D, written P (Hi|D), is obtained by multiplying together
two quantities: first, P (Hi), i.e., how plausible we thought Hi was before the data arrived;
and second, P (D|Hi), i.e., how much the model Hi predicted the data. In symbols, Bayes’
rule is written:

P (Hi|D) =
P (Hi)P (D|Hi)

P (D)
.

The denominator P (D) is a normalising constant which makes our final beliefs P (Hi|D)
add up to 1. A Bayesian addresses any inference problem by using this equation. The
hard line Bayesian position is that the Cox axioms [17] prove that consistent inference can
only be Bayesian, and no other inference methods should be used, on pain of inconsistency
[75]. However, I will develop the more moderate position that the Bayesian method is
an important tool which should be used alongside other pragmatic modelling tools. I will



4 BAYESIAN METHODS FOR ADAPTIVE MODELS

demonstrate that the simultaneous application of Bayesian and non–Bayesian methods leads
to insights that could not be obtained by using either tool alone.

1.3 What are neural networks and why do they need Oc-

cam’s razor?

Research in neural–like networks is motivated by the observation that the brain has a
‘connectionist’ computational architecture: the brain is composed of many simple devices
(neurons) which are massively interconnected with each other; the computational abilities
of the brain are an ‘emergent phenomenon’ arising from the cooperative interactions of
these simple components. Workers in the field of neural networks create novel connectionist
devices so as to try and understand ‘how the brain does it’, and to try to create new and
useful tools for such tasks as speech recognition, character recognition, and robotics.

The most popular neural network algorithm is ‘backpropagation’, which is capable of
‘learning from examples’ [66]. In this case, a neural network can be viewed as a black box
which produces an output when we give it an input. How the output depends on the input
is controlled by some tens or thousands of knobs on the black box, which we, the teacher,
are able to twiddle. The object of the ‘learning’ process is to adjust these knobs so as to get
the black box to give a desired output in response to each input. What is inside the black
box is not essential to this discussion: usually it contains a network of simple ‘neurons’
feeding from the inputs to the outputs, and the ‘knobs’ are the strengths of the ‘synapses’
between the ‘neurons’.

Imagine that what we feed to the inputs of the black box is a simple encoding of a
piece of English text; and imagine that we want the outputs of the black box to be the
pronunciation of that piece of text, in a simple code we have defined. When we present an
untrained black box with a piece of English text, its outputs are very likely to be complete
garbage, compared with the coded pronunciation that we wanted it to produce. What we
would like to do is adjust the knobs on the black box a little, so that the next time we give
the same piece of text as input, the output of the box will be a little closer to what it should
have been. The backpropagation learning algorithm is a prescription for how to tweak all the
knobs on the black box to achieve precisely this goal. (Backpropagation performs gradient
descent on the error function.) Now the perhaps surprising outcome of this procedure is
that after repeated ‘training’ on a dictionary of 50,000 English words, a black box consisting
of 200 ‘neurons’ can learn not only to pronounce correctly a large fraction of the words it
was trained on, but also to perform equally well on other words which were not in the
training set. Thus the device is able to extract the underlying structure in the examples it
was trained on and ‘generalise’ from them.

The backpropagation algorithm has been applied to many other tasks (the text pro-
nunciation example above is one of the earliest successes), and a performance equalling the
ability of human experts is often obtained. Recently, especially impressive results have been
obtained for adaptive optics [4].

However, the performance of these algorithms depends on a considerable number of
design choices, most of which are currently made by rules of thumb and trial and error.
For example, in designing the neural network for text pronunciation, one has to decide how
many ‘neurons’ there should be in the architecture of the black box, how they should be
connected to each other, and what constraints should be imposed on the parameters of the
network. The problem of Occam’s razor rears its head repeatedly when we try to make
these design choices because a more complex and unconstrained neural network will nearly
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always learn the examples in the training set better than a simpler one; however the simpler
neural network may actually be a better model of the problem, and generalise better to new
examples.

The fact that we cannot use the performance on the training set to choose between
different solutions would not matter if we had plenty of data and limitless computational
resources: we could generate solutions using thousands of different models with different
complexities and rank them by evaluating the test error on some reserved test data. But
since we have limited resources we would like to be able to use all our data both to fit
all the models and also to rank them. We would furthermore like to find a technique for
automatically optimising the choice of model design, without having to perform massive
computational searches through ‘design space’.

The Bayesian framework presented in this thesis satisfies these desiderata.

Overview

The thesis consists of four papers. The first paper (Chapter 2) reviews in detail the Bayesian
framework for model comparison and regularisation due to Gull and Skilling, by studying
the problem of interpolating a noisy data set with traditional linear models. This chapter
demonstrates that Bayesian methods do indeed embody Occam’s razor in a consistent,
intuitive and quantitative way.

In the second paper (Chapter 3) this framework is applied to ‘neural networks’, and it is
demonstrated that (at least for the toy problem studied) Bayesian probability theory chooses
between alternative solutions found using networks with different architectures in a way
that succesfully embodies Occam’s razor. Another enhancement to neural network training
methods concerns regularisation. Neural networks sometimes perform poorly because the
parameters (‘weights’) in the network blow up to implausibly large values in order to fit the
details of the training set. To prevent this it is popular to use a procedure called ‘weight
decay’ during the training. However, no objective procedure previously existed for setting
the weight decay rate (apart from the computationally expensive option of testing multiple
decay rates in parallel experiments). The Bayesian framework for neural network learning
yields a simple prescription for optimising the weight decay rate, which is interpreted as a
regularisation constant. This prescription can be easily approximated and implemented ‘on
line’, and it may be one of the most useful practical tools to emerge from this research. In
Chapter 3 we also see how the combination of Bayesian and non–Bayesian model assessment
techniques can draw attention to defects in our hypothesis space, helping us traverse the
loop to the right of figure 1.1, in which we invent new models.

In the third paper (Chapter 4), information–based utility functions are discussed for
the purpose of data selection, the left–hand loop in figure 1.1. The evaluation of data
utility is a problem relevant to a scientist whose data measurements are expensive, and
to an autonomous robot which has to decide where to explore next so as to satisfy a
pre–programmed curiosity about its environment; we also need to evaluate data utility in
situations where data is so abundant that we have to decide which data to throw away. The
information–based criteria derived in this chapter have promising properties, but I do not
believe that they are the final solution to the data selection problem, because artefacts may
result when these criteria are applied to poor models.

The fourth paper (Chapter 5) applies the methods developed in the first three papers
to neural networks solving classification problems, rather than regression problems. One
of the simplest but most important results in this chapter is a demonstration that careful
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incorporation of error bar information into the outputs of a classifier can give improved
predictions. As in Chapter 3, the Bayesian Occam’s razor does its job surprisingly well.

Chapter 6 is a short note extending the framework of Chapters 2 and 3 to allow modelling
of an input–dependent noise level. A maximum likelihood solution to this problem would
have singularities where the interpolant fits the data exactly; the Bayesian solution naturally
avoids these problems.

In the final chapter I reflect on the strengths and weaknesses of the Bayesian approach
to adaptive modelling, and the open questions and frontiers facing this framework.

Relevance to Biology

This work is not intended to shed any direct light on the functioning of biological neural
networks. But it is clear that biological neural networks have solved the Occam’s razor
problem — we are expert adaptive modelling systems. I believe that if we are ever to
understand the brain, a prerequisite will be that we should understand the problems that
it has solved. We need to understand how to model, and how to infer. Of course, I do not
expect that the brain embodies any of the equations in this thesis; I am sure that Nature has
found far more elegant solutions to these problems. But I hope that the Bayesian normative
theory of learning will serve as a guide in trying to elucidate how learning is performed by
natural systems.
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Chapter 2

Bayesian Interpolation

Abstract

Although Bayesian analysis has been in use since Laplace, the Bayesian method
of model–comparison has only recently been developed in depth. In this chapter, the
Bayesian approach to regularisation and model–comparison is demonstrated by studying
the inference problem of interpolating noisy data. The concepts and methods described
are quite general and can be applied to many other data modelling problems.

Regularising constants are set by examining their posterior probability distribution.
Alternative regularisers (priors) and alternative basis sets are objectively compared by
evaluating the evidence for them. ‘Occam’s razor’ is automatically embodied by this
process.

The way in which Bayes infers the values of regularising constants and noise levels

has an elegant interpretation in terms of the effective number of parameters determined

by the data set. This framework is due to Gull and Skilling.

2.1 Data modelling and Occam’s razor

In science, a central task is to develop and compare models to account for the data that
are gathered. In particular this is true in the problems of learning, pattern classification,
interpolation and clustering. Two levels of inference are involved in the task of data
modelling (figure 2.1). At the first level of inference, we assume that one of the models that
we invented is true, and we fit that model to the data. Typically a model includes some free
parameters; fitting the model to the data involves inferring what values those parameters
should probably take, given the data. The results of this inference are often summarised by
the most probable parameter values and error bars on those parameters. This is repeated
for each model. The second level of inference is the task of model comparison. Here, we
wish to compare the models in the light of the data, and assign some sort of preference or
ranking to the alternatives.1

0Chapter 2 of Ph.D. thesis ‘Bayesian Methods for Adaptive Models’ by David MacKay, California Institute
of Technology, submitted December 10 1991.

1Note that both levels of inference are distinct from decision theory. The goal of inference is, given a
defined hypothesis space and a particular data set, to assign probabilities to hypotheses. Decision theory
typically chooses between alternative actions on the basis of these probabilities so as to minimise the ex-
pectation of a ‘loss function’. This chapter concerns inference alone and no loss functions or utilities are
involved.

Another misconception concerns the relationship between model comparison and model choice. In empha-
sising the Bayesian method of model comparison I do not mean to imply that the correct action is to choose
the most probable model. The ‘right way’ to make Bayesian predictions is to integrate over our model space.
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Figure 2.1: Where Bayesian inference fits into the data modelling process.

This figure illustrates an abstraction of the part of the scientific process in which data is collected
and modelled. In particular, this figure applies to pattern classification, learning, interpolation, etc..
The two double–framed boxes denote the two steps which involve inference. It is only in those two
steps that Bayes’ rule can be used. Bayes does not tell you how to invent models, for example.
The first box, ‘fitting each model to the data’, is the task of inferring what the model parameters
might be given the model and the data. Bayes may be used to find the most probable parameter
values, and error bars on those parameters. The result of applying Bayes to this problem is often
little different from the answers given by orthodox statistics.
The second inference task, model comparison in the light of the data, is where Bayes is in a class
of its own. This second inference problem requires a quantitative Occam’s razor to penalise over–
complex models. Bayes can assign objective preferences to the alternative models in a way that
automatically embodies Occam’s razor.

For example, consider the task of interpolating a noisy data set. The data set could be
interpolated using a splines model, using radial basis functions, using polynomials, or using
feedforward neural networks. At the first level of inference, we take each model individually
and find the best fit interpolant for that model. At the second level of inference we want
to rank the alternative models and state for our particular data set that, for example,
‘splines are probably the best interpolation model’, or ‘if the interpolant is modelled as a
polynomial, it should probably be a cubic’.

Bayesian methods are able consistently and quantitatively to solve both these inference
tasks. There is a popular myth that states that Bayesian methods only differ from ortho-
dox (also known as ‘frequentist’ or ‘sampling theory’) statistical methods by the inclusion of
subjective priors which are arbitrary and difficult to assign, and usually don’t make much
difference to the conclusions. It is true that at the first level of inference, a Bayesian’s
results will often differ little from the outcome of an orthodox attack. What is not widely

We may however sometimes make model choices for reasons of computational economy, or because only a
few models are needed to give a sufficiently accurate approximation to the ideal Bayesian solution.
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Figure 2.2: Why Bayes embodies Occam’s razor
This figure gives the basic intuition for why complex models are penalised. The horizontal axis
represents the space of possible data sets D. Bayes’ rule rewards models in proportion to how much
they predicted the data that occurred. These predictions are quantified by a normalised probability
distribution on D. In this paper, this probability of the data given model Hi, P (D|Hi), is called
the evidence for Hi.
A simple model H1 makes only a limited range of predictions, shown by P (D|H1); a more powerful
model H2, that has, for example, more free parameters than H1, is able to predict a greater variety
of data sets. This means however that H2 does not predict the data sets in region C1 as strongly as
H1. Assume that equal prior probabilities have been assigned to the two models. Then if the data
set falls in region C1, the less powerful model H1 will be the more probable model.

appreciated is how Bayes performs the second level of inference. It is here that Bayesian
methods are totally different from orthodox sampling theory methods. Indeed, when re-
gression and density estimation are discussed in most statistics texts (for example [24]),
the task of model comparison is virtually ignored; no general orthodox method exists for
solving this problem.

Model comparison is a difficult task because it is not possible simply to choose the model
that fits the data best: more complex models can always fit the data better, so the maximum
likelihood model choice would lead us inevitably to implausible over–parameterised models
which generalise poorly. ‘Occam’s razor’ is the principle that states that unnecessarily
complex models should not be preferred to simpler ones. Bayesian methods automatically
and quantitatively embody Occam’s razor [26, 38], without the introduction of ad hoc
penalty terms. Complex models are automatically self–penalising under Bayes’ rule. Figure
2.2 gives the basic intuition for why this should be expected; the rest of this chapter will
explore this property in depth.

Bayesian methods, simultaneously conceived by Bayes [6] and Laplace [80], were first laid
out in depth by the Cambridge geophysicist Sir Harold Jeffreys [38]. The logical basis for
the Bayesian use of probabilities as measures of plausibility was subsequently established by
Cox [17], who proved that consistent inference in a closed hypothesis space can be mapped
onto probabilities. For a general review of Bayesian philosophy the reader is encouraged
to read the excellent papers by Jaynes and Loredo [36, 47], and the recently reprinted text
of Box and Tiao [13]. Since Jeffreys, the emphasis of most Bayesian probability theory
has been ‘to formally utilize prior information’ [8], i.e., to perform inference in a way that
makes explicit the prior knowledge and ignorance that we have, which orthodox methods
omit. However, Jeffreys’ work also laid the foundation for Bayesian model comparison,
which does not involve an emphasis on prior information, but rather emphasises getting
maximal information from the data. Jeffreys applied this theory to simple model comparison
problems in geophysics, for example testing whether a single additional parameter is justified
by the data. Since the 1960s, Jeffreys’ model comparison methods have been applied and
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extended in the economics literature [89] and by a small number of statisticians [10, 11, 12].
Only recently has this aspect of Bayesian analysis been further developed and applied to
more complex problems in other fields.

This chapter will review Bayesian model comparison, ‘regularisation’, and noise esti-
mation, by studying the problem of interpolating noisy data. The Bayesian framework I
will describe for these tasks is due to Gull and Skilling [26, 27, 29, 70, 74], who have used
Bayesian methods to achieve the state of the art in image reconstruction. The same ap-
proach to regularisation has also been developed in part by Szeliski [81]. Bayesian model
comparison is also discussed by Smith and Spiegelhalter [77] and by Bretthorst [14], who
has used Bayesian methods to push back the limits of NMR signal detection. The same
Bayesian theory underlies the unsupervised classification system, AutoClass [31]. The fact
that Bayesian model comparison embodies Occam’s razor has been rediscovered by Kashyap
in the context of modelling time series [40]; his paper includes a thorough discussion of how
Bayesian model comparison is different from orthodox ‘Hypothesis testing’. One of the
earliest applications of these sophisticated Bayesian methods of model comparison to real
data is by Patrick and Wallace [60]; in this fascinating paper, competing models accounting
for megalithic stone circle geometry are compared within the description length framework,
which is equivalent to Bayes. It is pleasing to note the current appearance of an increasing
number of publications using Bayesian model comparison [37, 53].

As the quantities of data collected throughout science and engineering continue to in-
crease, and the computational power and techniques available to model that data also
multiply, I believe Bayesian methods will prove an ever more important tool for refining
our modelling abilities. I hope that this review will help to introduce these techniques to
the ‘neural’ modelling community. Chapter 3 will demonstrate how these techniques can
be fruitfully applied to backpropagation neural networks. Chapter 4 will show how this
framework relates to the task of selecting where next to gather data so as to gain maximal
information about our models.

2.2 The evidence and the Occam factor

Let us write down Bayes’ rule for the two levels of inference described above, so as to see
explicitly how Bayesian model comparison works. Each modelHi (H stands for ‘hypothesis’)
is assumed to have a vector of parameters w. A model is defined by its functional form and
two probability distributions: a ‘prior’ distribution P (w|Hi) which states what values the
model’s parameters might plausibly take; and the predictions P (D|w,Hi) that the model
makes about the data D when its parameters have a particular value w. Note that models
with the same parameterisation but different priors over the parameters are therefore defined
to be different models.

1. Model fitting. At the first level of inference, we assume that one model Hi is true,
and we infer what the model’s parameters w might be given the data D. Using Bayes’
rule, the posterior probability of the parameters w is:

P (w|D,Hi) =
P (D|w,Hi)P (w|Hi)

P (D|Hi)
. (2.1)

In words:

Posterior =
Likelihood × Prior

Evidence
.
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The normalising constant P (D|Hi) is commonly ignored, since it is irrelevant to
the first level of inference, i.e., the choice of w; but it will be important in the
second level of inference, and we name it the evidence for Hi. It is common to
use gradient–based methods to find the maximum of the posterior, which defines
the most probable value for the parameters, wMP; it is then common to summarise
the posterior distribution by the value of wMP, and error bars on these best fit pa-
rameters. The error bars are obtained from the curvature of the posterior; writing
the Hessian A = −∇∇ logP (w|D,Hi) and Taylor–expanding the log posterior with
∆w = w− wMP,

P (w|D,Hi) ≃ P (wMP|D,Hi) exp
(

−1
2∆wTA∆w

)

(2.2)

we see that the posterior can be locally approximated as a Gaussian with covariance
matrix (error bars) A−1.2

2. Model comparison. At the second level of inference, we wish to infer which model
is most plausible given the data. The posterior probability of each model is:

P (Hi|D) ∝ P (D|Hi)P (Hi). (2.3)

Notice that the data–dependent term P (D|Hi) is the evidence for Hi, which appeared
as the normalising constant in (2.1). The second term, P (Hi), is a ‘subjective’ prior
over our hypothesis space which expresses how plausible we thought the alternative
models were before the data arrived. We will see later that this subjective part of the
inference will typically be overwhelmed by the objective term, the evidence. Assuming
that we have no reason to assign strongly differing priors P (Hi) to the alternative
models, models Hi are ranked by evaluating the evidence. Equation (2.3)
has not been normalised because in the data modelling process we may develop new
models after the data have arrived (figure 2.1), when an inadequacy of the first models
is detected, for example. So we do not start with a completely defined hypothesis
space. Inference is open–ended: we continually seek more probable models to account
for the data we gather. New models are compared with previous models by evaluating
the evidence for them.

The key concept of this chapter is this: to assign a preference to alternative models Hi, a
Bayesian evaluates the evidence P (D|Hi). This concept is very general: the evidence can
be evaluated for parametric and ‘non–parametric’ models alike; whether our data modelling
task is a regression problem, a classification problem, or a density estimation problem, the
evidence is the Bayesian’s transportable quantity for comparing alternative models. In all
these cases the evidence naturally embodies Occam’s razor; we will examine how this works
shortly.

Of course, the evidence is not the whole story if we have good reason to assign unequal
priors to the alternative models H. (To only use the evidence for model comparison is
equivalent to using maximum likelihood for parameter estimation.) The classic example is

2Whether this approximation is a good one or not will depend on the problem we are solving. For the
interpolation models discussed in this chapter, there is only a single maximum in the posterior distribution,
and the Gaussian approximation is exact. For more general statistical models we still expect the posterior
to be dominated by locally Gaussian peaks on account of the central limit theorem [84]. Multiple maxima
which arise in more complex models complicate the analysis, but Bayesian methods can still successfully be
applied [31, 50, 55].
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the ‘Sure Thing’ hypothesis, c© E.T Jaynes, which is the hypothesis that the data set will be
D, the precise data set that actually occurred; the evidence for the Sure Thing hypothesis
is huge. But Sure Thing belongs to an immense class of similar hypotheses which should
all be assigned correspondingly tiny prior probabilities; so the posterior probability for
Sure Thing is negligible alongside any sensible model. Models like Sure Thing are rarely
seriously proposed in real life, but if such models are developed then clearly we need to think
about precisely what priors are appropriate. Patrick and Wallace, studying the geometry of
ancient stone circles (about which some people have proposed extremely elaborate theories!),
discuss a practical method of assigning relative prior probabilities to alternative models
by evaluating the lengths of the computer programs that decode data previously encoded
under each model [60]. This procedure introduces a second sort of Occam’s razor into the
inference, namely a prior bias against complex models. However, we will not include such
prior biases here; we will address only the data’s preference for the alternative models, i.e.,
the evidence, and the Occam’s razor that it embodies. In the limit of large quantities of
data this objective Occam’s razor will always be the more important of the two.

A modern Bayesian approach to priors

It should be pointed out that the emphasis of this modern3 Bayesian approach is not
on the inclusion of priors into inference. There is not one significant ‘subjective prior’
in this entire chapter. (For problems where significant subjective priors do arise see [28,
73].) The emphasis is on the idea that consistent degrees of preference for alternative
hypotheses are represented by probabilities, and relative preferences for models are assigned
by evaluating those probabilities. Historically, Bayesian analysis has been accompanied by
methods to work out the ‘right’ prior P (w|H) for a problem, for example, the principles
of insufficient reason and maximum entropy. The modern Bayesian however does not take
a fundamentalist attitude to assigning the ‘right’ priors — many different priors can be
tried, allowing the data to inform us which is most appropriate. Each particular prior
corresponds to a different hypothesis about the way the world is. We can compare these
alternative hypotheses in the light of the data by evaluating the evidence. This is the
way in which alternative regularisers are compared, for example. If we try one model and
obtain awful predictions, we have learnt something. ‘A failure of Bayesian prediction is an
opportunity to learn’ [36], and we are able to come back to the same data set with new
models, using new priors for example.

Evaluating the evidence

Let us now explicitly study the evidence to gain insight into how the Bayesian Occam’s
razor works. The evidence is the normalising constant for equation (2.1):

P (D |Hi) =
∫

P (D|w,Hi)P (w|Hi) dw. (2.4)

For many problems, including interpolation, it is common for the posterior P (w|D,Hi) ∝
P (D|w,Hi)P (w|Hi) to have a strong peak at the most probable parameters wMP (figure
2.3). Then the evidence can be approximated by the height of the peak of the integrand
P (D|w,Hi)P (w|Hi) times its width, ∆w:

3Under this use of the word, Box and Tiao [10, 11, 12] must be counted as ‘modern’ Bayesians.
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wMP

∆w

∆0w
w

P (w|Hi)

P (w|D,Hi)

Figure 2.3: The Occam factor
This figure shows the quantities that determine the Occam factor for a hypothesis Hi having a single
parameter w. The prior distribution (dotted line) for the parameter has width ∆0w. The posterior
distribution (solid line) has a single peak at wMP with characteristic width ∆w. The Occam factor
is ∆w

∆0w .

P (D |Hi) ≃ P (D |wMP,Hi)
︸ ︷︷ ︸

P (wMP|Hi)∆w
︸ ︷︷ ︸

.

Evidence ≃ Best fit likelihood Occam factor

(2.5)

Thus the evidence is found by taking the best fit likelihood that the model can achieve and
multiplying it by an ‘Occam factor’ [26], which is a term with magnitude less than one that
penalises Hi for having the parameter w.

Interpretation of the Occam factor

The quantity ∆w is the posterior uncertainty in w. Imagine for simplicity that the prior
P (w|Hi) is uniform on some large interval ∆0w, representing the range of values of w that
Hi thought possible before the data arrived (figure 2.3). Then P (wMP|Hi) =

1
∆0w

, and

Occam factor =
∆w

∆0w
,

i.e., the ratio of the posterior accessible volume of Hi’s parameter space to the
prior accessible volume, or the factor by which Hi’s hypothesis space collapses when the
data arrive [26, 38]. The model Hi can be viewed as being composed of a certain number of
equivalent submodels, of which only one survives when the data arrive. The Occam factor
is the inverse of that number. The log of the Occam factor can be interpreted as the amount
of information we gain about the model when the data arrive.

Typically, a complex model with many parameters, each of which is free to vary over a
large range ∆0w, will be penalised with a larger Occam factor than a simpler model. The
Occam factor also provides a penalty for models which have to be finely tuned to fit the
data; the Occam factor promotes models for which the required precision of the parameters
∆w is coarse. The Occam factor is thus a measure of complexity of the model, but unlike
the V–C dimension or algorithmic complexity, it relates to the complexity of the predictions
that the model makes in data space; therefore it depends on the number of data points and
other properties of the data set. Which model achieves the greatest evidence is determined
by a trade–off between minimising this natural complexity measure and minimising the data
misfit.
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Occam factor for several parameters

If w is k-dimensional, and if the posterior is well approximated by a Gaussian, the Occam
factor is obtained from the determinant of the Gaussian’s covariance matrix:

P (D |Hi) ≃ P (D |wMP, Hi)
︸ ︷︷ ︸

P (wMP|Hi) (2π)
k/2det−

1
2A

︸ ︷︷ ︸
,

Evidence ≃ Best fit likelihood Occam factor

(2.6)

where A = −∇∇ logP (w|D,Hi), the Hessian which we already evaluated when we calcu-
lated the error bars on wMP. As the amount of data collected, N , increases, this Gaussian
approximation is expected to become increasingly accurate on account of the central limit
theorem [84]. For the linear interpolation models discussed in this chapter, this Gaussian
expression is exact for any N .

Comments

• Bayesian model selection is a simple extension of maximum likelihood model selection:
the evidence is obtained by multiplying the best fit likelihood by the Occam
factor.

To evaluate the Occam factor all we need is the Hessian A, if the Gaussian approx-
imation is good. Thus the Bayesian method of model comparison by evaluating the
evidence is computationally no more demanding than the task of finding for each
model the best fit parameters and their error bars.

• It is common for there to be degeneracies in models with many parameters, i.e., several
equivalent parameters could be relabelled without affecting the likelihood. In these
cases, the right hand side of equation (2.6) should be multiplied by the degeneracy of
wMP to give the correct estimate of the evidence.

• ‘Minimum description length’ (MDL) methods are closely related to this Bayesian
framework [65, 85, 86]. The log evidence log2 P (D|Hi) is the number of bits in the
ideal shortest message that encodes the data D using model Hi. Akaike’s crite-
rion, originally derived as a predictor of generalisation error [3], can be viewed, like
Schwartz’s ‘B.I.C.’, as an approximation to MDL and Bayes [68, 89]. Any imple-
mentation of MDL necessitates approximations in evaluating the length of the ideal
shortest message. Although some of the earliest work on complex model comparison
involved the MDL framework [60], MDL has no apparent advantages, and in my work
I approximate the evidence directly.

• It should be emphasised that the Occam factor has nothing to do with how compu-
tationally complex it is to use a model. The evidence is a measure of plausibility of
a model. How much CPU time it takes to use each model is certainly an interesting
issue which might bias our decisions towards simpler models, but Bayes’ rule does not
address that issue. Choosing between models on the basis of how many function calls
they need is an exercise in decision theory, which is not addressed in this chapter.
Once the probabilities described above have been inferred, optimal actions can be
chosen using standard decision theory with a suitable utility function.
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2.3 The noisy interpolation problem

Bayesian interpolation through noise–free data has been studied by Skilling and Sibisi [70].
In this chapter I study the problem of interpolating through data where the dependent
variables are assumed to be noisy (a task also known as ‘regression’, ‘curve–fitting’, ‘signal
estimation’, or, in the neural networks community, ‘learning’). I am not examining the case
where the independent variables are also noisy. This different and more difficult problem
has been studied for the case of straight line–fitting by Gull [28].

Let us assume that the data set to be interpolated is a set of pairs D = {xm, tm}, where
m = 1 . . .N is a label running over the pairs. For simplicity I will treat x and t as scalars,
but the method generalises to the multidimensional case. To define a linear interpolation
model, a set of k fixed basis functions4 A = {φh(x)} is chosen, and the interpolated function
is assumed to have the form:

y(x) =
k∑

h=1

whφh(x), (2.7)

where the parameters wh are to be inferred from the data. The data set is modelled as
deviating from this mapping under some additive noise process N :

tm = y(xm) + νm. (2.8)

If ν is modelled as zero–mean Gaussian noise with standard deviation σν , then the proba-
bility of the data5 given the parameters w is:

P (D |w, β,A,N ) =
exp(−βED(D|w,A))

ZD(β)
, (2.9)

where β = 1/σ2ν, ED =
∑

m
1
2 (y(xm) − tm)2, and ZD = (2π/β)N/2. P (D |w, β,A,N ) is

called the likelihood. It is well known that finding the maximum likelihood parameters
wML may be an ‘ill–posed’ problem. That is, the w that minimises ED is underdetermined
and/or depends sensitively on the details of the noise in the data; the maximum likelihood
interpolant in such cases oscillates wildly so as to fit the noise. Thus it is clear that to
complete an interpolation model we need a prior R that expresses the sort of smoothness
we expect the interpolant y(x) to have. A model may have a prior of the form

P (y|R, α) = exp(−αEy(y|R))

Zy(α)
, (2.10)

where Ey might be for example the functional Ey =
∫

y′′(x)2dx (which is the regulariser for
cubic spline interpolation6). The parameter α is a measure of how smooth f(x) is expected
to be. Such a prior can also be written as a prior on the parameters w:

P (w|α,A,R) =
exp(−αEW (w|A,R))

ZW (α)
, (2.11)

4The case of adaptive basis functions, also known as feedforward neural networks, is examined in Chapter
3.

5Strictly, this probability should be written P ({tm}|{xm},w, β,A,N ), since these interpolation models
do not predict the distribution of input variables {xm}; this liberty of notation will be taken throughout
this thesis.

6Strictly, this particular prior may be improper because a y(x) of the form w1x + w0 is not constrained
by this prior.
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where ZW =
∫
dkw exp(−αEW ). EW (or Ey) is commonly referred to as a regularising

function.
The interpolation model H is now complete, consisting of a choice of basis functions A,

a noise model N with parameter β, and a prior (regulariser) R, with regularising constant
α. Particular settings of the hyperparameters α and β will be viewed as sub-models of H.

The first level of inference

If α and β are known, then the posterior probability of the parameters w is:7

P (w|D, α, β,A,R,N ) =
P (D|w, β,A,N )P (w|α,A,R)

P (D|α, β,A,R,N )
. (2.12)

Writing8

M(w) = αEW + βED, (2.13)

the posterior is

P (w|D, α, β,A,R,N ) =
exp(−M(w))

ZM(α, β)
(2.14)

where ZM (α, β) =
∫
dkw exp(−M). We see that minimising the combined objective func-

tion M corresponds to finding the most probable interpolant, wMP. Error bars on the best
fit interpolant9 can be obtained from the Hessian of M , A = ∇∇M , evaluated at wMP.

This is the well known Bayesian view of regularisation [63, 83], also known as ‘maximum
penalised likelihood’ or ‘ridge regression’.

Bayesian methods provide far more than just an interpretation for regularisation. What
we have described so far is just the first of three levels of inference. (The second level
described in sections 1 and 2, ‘model comparison’, splits into a second and a third level for
this problem, because each interpolation model is made up of a continuum of sub–models
with different values of α and β.) At the second level, Bayes allows us to objectively assign
values to α and β, which are commonly unknown a priori. At the third, Bayes enables
us to quantitatively rank alternative basis sets A, alternative regularisers (priors) R, and,
in principle, alternative noise models N .10 Furthermore, we can quantitatively compare
interpolation under any model H = {A,N ,R}with other interpolation and learning models
such as neural networks, if a similar Bayesian approach is applied to them. Neither the
second nor the third level of inference can be successfully executed without Occam’s razor.

The Bayesian theory of the second and third levels of inference has only recently been
worked out [27]; this chapter’s goal is to review that framework. Section 2.4 will describe the
Bayesian method of inferring α and β; section 2.5 will describe Bayesian model comparison
for the interpolation problem. Both these inference problems are solved by evaluation of
the appropriate evidence.

2.4 Selection of parameters � and �
7The regulariser α,R has been omitted from the conditioning variables in the likelihood because the data

distribution does not depend on the prior once w is known. Similarly the prior does not depend on β,N .
8The name M stands for ‘misfit’; it will be demonstrated later that M is the natural measure of misfit,

rather than χ2
D = 2βED.

9These error bars represent the uncertainty of the interpolant, and should not be confused with the
typical scatter of noisy data points relative to the interpolant.

10Bayesian inference of a slightly non–Gaussian distribution is performed in Box and Tiao [10, 12].
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Figure 2.4: How the best interpolant depends on α
These figures introduce a data set, ‘X’, which is interpolated with a variety of models in this chapter.
Notice that the density of data points is not uniform on the x–axis. In the three figures the data
set is interpolated using a radial basis function model with a basis of 60 equally spaced Cauchy
functions, all with radius 0.2975. The regulariser is EW = 1

2

∑
w2, where w are the coefficients of

the basis functions. Each figure shows the most probable interpolant for a different value of α: a)
6000; b) 2.5; c) 10−7. Note at the extreme values how the data are oversmoothed and overfitted
respectively. Assuming a flat prior, α = 2.5 is the most probable value of α. In b), the most probable
interpolant is displayed with its 1σ error bars, which represent how uncertain we are about the
interpolant at each point, under the assumption that the interpolation model and the value of α are
correct. Notice how the error bars increase in magnitude where the data are sparse. The error bars
do not get bigger near the datapoint close to (1,0), because the radial basis function model does
not expect sharp discontinuities; the error bars are obtained assuming the model is correct, so that
point is interpreted as an improbable outlier.



18 BAYESIAN METHODS FOR ADAPTIVE MODELS

Typically, α is not known a priori, and often β is also unknown. As α is varied, the
properties of the best fit (most probable) interpolant vary. Assume that we are using a
prior that encourages smoothness, and imagine that we interpolate at a very large value of
α; then this will constrain the interpolant to be very smooth and flat, and it will not fit the
data at all well (figure 2.4a). As α is decreased, the interpolant starts to fit the data better
(figure 2.4b). If α is made even smaller, the interpolant oscillates wildly so as to overfit
the noise in the data (figure 2.4c). The choice of the ‘best’ value of α is our first ‘Occam’s
razor’ problem: large values of α correspond to simple models which make constrained
and precise predictions, saying ‘the interpolant is expected to not have extreme curvature
anywhere’; a tiny value of α corresponds to the more powerful and flexible model that says
‘the interpolant could be anything at all, our prior belief in smoothness is very weak’. The
task is to find a value of α which is small enough that the data are fitted but not so small
that they are overfitted. For more severely ill–posed problems such as deconvolution, the
precise value of the regularising parameter is increasingly important. Orthodox statistics
has ways of assigning values to such parameters, based for example on misfit criteria, the
use of test data, and cross–validation. Gull has demonstrated why the popular use of misfit
criteria is incorrect and how Bayes sets these parameters [27]. The use of test data may
be an unreliable technique unless large quantities of data are available. Cross–validation,
the orthodox ‘method of choice’ [22], will be discussed more in section 2.6 and chapter 3. I
will explain the Bayesian method of inferring α and β after first reviewing some statistics
of misfit.

Misfit, χ2, and the effect of parameter measurements

For N independent Gaussian variables with mean µ and standard deviation σ, the statistic
χ2 =

∑
(x−µ)2/σ2 is a measure of misfit. If µ is known a priori, χ2 has expectation N±

√
N .

However, if µ is fitted from the data by setting µ = x̄, we ‘use up a degree of freedom’, and
χ2 has expectation N−1. In the second case µ is a ‘well–measured parameter’. When a
parameter is determined by the data in this way it is unavoidable that the parameter fits
some of the noise in the data as well. That is why the expectation of χ2 is reduced by one.
This is the basis of the distinction between the σN and σN−1 buttons on your calculator. It
is common for this distinction to be ignored, but in cases such as interpolation where the
number of free parameters is similar to the number of data points, it is essential to find
and make the analogous distinction. It will be demonstrated that the Bayesian choices of
both α and β are most simply expressed in terms of the effective number of well–measured
parameters, γ, to be derived below.

Misfit criteria are ‘principles’ which set parameters like α and β by requiring that χ2

should have a particular value. The discrepancy principle requires χ2 = N . Another
principle requires χ2 = N − k, where k is the number of free parameters. We will find that
an intuitive misfit criterion arises for the most probable value of β; on the other hand, the
Bayesian choice of α will be unrelated to the value of the misfit.

Bayesian choice of α and β

To infer from the data what value α and β should have, Bayesians evaluate the posterior
probability distribution:

P (α, β|D,H) =
P (D|α, β,H)P (α, β|H)

P (D|H)
. (2.15)
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The data dependent term P (D|α, β,H) has already appeared earlier as the normalising con-
stant in equation (2.12), and it is called the evidence for α and β. Similarly the normalising
constant of (2.15) is called the evidence for H, and it will turn up later when we compare
alternative models H = {A,N ,R} in the light of the data.

If P (α, β|H) is a flat prior11 (which corresponds to the statement that we don’t know
what value α and β should have), the evidence is the function that we use to assign a
preference to alternative values of α and β. It is given in terms of the normalising constants
defined earlier by

P (D|α, β,H) =
ZM(α, β)

ZW (α)ZD(β)
. (2.16)

Occam’s razor is implicit in this formula: if α is small, the large freedom in the prior range
of possible values of w is automatically penalised by the consequent large value of ZW ;
models that fit the data well achieve a large value of ZM . The optimum value of α achieves
a compromise between fitting the data well and being a simple model.

Now to assign a preference to (α, β), our computational task is to evaluate the three
integrals ZM , ZW and ZD. We will come back to this task in a moment.

But that sounds like determining your prior after the data have arrived!

When I first heard the preceding explanation of Bayesian regularisation I was discontent
because it seemed that the prior is being chosen from an ensemble of possible priors after

the data have arrived. To be precise, as described above, the most probable value of α is
selected; then the prior corresponding to that value of α alone is used to infer what the
interpolant might be. This is not how Bayes would have us infer the interpolant. It is
the combined ensemble of priors that define our prior, and we should integrate over this
ensemble when we do inference.12 Let us work out what happens if we follow this proper
approach. The preceding method of using only the most probable prior will emerge as a
good approximation.

The true posterior P (w|D,H) is obtained by integrating over α and β:

P (w|D,H)=

∫

P (w|D, α, β,H)P (α, β|D,H) dαdβ. (2.17)

In words, the posterior probability over w can be written as a linear combination of the
posteriors for all values of α, β. Each posterior density is weighted by the probability of
α, β given the data, which appeared in (2.15). This means that if P (α, β|D,H) has a
dominant peak at α̂, β̂, then the true posterior P (w|D,H) will be dominated by the density
P (w|D, α̂, β̂,H). As long as the properties of the posterior P (w|D, α, β,H) do not change
rapidly with α, β near α̂, β̂ and the peak in P (α, β|D,H) is strong, we are justified in using
the approximation:

P (w|D,H) ≃ P (w|D, α̂, β̂,H). (2.18)

This approximation is valid if under the same conditions as in footnote 13. It is a matter
of ongoing research to develop computational methods for cases where this approximation
is invalid (Sibisi and Skilling, personal communication, Neal, personal communication). In
some cases, including the linear models of this chapter, the integral (2.17) can be performed

11Since α and β are scale parameters, this prior should be understood as a flat prior over log α and log β.
12It is remarkable that Laplace almost got this right in 1774 [80]; when inferring the mean of a Laplacian

distribution, he both inferred the posterior probability of a nuisance parameter like β in (2.15), and then
attempted to integrate out the nuisance parameter as in equation (2.17).
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Figure 2.5: Choosing α
a) The evidence as a function of α: Using the same radial basis function model as in figure 2.4,
this graph shows the log evidence as a function of α, and shows the functions which make up the
log evidence, namely the data misfit χ2

D
= 2βED, the weight penalty term χ2

W
= 2αEW , and the

log of the volume ratio (2π)k/2det−
1

2A/ZW (α).
b) Criteria for optimising α: This graph shows the log evidence as a function of α, and the
functions whose intersection locates the evidence maximum: the number of good parameter mea-
surements γ, and χ2

W
. Also shown is the test error (rescaled) on two test sets; finding the test error

minimum is an alternative criterion for setting α. Both test sets were more than twice as large in
size as the interpolated data set. Note how the point at which χ2

W
= γ is clear and unambiguous,

which cannot be said for the minima of the test energies. The evidence gives α a 1-σ confidence
interval of [1.3, 5.0]. The test error minima are more widely distributed because of finite sample
noise.

analytically. I have chosen to use the approximations regardless, because 1) the approx-
imations give a clearer intuition for how Bayesian methods solve regularisation problems;
2) the approximations are applicable to cases where there is no analytic solution; and 3)
the approximations relate most closely to alternative regularisation methods, which seek to
find ‘optimal’ values of α, β.

Why not find the joint optimum in w, α, β?

It is not satisfactory to simply maximise the likelihood or the posterior probability simul-
taneously over w, α and β; the posterior and likelihood both have skew peaks such that
the maximum likelihood value for the parameters is not in the same place as most of the
posterior probability [27]. To get a feeling for this here is a more familiar problem: examine
the posterior probability for the parameters of a Gaussian (µ, σ) given N samples: the max-
imum likelihood value for σ is σN , but the most probable value for σ (found by integrating
over µ) is σN−1. It should be emphasised that this distinction has nothing to do with the
prior over the parameters α and β, which is flat here. It is the process of marginalisation
that corrects the bias which afflicts both maximum likelihood and maximum a posteriori.
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Evaluating the evidence

Let us return to our train of thought at equation (2.16). To evaluate the evidence for α, β,
we want to find the integrals ZM , ZW and ZD. Typically the most difficult integral to
evaluate is ZM .

ZM (α, β) =
∫

dkw exp(−M(w, α, β)).

If the regulariser R is a quadratic functional (and the favourites are), then ED and EW

are quadratic functions of w, and we can evaluate ZM exactly. Letting ∇∇EW = C and
∇∇ED = B then using A = αC+ βB, we have:

M = M(wMP) +
1

2
(w− wMP)

TA(w− wMP),

where wMP = βA−1BwML. This means that ZM is the Gaussian integral:

ZM = e−MMP (2π)k/2det−
1
2A. (2.19)

In many cases where the regulariser is not quadratic (for example, entropy–based), this
Gaussian approximation is still servicable [27]. Thus we can write the log evidence for α
and β as:

log P (D|α, β,H) = −αEMP
W −βEMP

D −1

2
log detA−logZW (α)−logZD(β)+

k

2
log 2π. (2.20)

The term βEMP
D represents the misfit of the interpolant to the data. The three terms

−αEMP
W − 1

2 log detA− logZW (α) constitute the log of the ‘Occam factor’ penalising small

values of α: the ratio (2π)k/2det−
1
2A/ZW (α) is the ratio of the posterior accessible volume

in parameter space to the prior accessible volume, and the term αEMP
W measures how far

wMP is from its null value. Figure 2.5a illustrates the behaviour of these various terms as a
function of α for the same radial basis function model as illustrated in figure 2.4.

Now we could just proceed to evaluate the evidence numerically as a function of α and
β, but a more deep and fruitful understanding of this problem is possible.

Properties of the evidence maximum

The maximum over α, β of P (D|α, β,H) = ZM (α, β)/(ZW(α)ZD(β)) has some remarkable
properties which give deeper insight into this Bayesian approach. The results of this section
are useful both numerically and intuitively.

Following Gull [27], we transform to the basis in which the Hessian of EW is the identity,
∇∇EW = I. This transformation is simple in the case of quadratic EW : rotate into
the eigenvector basis of C and stretch the axes so that the quadratic form EW becomes
homogeneous. This is the natural basis for the prior. I will continue to refer to the parameter
vector in this basis as w, so from here on EW = 1

2

∑
w2
i . Using ∇∇M = A and ∇∇ED = B

as above, we differentiate the log evidence with respect to α and β so as to find the condition
that is satisfied at the maximum. The log evidence, from (2.20), is:

log P (D|α, β,H) = −αEMP
W − βEMP

D − 1

2
log detA+

k

2
logα+

N

2
log β − N

2
log 2π. (2.21)

First, differentiating with respect to α, we need to evaluate d
dα log detA. UsingA = αI+βB,

d

dα
log detA = Trace

(

A−1 dA

dα

)

= Trace
(

A−1I
)

= TraceA−1.
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Figure 2.6: Good and bad parameter measurements
Let w1 and w2 be the components in parameter space in two directions parallel to eigenvectors of
the data matrix B. The circle represents the characteristic prior distribution for w. The ellipse
represents a characteristic contour of the likelihood, centred on the maximum likelihood solution
wML. wMP represents the most probable parameter vector. w1 is a direction in which λ1 is small
compared to α, i.e., the data have no strong preference about the value of w1; w1 is a poorly
measured parameter, and the term λ1

λ1+α is close to zero. w2 is a direction in which λ1 is large; w2

is well determined by the data, and the term λ2

λ2+α is close to one.

This result is exact if EW and ED are quadratic. Otherwise this result is an approximation,
omitting terms in ∂B/∂α. Now, differentiating (2.21) and setting the derivative to zero, we
obtain the following condition for the most probable value of α:

2αEMP
W = k − αTraceA−1. (2.22)

The quantity on the left is the dimensionless measure of the amount of structure introduced
into the parameters by the data, i.e., how much the fitted parameters differ from their null
value. It can be interpreted as the χ2 of the parameters, since it is equal to χ2W =

∑
w2
i /σ

2
W ,

with α = 1/σ2W .
The quantity on the right of (2.22) is called the number of good parameter measure-

ments, γ, and has value between 0 and k. It can be written in terms of the eigenvalues
of βB, λa, where the subscript a runs over the k eigenvectors. The eigenvalues of A are
λa + α, so we have:

γ = k − αTraceA−1 = k −
k∑

a=1

α

λa + α
=

k∑

a=1

λa
λa + α

. (2.23)

Each eigenvalue λa measures how strongly one parameter is determined by the data. The
constant α measures how strongly the parameters are determined by the prior. The ath
term γa = λa/(λa + α) is a number between 0 and 1 which measures the strength of the
data relative to the prior in direction a (figure 2.6): the components of wMP are given by
wMPa = γawMLa.

A direction in parameter space for which λa is small compared to α does not contribute
to the number of good parameter measurements. γ is thus a measure of the effective number
of parameters which are well determined by the data. As α/β → 0, γ increases from 0 to
k. The condition (2.22) for the most probable value of α can therefore be interpreted as
an estimation of the variance σ2W of the Gaussian distribution from which the weights are
drawn, based on γ effective samples from that distribution: σ2W =

∑
w2
i /γ.

This concept is not only important for locating the optimum value of α: it is only the
γ good parameter measurements which are expected to contribute to the reduction of the
data misfit that occurs when a model is fitted to noisy data. In the process of fitting w
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to the data, it is unavoidable that some fitting of the model to noise will occur, because
some components of the noise are indistinguishable from real data. Typically, one unit (χ2)
of noise will be fitted for every well–determined parameter. Poorly determined parameters
are determined by the regulariser only, so they do not reduce χ2D in this way. We will now
examine how this concept enters into the Bayesian choice of β.

Recall that the expectation of the χ2 misfit between the true interpolant and the data
is N . However we do not know the true interpolant, and the only misfit measure to which
we have access is the χ2 between the inferred interpolant and the data, χ2D = 2βED. The
‘discrepancy principle’ of orthodox statistics states that the model parameters should be
adjusted so as to make χ2D = N . Work on un–regularised least–squares regression suggests
that we should estimate the noise level so as to set χ2D = N − k, where k is the number of
free parameters. Let us find out the opinion of Bayes’ rule on this matter.

We differentiate the log evidence (2.21) with respect to β and obtain, setting the deriva-
tive to zero:

2βED = N − γ. (2.24)

Thus the most probable noise estimate, β̂, does not satisfy χ2D =N or χ2D = N−k; rather,
χ2D = N−γ. This Bayesian estimate of noise level naturally takes into account the fact that
the parameters which have been determined by the data inevitably suppress some of the
noise in the data, while the poorly measured parameters do not. The quantity N−γ may
be called the effective number of degrees of freedom. Note that the value of χ2D only enters
into the determination of β: misfit criteria have no role in the Bayesian choice of α [27].

In summary, at the optimum value of α and β, χ2W = γ, χ2D =N−γ. Notice that this
implies that the total misfit M=αEW+βED satisfies the simple equation 2M=N .

The interpolant resulting from the Bayesian choice of α is illustrated by figure 2.4b.
Figure 2.5b illustrates the functions involved with the Bayesian choice of α, and compares
them with the ‘test error’ approach. Demonstration of the Bayesian choice of β is omit-
ted, since it is straightforward; β is fixed to its true value for the demonstrations in this
chapter. Inference of an input–dependent noise level β(x) will be demonstrated in a future
publication.

These results generalise to the case where there are two or more separate regularisers
with independent regularising constants {αc} [27]. In this case, each regulariser has a
number of good parameter measurements γc associated with it. Multiple regularisers will
be used for neural networks in chapter 3.

Finding the evidence maximum with a head–on approach would involve evaluating detA
while searching over α, β; the above results (2.22,2.24) enable us to speed up this search (for
example by the use of re–estimation formulae like α := γ/2EW ) and replace the evaluation
of detA by the evaluation of TraceA−1. For large–dimensional problems where this task
is demanding, Skilling has developed methods for estimating TraceA−1 statistically in k2

time [72].

2.5 Model comparison

To rank alternative basis sets A, noise models N and regularisers (priors) R in the light of
the data, we examine the posterior probabilities for alternative models H={A,N ,R}:

P (H|D) ∝ P (D|H)P (H). (2.25)
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The data–dependent term, the evidence for H, appeared earlier as the normalising constant
in (2.15), and it is evaluated by integrating the evidence for (α, β):

P (D|H) =
∫

P (D|α, β,H)P (α, β|H) dαdβ. (2.26)

Assuming that we have no reason to assign strongly differing priors P (H), alternative models
H are ranked just by examining the evidence. The evidence can also be compared with the
evidence found by an equivalent Bayesian analysis of other learning and interpolation models
so as to allow the data to assign a preference to the alternative models. Notice as pointed
out earlier that this modern Bayesian framework includes no emphasis on defining the ‘right’
prior R with which we ought to interpolate. Rather, we invent as many priors (regularisers)
as we want, and allow the data to tell us which prior is most probable. Having said this,
experience recommends that the ‘maximum entropy principle’ and other respected guides
should be consulted when inventing these priors (see [26], for example).

Evaluating the evidence for H
As α and β vary, a single evidence maximum is obtained, at α̂,β̂ (at least for quadratic ED

and EW ). The evidence maximum is often well approximated13 by a separable Gaussian,
and differentiating (2.21) twice we obtain Gaussian error bars for logα and log β:

(∆ logα)2 ≃ 2/γ

(∆ logβ)2 ≃ 2/(N − γ).

Putting these error bars into (2.26), we obtain the evidence.14

P (D|H) ≃ P (D|α̂, β̂,H)P (α̂, β̂|H) 2π∆log α∆log β (2.27)

How is the prior P (α̂, β̂|H) assigned? This is the first time in this chapter that we have
met one of the infamous ‘subjective priors’ which are supposed to plague Bayesian methods.
Here are some answers to this question. (a) Any coherent method of assigning a preference
to alternatives must implicitly assign such priors [46]. Bayesians adopt the healthy attitude
of not sweeping them under the carpet. (b) With some thought, reasonable values can
usually be assigned to subjective priors, and the degree of reasonable subjectivity in these
assignments can be quantified, and the sensitivity of our inferences to these priors can be
quantified [10, 12]. For example, a reasonable prior on an unknown standard deviation
states that σ is unknown over a range of (3±2) orders of magnitude. This prior contributes
a subjectivity of about ±1 to the value of the log evidence. This degree of subjectivity
is often negligible compared to the log evidence differences. (c) In the noisy interpolation
example, all models considered include the free parameters α and β. So in this chapter I do
not need to assign a value to P (α̂, β̂|H); I assume that it is a flat prior (flat over log α and
log β, since α and β are scale parameters) which cancels out when we compare alternative
interpolation models.

2.6 Demonstration

These demonstrations will use two one–dimensional data sets, in imitation of [70]. The first
data set, ‘X’, has discontinuities in derivative (figure 2.4), and the second is a smoother

13This approximation is valid when γ ≫ 1, and, in the spectrum of eigenvalues of βB, the number of
eigenvalues within e–fold of α̂ is ≪ γ.

14There are analytic methods for performing such integrals over β [14].
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data set, ‘Y’ (figure 2.8). In all the demonstrations, β was not left as a free parameter, but
was fixed to its known true value.

Error bars on one model’s interpolant

The Bayesian method of setting α, assuming a single model is correct, has already been
demonstrated, and quantified error bars have been placed on the most probable interpolant
(figure 2.4). The method of evaluating the error bars is to use the posterior covariance
matrix of the parameters wh, A

−1, to get the variance on y(x), which for any x is a linear
function of the parameters, y(x)=

∑

h φh(x)wh. The error bars at a single point x are given
by var y(x)=φTA−1φ. These error bars are directly related to the expected generalisation
error at x, assuming that the model is true, evaluated in [43, 82]. The error bars are also
related to the expected information gain per data point (chapter 4). Actually we have
access to the full covariance information for the entire interpolant, not just the pointwise
error bars. It is possible to visualise the joint error bars on the interpolant by making typical
samples from the posterior distribution, performing a random walk around the posterior
‘bubble’ in parameter space [70, 74]. Figure 2.8 shows data set Y interpolated by three
typical interpolants found by random sampling from the posterior distribution. These error
bar properties are found under the assumption that the model is correct; so it is possible
for the true interpolant to lie significantly outside the error bars of a poor model.

Model comparison

In this section Bayesian model comparison will be demonstrated first with models differ-
ing only in the number of free parameters (for example polynomials of different degrees),
then with comparisons between models as disparate as splines, radial basis functions and
feedforward neural networks. The characters of some of these models are illustrated in
figure 2.9, which shows a typical sample from each. For each individual model, the value
of α is optimised, and the evidence is evaluated by integrating over α using the Gaussian
approximation. All logarithms are to base e.

Legendre polynomials: Occam’s razor for the number of basis functions

Figure 2.7a shows the evidence for Legendre polynomials of different degrees for data set X.
The basis functions were chosen to be orthonormal on an interval enclosing the data, and
a regulariser of the form EW =

∑ 1
2w

2
h was used.

Notice that an evidence maximum is obtained: beyond a certain number of terms, the
evidence starts to decrease. This is the Bayesian Occam’s razor at work. The additional
terms make the model more powerful, able to make more predictions. This flexibility is
automatically penalised. Notice the characteristic shape of the ‘Occam hill’. On the left,
the hill is steep as the over–simple models fail to fit the data; the penalty for misfitting
the data scales as N , the number of data measurements. The other side of the hill is
much less steep; the log Occam factors here only scale as k logN , where k is the number
of parameters. We note in table 2.1 the value of the maximum evidence achieved by these
models, and move on to alternative models.

The choice of orthonormal Legendre polynomials described above was motivated by a
maximum entropy argument [26]. Models using other polynomial basis sets have also been
tried. For less well motivated basis sets such as Hermite polynomials, it was found that the
Occam factors were far bigger and the evidence was substantially smaller. If the size of the
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Figure 2.7: The evidence for data set X (see also table 1)
a) Log Evidence for Legendre polynomials. Notice the evidence maximum. The gentle slope
to the right is due to the ‘Occam factors’ which penalise the increasing complexity of the model.
b) Log Evidence for radial basis function models. Notice that there is no Occam penalty for
the additional coefficients in these models, because increased density of radial basis functions does
not make the model more powerful. The oscillations in the evidence are due to the details of the
pixellation of the basis functions relative to the data points. c) Log Evidence for splines. The
evidence is shown for the alternative splines regularisers p=0 . . .6 (see text). In the representation
used, each spline model is obtained in the limit of an infinite number of coefficients. For example,
p=4 yields the cubic splines model. d) Test error for splines. The number of data points in
the test set was 90, c.f. number of data points in training set = 37. The y axis shows ED; the value
of ED for the true interpolant has expectation 0.225 ± 0.02.



CHAPTER 2. BAYESIAN INTERPOLATION 27

Table 2.1: Evidence for models interpolating data sets X and Y
All logs are natural. The evidence P (D|H) is a density over D space, so the absolute value of the
log evidence is arbitrary within an additive constant. Only differences in values of log evidences are
relevant, relating directly to probability ratios.

Data Set X Data Set Y

Model Best
parameter
values

Log
evidence

Best
parameter
values

Log
evidence

Legendre polynomials k = 38 -47 k = 11 23.8

Gaussian radial
basis functions

k > 40,
r = .25 -28.8± 1.0

k > 50,
r = .77 27.1± 1.0

Cauchy radial
basis functions

k > 50,
r = .27 -18.9± 1.0

k > 50,
r = 1.1 25.7± 1.0

Splines, p = 2 k > 80 -9.5 k > 50 8.2
Splines, p = 3 k > 80 -5.6 k > 50 19.8
Splines, p = 4 k > 80 -13.2 k > 50 22.1
Splines, p = 5 k > 80 -24.9 k > 50 21.8
Splines, p = 6 k > 80 -35.8 k > 50 20.4

Hermite functions k = 18 -66 k = 3 42.2

Neural networks 8 neurons,
k = 25

-12.6 6 neurons,
k = 19

25.7

Occam factor increases rapidly with over–parameterisation, it is generally a sign that the
space of alternative models is poorly matched to the problem.

Fixed radial basis functions

For a radial basis function or ‘kernel’ model, the basis functions are φh(x)=g((x−xh)/r)/r;
here the xh are equally spaced over the range of interest. I examine two choices of g: a
Gaussian and a Cauchy function, 1/1+x2. We can quantitatively compare these alternative
models of spatial correlation for any data set by evaluating the evidence. The regulariser
is EW =

∑ 1
2w

2
h. Note that this model includes one new free parameter, r; in these demon-

strations this parameter has been set to its most probable value (i.e., the value which
maximises the evidence). To penalise this free parameter an Occam factor is included,√
2πP (log r)∆ log r, where ∆ log r=posterior uncertainty in log r, and P (log r) is the prior

on log r, which is subjective to a small degree (I used P (log r)=1/(4±2)). This radial basis
function model is the same as the ‘intrinsic correlation’ model of Charter, Gull, Skilling and
Sibisi [16, 27, 70].

Figure 2.7b shows the evidence as a function of the number of basis functions, k. Note
that for these models there is not an increasing Occam penalty for large numbers of param-
eters. The reason for this is that these extra parameters do not make the model any more
powerful (for fixed α and r). The increased density of basis functions does not enable the
model to make any significant new predictions because the kernel g band–limits the possible
interpolants.
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Figure 2.8: Data set ‘Y’, interpolated with splines, p = 5.
The data set is shown with three typical interpolants drawn from the posterior probability distri-
bution. Contrast this with figure 2.4b, in which the most probable interpolant is shown with its
pointwise error bars.

Splines: Occam’s razor for the choice of regulariser

The splines models were implemented as follows: let the basis functions be a Fourier set
coshx, sinhx, h=0, 1, 2, . . .. Use the regulariser EW =

∑ 1
2h

pw2
h(cos)+

∑ 1
2h

pw2
h(sin). If p=4

then in the limit k→∞ we have the cubic splines regulariser E
(4)
y =

∫

y′′(x)2dx; if p=2 we

have the regulariser E
(2)
y =

∫
y′(x)2dx, etc. Notice that the ‘non–parametric’ splines model

can easily be put in an explicit parameterised representation. However, none of these splines
models include ‘knots’.

Figure 2.7c shows the evidence for data set X as a function of the number of terms, for
p=0, 1, 2, 3, 4, 6. Notice that in terms of Occam’s razor, both cases discussed above occur:
for p=0, 1, as k increases, the model becomes more powerful and there is an Occam penalty.
For p=3, 4, 6, increasing k gives rise to no penalty. The case p=2 seems to be on the fence
between the two.

As p increases, the regulariser becomes more opposed to strong curvature. Once we reach
p=6, the model becomes less probable because the data demand sharp discontinuities. The
evidence can choose the order of our splines regulariser for us. For this data set, it turns
out that p=3 is the most probable value of p, by a few multiples of e.

In passing, the radial basis function models described above can be transformed into
the Fourier representation of the splines models. If the radial basis function kernel is g(x)
then the regulariser in the splines representation is EW =

∑ 1
2(w

2
h(cos)+w

2
h(sin))G

−2
h , where

Gh is the discrete Fourier transform of g.
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Figure 2.9: Typical samples from the prior distributions of six models
This figure illustrates the character of some of the models used in this chapter. Each model was
represented with 60 basis functions, and a typical sample from the prior distribution is shown. The
regularisation constant was in each case set to make the typical magnitude of the interpolants similar.
a) Splines, p=2. b) Splines, p=4 (cubic splines). c) Splines, p=6. The splines were represented
with a Fourier set with period 12.0. Notice how the spikiness of the typical sample decreases as the
order of the spline increases. d) Cauchy radial basis functions. The basis functions were equally
spaced from -3.0 to 5.0, and had scale r = 0.2975. e) Legendre polynomials. The polynomials
were stretched so that the interval [-3.0,5.0] corresponds to the natural interval. Notice that the
characteristic amplitude diverges at the boundaries, and the characteristic frequency of the typical
sample also increases towards the boundaries. f) Ordinary polynomials. This figure illustrates what
bad results can be obtained if a prior is carelessly assigned. A uniform prior over the coefficients of
y =

∑
whx

h yields a highly non–uniform typical sample.
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Results for a smoother data set

Figure 2.8 shows data set Y, which comes from a much smoother interpolant than data set
X. Table 2.1 summarises the evidence for the alternative models. We can confirm that the
evidence behaves in a reasonable manner by noting the following differences between data
sets X and Y:

In the splines family, the most probable value of p has shifted upwards to the stiffer
splines with p=4−5, as we would intuitively expect.

Legendre polynomials: an observant reader may have noticed that when data set X was
modelled with Legendre polynomials, the most probable number of coefficients k=38 was
suspiciously similar to the number of data points N=37. For data set Y, however, the most
probable number of coefficients is 11, which confirms that the evidence does not always
prefer the polynomial with k=N . Data set X behaved in this way because it is very poorly
modelled by polynomials.

The Hermite function model, which was a poor model for data set X, is now the most
probable, by a long way (over a million times more probable). The reason for this is that
actually the data were generated from a Hermite function!

Why Bayes can’t systematically reject the truth

Let us ask a sampling theory question: if one of the models we offer to Bayes is actually
true, i.e., it is the model from which the data were generated, then is it possible for Bayes
to systematically (over the ensemble of possible data sets) prefer a false model? Clearly
under a worst case analysis, a Bayesian’s posterior may favour a false model. Furthermore,
Skilling demonstrated that with some data sets a free form (maximum entropy) model can
have greater evidence than the truth [73]; but is it possible for this to happen in the typical
case, as Skilling seems to claim? I will show that the answer is no, that the effect that
Skilling demonstrated cannot be systematic. To be precise, the expectation over possible
data sets of the log evidence for the true model is greater than the expectation of the log
evidence for any other fixed model [59].15

Proof. Suppose that the truth is actually H1. A single data set arrives and we compare the
evidences for H1 and H2, a different fixed model. Both models may have free parameters,
but this will be irrelevant to the argument. Intuitively we expect that the evidence for H1,
P (D|H1), should usually be greatest. Let us examine the difference in log evidence between
H1 and H2. The expectation of this difference, given that H1 is true, is

〈

log
P (D|H1)

P (D|H2)

〉

=
∫

dNDP (D|H1) log
P (D|H1)

P (D|H2)
.

(Note that this integral implicitly integrates over all H1’s parameters according to their
prior distribution under H1.) Now it is well known that for normalised p and q,

∫
p log p

q
is minimised by setting q = p (Gibbs’ theorem). Therefore a distinct model H2 is never
expected to systematically defeat the true model, for just the same reason that it is not wise
to bet differently from the true odds. •

This result has two important implications. First, it gives us confidence in the ability

15Skilling’s result presumably occurred because the particular parameter values of the true model that
generated the data were not typical of the prior used when evaluating the evidence for that model. In such
a case, the log evidence difference can show a transient bias against the true model, for small quantities of
data; such biases are usually corrected by greater quantities of data.
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of Bayesian methods on the average to identify the true model. Secondly, it provides a
stringent test of numerical implementations of Bayesian model comparison. Imagine that
we have written a program that evaluates the evidence for models H1 and H2. Then we
can generate mock data from sources simulating H1 and H2 and evaluate the evidences.
If there is any systematic bias, averaged over several mock data sets, for the estimated
evidence to favour the false model, then we can be sure that our numerical implementation
is not evaluating the evidence correctly.

This issue is illustrated using data set Y. The ‘truth’ is that this data set was actually
generated from a quadratic Hermite function, 1.1(1−x+2x2)e−x2/2. By the above argument
the evidence ought probably to favour the model ‘the interpolant is a 3–coefficient Hermite
function’ over our other models. Table 2.1 shows the evidence for the true Hermite function
model, and for other models. As already stated, the truth is indeed considerably more
probable than the alternatives.

Having demonstrated that Bayes cannot systematically fail when one of the models is
true, we now examine the way in which this framework can fail, if none of the models offered
to Bayes is any good.

Comparison with ‘generalisation error’

It is a popular and intuitive criterion for choosing between alternative interpolants (found
using different models) to compare their errors on a test set that was not used to derive
the interpolants. ‘Cross–validation’ is a more refined and more computationally expensive
version of this same idea. How does this method relate to the evaluation of the evidence
described in this chapter?

Figure 2.7c displayed the evidence for the family of spline interpolants. Figure 2.7d
shows the corresponding test error, measured on a test set with size over twice as big (90)
as the ‘training’ data set (37) used to determine the interpolant. A similar comparison was
made in figure 2.5b. Note that the overall trends shown by the evidence are matched by
trends in the test error (if you flip one graph upside down). Also, for this particular problem,
the ranks of the alternative spline models under the evidence are similar to their ranks under
the test error. And in figure 2.5b, the evidence maximum over α was surrounded by the
test error minima. Thus, this suggests that the evidence might be a reliable predictor of
generalisation ability. However, this is not necessarily the case. There are five reasons why
the evidence and the test error might not be correlated.

First, the test error is a noisy quantity. It is necessary to devote large quantities of data
to the test set to obtain a reasonable signal to noise ratio. In figure 2.5b more than twice as
much data is in each test set but the difference in logα between the two test error minima
exceeds the size of the Bayesian confidence interval for log α.

Second, the model with greatest evidence is not expected to be the best model all the
time — Bayesian inferences are uncertain. The whole point of Bayes is that it quantifies
precisely those uncertainties: the relative values of the evidence for alternative models
express the plausibility of the models, given the data and the underlying assumptions.

Third, there is more to the evidence than there is to the generalisation error. For ex-
ample, imagine that for two models, the most probable interpolants happen to be identical.
In this case, the two solutions will have the same generalisation error, but the evidence will
not in general be the same: typically, the model that was a priori more complex will suffer
a larger Occam factor and will have a smaller evidence.

Fourth, the test error is a measure of performance only of the single most probable
interpolant: the evidence is a measure of plausibility of the entire posterior ensemble around
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the best fit interpolant. Probably a stronger correlation between the evidence and the test
statistic would be obtained if the test statistic used were the average of the test error over
the posterior ensemble of solutions. This ensemble test error is not so easy to compute.

The fifth and most interesting reason why the evidence might not be correlated with the
generalisation error is that there might be a flaw in the underlying assumptions such that the
models being compared might all be poor models. If a poor regulariser is used, for example,
one that is ill–matched to the statistics of the world, then the Bayesian choice of α will
often not be the best in terms of generalisation error; Bayesian methods are more sensitive
to poor model assumptions than, say, cross–validation [18, 27, 32]. Such a failure occurs
in chapter 3. What is our attitude to such a failure of Bayesian prediction? The failure of
the evidence does not mean that we should discard Bayes’ rule and use the generalisation
error as our criterion for choosing α. A failure is an opportunity to learn; a healthy scientist
actively searches for such failures, because they yield insights into the defects of the current
model. The detection of such a failure (by evaluating the generalisation error for example)
motivates the search for new models which do not fail in this way; for example alternative
regularisers can be tried until a model is found that makes the data more probable.

If one only uses the generalisation error as a criterion for model comparison, one is denied
this mechanism for learning. The development of maximum entropy image deconvolution
was held up for years because no–one used the Bayesian choice of α; once the Bayesian
choice of α was used [27], the results obtained were most dissatisfactory, making clear what
a poor regulariser was being used; this motivated an immediate search for alternative priors;
the new, more probable priors discovered by this search are now at the heart of the state
of the art in image deconvolution [88].

The similarity between regularisation and ‘early stopping’

While an over–parameterised model is fitted to a data set using gradient descent on the
data error, it is sometimes noted that the model’s generalisation error passes through a
minimum, rather than decreasing monotonically. This is known as ‘over–learning’ in the
neural networks community, and some researchers advocate the use of ‘early stopping’, that
is, stopping gradient descent before the data error minimum is reached, so as to try to
obtain solutions with smaller generalisation error.

This author believes that ‘over–learning’ should be viewed as a symptom of a model
ill–matched to the data set, and that the appropriate response is not to patch up a bad
model, but rather to search for models which are better matched to our data. In particular,
the use of models incorporating simple regularisers is expected to give results qualitatively
similar to the results of early stopping. This can be seen by examining figure 2.6. The
regulariser moves the minimum of the objective function from wML to wMP; as the strength
of the regulariser α is increased, wMP follows a knee–shaped trajectory from wML to the
origin; a typical solution wMP is shown in figure 2.6. If on the other hand gradient descent on
the likelihood (data error) is used, and if the typical initial condition is close to the origin,
then gradient descent will follow a similar knee–shaped trajectory. Thus, qualitatively
similar solutions are expected from increasingly early stopping and from increasingly strong
regularisation with complete minimisation. Regularisation is to be preferred as a more
robust, repeatable and comprehensible procedure.
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Admitting neural networks into the canon of Bayesian interpolation mod-

els

Chapter 3 will discuss how to apply this Bayesian framework to feedforward neural networks.
Preliminary results using these methods are included in table 2.1. Assuming that the
approximations used were valid, it is interesting that the evidence for neural nets is actually
good for both the spiky and the smooth data sets. Furthermore, neural nets, in spite of
their arbitrariness, yield a relatively compact model, with fewer parameters needed than to
specify the splines and radial basis function solutions.

2.7 Conclusions

The recently developed methods of Bayesian model comparison and regularisation have
been presented. Models can be ranked by evaluating the evidence, a solely data–dependent
measure which intuitively and consistently combines a model’s ability to fit the data with its
complexity. The precise posterior probabilities of the models also depend on the subjective
priors that we assign to them, but these terms are typically overwhelmed by the evidence.

Regularising constants are set by maximising the evidence. For many regularisation
problems, the theory of the number of well–measured parameters makes it possible to per-
form this optimisation on–line.

In the interpolation examples discussed, the evidence was used to set the number of
basis functions k in a polynomial model; to set the characteristic size r in a radial basis
function model; to choose the order p of the regulariser for a spline model; and to rank all
these different models in the light of the data.

Further work is needed to formalise the relationship of this framework to the pragmatic
model comparison technique of cross–validation. Using the two techniques in parallel, it is
possible to detect flaws in the underlying assumptions implicit in the data models being
used. Such failures direct our search for superior models, providing a powerful tool for
human learning.

There are thousands of data modelling tasks waiting for the evidence to be evaluated.
It will be exciting to see how much we can learn when this is done.
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Chapter 3

A Practical Bayesian Framework

for Backpropagation Networks

Abstract

A quantitative and practical Bayesian framework is described for learning of map-

pings in feedforward networks. The framework makes possible: (1) objective compar-

isons between solutions using alternative network architectures; (2) objective stopping

rules for network pruning or growing procedures; (3) objective choice of magnitude

and type of weight decay terms or additive regularisers (for penalising large weights,

etc.); (4) a measure of the effective number of well–determined parameters in a model;

(5) quantified estimates of the error bars on network parameters and on network out-

put; (6) objective comparisons with alternative learning and interpolation models such

as splines and radial basis functions. The Bayesian ‘evidence’ automatically embod-

ies ‘Occam’s razor’, penalising over–flexible and over–complex models. The Bayesian

approach helps detect poor underlying assumptions in learning models. For learning

models well matched to a problem, a good correlation between generalisation ability

and the Bayesian evidence is obtained.

3.1 The gaps in backprop

There are many knobs on the black box of ‘backprop’ (learning by back–propagation of
errors [66]). Generally these knobs are set by rules of thumb, trial and error, and the use of
reserved test data to assess generalisation ability (or more sophisticated cross–validation).
The knobs fall into two classes: (1) parameters which change the effective learning model, for
example, number of hidden units, and weight decay terms; and (2) parameters concerned
with function optimisation technique, for example, ‘momentum’ terms. This chapter is
concerned with making objective the choice of the parameters in the first class, and with
ranking alternative solutions to a learning problem in a way which makes full use of all the
available data. Bayesian techniques will be described which are both theoretically well–
founded and practically implementable.

Let us review the basic framework for learning in networks, then discuss the points at
which objective techniques are needed. The training set for the mapping to be learned is
a set of input–target pairs D = {xm, tm}, where m is a label running over the pairs. A

0Chapter 3 of Ph.D. thesis ‘Bayesian Methods for Adaptive Models’ by David MacKay, California Institute
of Technology, submitted December 10 1991.
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neural network architecture A is invented, consisting of a specification of the number of
layers, the number of units in each layer, the type of activation function performed by each
unit, and the available connections between the units. If a set of values w is assigned to
the connections in the network, the network defines a mapping y(x;w,A) from the input
activities x to the output activities y.1 The distance of this mapping to the training set is
measured by some error function; for example the error for the entire data set is commonly
taken to be

ED(D |w,A) =
∑

m

1

2

(

y(xm;w,A)− tm
)2
. (3.1)

The task of ‘learning’ is to find a set of connections w which gives a mapping which fits
the training set well, i.e., has small error ED; it is also hoped that the learned connections
will ‘generalise’ well to new examples. Plain backpropagation learns by performing gradient
descent on ED in w–space. Modifications include the addition of a ‘momentum’ term, and
the inclusion of noise in the descent process. More efficient optimisation techniques may
also be used, such as conjugate gradients or variable metric methods. This chapter will not
discuss computational modifications concerned only with speeding the optimisation. It will
address however those modifications to the plain backprop algorithm which implicitly or
explicitly modify the objective function, with decay terms or regularisers.

It is moderately common for extra regularising terms EW (w) to be added to ED; for
example, terms which penalise large weights may be introduced, in the hope of achieving
a smoother or simpler mapping [33, 39, 57, 67, 87]. Some of the ‘hints’ in [2] also fall into
the category of additive weight–dependent energies. A sample weight energy term is:

EW (w|A,R) =
∑

i

1

2
w2
i . (3.2)

The weight energy may be implicit, for example, ‘weight decay’ (subtraction of a multi-
ple of w in the weight change rule) corresponds to the energy in (3.2). Gradient–based
optimisation is then used to minimise the combined function:

M = αEW (w|A,R) + βED(D |w,A), (3.3)

where α and β are ‘black box’ parameters.
The constant α should not be confused with the ‘momentum’ parameter sometimes

introduced into backprop; in the present context α is a decay rate or regularising constant.
Also note that α should not be viewed as causing ‘forgetting’; ED is defined as the error on
the entire data set, so gradient descent on M treats all data points equally irrespective of
the order in which they were acquired.

What is lacking

The above procedures include a host of free parameters such as the choice of neural network
architecture, and of the regularising constant α. There are not yet established ways of
objectively setting these parameters, though there are many rules of thumb (see [39, 87] for
examples).

One popular way of comparing networks trained with different parameter values is to
assess their performance by measuring the error on an unseen test set or by similar cross–
validation techniques. The data are divided into two sets, a training set which is used to

1The framework developed in this chapter will apply not only to networks composed of ‘neurons’, but to
any regression model for which we can compute the derivatives of the outputs with respect to the parameters,
∂y(x;w,A)/∂w.
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optimise the parameters w of the network, and a test set, which is used to optimise control
parameters such as α and the architecture A. However, the utility of these techniques
in determining values for the parameters α and β or for comparing alternative network
solutions, etc., is limited because a large test set may be needed to reduce the signal to noise
ratio in the test error, and cross–validation is computationally demanding. Furthermore,
if there are several parameters like α and β, it is out of the question to optimise such
parameters by repeating the learning with all possible values of these parameters and using
a test set. Such parameters must be optimised on line.

It is therefore interesting to study objective criteria for setting free parameters and
comparing alternative solutions, which depend only on the data set used for the training.
Such criteria will prove especially important in applications where the total amount of data
is limited, so that one doesn’t want to sacrifice good data for use as a test set. Rather, we
wish to find a way to use all our data in the process of optimising the parameters w and in
the process of optimising control parameters like α and A.

This chapter will describe practical Bayesian methods for filling the following holes in
the neural network framework just described:

1. Objective criteria for comparing alternative neural network solutions, in
particular with different architectures A.

Given a single architecture A, there may be more than one minimum of the objective
function M . If there is a large disparity in M between the minima then it is plausible
to choose the solution with smallest M . But where the difference is not so great it is
desirable to be able to assign an objective preference to the alternatives.

It is also desirable to be able to assign preferences to neural network solutions using
different numbers of hidden units, and different activation functions. Here there is an
‘Occam’s razor’ problem: the more free parameters a model has, the smaller the data
error ED it can achieve. So we cannot simply choose the architecture with smallest
data error. That would lead us to an over–complex network which generalises poorly.
The use of weight decay does not fully alleviate this problem; networks with too many
hidden units still generalise worse, even if weight decay is used (see section 3.4).

2. Objective criteria for setting the decay rate α. As in the choice of A above,
there is an ‘Occam’s razor’ problem: a small value of α in equation (3.3) allows the
weights to become large and overfit the noise in the data. This leads to a small value
of the data error ED (and a small value ofM), so we cannot base our choice of α only
on ED or M . The Bayesian solution presented here can be implemented on–line, i.e.,
it is not necessary to do multiple learning runs with different values of α in order to
find the best.

3. Objective choice of regularising function EW .

4. Objective criteria for choosing between a neural network solution and a
solution using a different learning or interpolation model, for example, splines
or radial basis functions.

The probability connection

Tishby et al. [82] introduced a probabilistic view of learning which is an important step
towards solving the problems listed above. The idea is to force a probabilistic interpretation
onto the neural network technique so as to be able to make objective statements. This
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interpretation does not involve the addition of any new arbitrary functions or parameters,
but it involves assigning a meaning to the functions and parameters that are already used.

My work is based on the same probabilistic framework, and extends it using concepts
and techniques adapted from Gull and Skilling’s Bayesian image reconstruction methods
[27]. This chapter also adopts a shift in emphasis from Tishby et al.’s paper. Their work
concentrated on predicting the average generalisation ability of one network trained on a
task drawn from a known prior ensemble of tasks. This is called forward probability. In
this thesis the emphasis will be on quantifying the relative plausibilities of many alternative
solutions to an interpolation or classification task; that task is defined by a single data set
produced by the real world, and we do not know the prior ensemble from which the task
comes. This is called inverse probability. This thesis avoids using the language of statistical
physics, partly so as to avoid concepts that would sound strange in that language; for
example ‘the probability distribution of the temperature’ is unfamiliar in physics, but ‘the
probability distribution of the noise variance’ is its innocent counterpart in literal terms.

Let us now review the probabilistic interpretation of network learning.

• Likelihood. A network with specified architecture A and connections w is viewed as
making predictions about the target outputs as a function of input x in accordance
with the probability distribution:

P (tm|xm,w, β,A,N ) =
exp(−βE(tm|xm,w,A))

Zm(β)
, (3.4)

where Zm(β) =
∫

dt exp(−βE). E is the error for a single datum, and β is a measure
of the presumed noise included in t. If E is the quadratic error function then this
corresponds to the assumption that t includes additive Gaussian noise with variance
σ2ν = 1/β. The symbol N denotes the implicit noise model.

• Prior. A prior probability is assigned to alternative network connection strengths w,
written in the form:

P (w|α,A,R) =
exp(−αEW (w|A,R))

ZW (α)
, (3.5)

where ZW =
∫

dkw exp(−αEW ). Here α is a measure of the characteristic expected
connection magnitude. If EW is quadratic as specified in equation (3.2) then weights
are expected to come from a Gaussian with zero mean and variance σ2W = 1/α.
Alternative ‘regularisers’ R (each using a different energy function EW ) implicitly
correspond to alternative hypotheses about the statistics of the environment.

• The posterior probability of the network connections w is then:

P (w|D, α, β,A,N ,R) =
exp(−αEW − βED)

ZM (α, β)
, (3.6)

where ZM(α, β) =
∫
dkw exp(−αEW − βED). Notice that the exponent in this ex-

pression is the same as (minus) the objective function M defined in (3.3).

So under this framework, minimisation of M = αEW + βED is identical to finding the
(locally) most probable parameters wMP; minimisation of ED alone is identical to finding
the maximum likelihood parameters wML. Thus an interpretation has been given to back-
propagation’s energy functions ED and EW , and to the parameters α and β. It should
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be emphasised that ‘the probability of the connections w’ is a measure of plausibility that
the model’s parameters should have a specified value w; this has nothing to do with the
probability that a particular algorithm might converge to w.

This framework offers some partial enhancements for backprop methods: The work of
Levin et al. [43] makes it possible to predict the average generalisation ability of neural
networks trained on one of a defined class of problems. However, it is not clear whether
this will lead to a practical technique for choosing between alternative network architectures
for real data sets.

Le Cun et al. have demonstrated how to estimate the ‘saliency’ of a weight, which is the
change in M when the weight is deleted [41]. They have used this measure successfully to
simplify large neural networks. However, no stopping rule for weight deletion was offered
other than measuring performance on a test set.

Also Denker and Le Cun demonstrated how the Hessian of M can be used to assign
error bars to the parameters of a network and to its outputs [19]. However, these error bars
can only be quantified once β is quantified, and how to do this without prior knowledge or
extra data has not been demonstrated. In fact β can be estimated from the training data
alone.

3.2 Review of Bayesian regularisation and model compari-

son

In chapter 2 it was demonstrated how the control parameters α and β are assigned by
Bayes, and how alternative interpolation models H = {A,N ,R} can be compared. It was
noted there that it is not satisfactory to optimise α and β by finding the joint maximum
likelihood value of w, α, β; the likelihood has a skew peak whose maximum is not located
at the most probable values of the control parameters. Chapter 2 also reviewed how the
Bayesian choice of α and β is neatly expressed in terms of a measure of the number of
well–determined parameters in a model, γ. However that chapter assumed that M(w)
only has one significant minimum which was well approximated as quadratic. (All the
interpolation models discussed in chapter 2 can be interpreted as two–layer networks with
a fixed non–linear first layer and adaptive linear second layer.) In this section I briefly
review the Bayesian framework, retaining that assumption. The following section will then
discuss how the framework can be modified to handle neural networks, where the landscape
of M(w) is certainly not quadratic.

Determination of α and β

By Bayes’ rule, the posterior probability for these parameters is:

P (α, β |D,H) =
P (D|α, β,H)P (α, β|H)

P (D|H)
. (3.7)

Now if we assign a uniform prior to (α, β), the quantity of interest for assigning preferences
to (α, β) is the first term on the right hand side, the evidence for α, β, which can be written
as2

P (D|α, β,H) =
ZM(α, β)

ZW (α)ZD(β)
, (3.8)

2The same notation, and the same abuses thereof, will be used as in chapter 2.
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where ZM and ZW were defined earlier and ZD =
∫
dNDe−βED .

Let us use the simple quadratic energy functions defined in equations (3.1,3.2). This
makes the analysis easier, but more complex cases can still in principle be handled by the
same approach. Let the number of degrees of freedom in the data set, i.e., the number of
output units times the number of data pairs, be N , and let the number of free parameters,
i.e., the dimension of w, be k. Then we can immediately evaluate the Gaussian integrals
ZD and ZW : ZD = (2π/β)N/2, and ZW = (2π/α)k/2. Now we want to find ZM(α, β) =
∫

dkw exp(−M(w, α, β)). Supposing for now that M has a single minimum as a function
of w, at wMP, and assuming we can locally approximate M as quadratic there, the integral
ZM is approximated by:

ZM ≃ e−M (wMP)(2π)k/2det−
1
2A, (3.9)

where A = ∇∇M is the Hessian of M evaluated at wMP.
The maximum of P (D|α, β,H) has the following useful properties:

χ2W ≡ 2αEW = γ (3.10)

χ2D ≡ 2βED = N − γ, (3.11)

where γ is the effective number of parameters determined by the data,

γ =
k∑

a=1

λa
λa + α

, (3.12)

where λa are the eigenvalues of the quadratic form βED in the natural basis of EW .

Comparison of different models

To rank alternative architectures, noise models, and penalty functions EW in the light of
the data, we simply evaluate the evidence for H = {A,N ,R}, P (D |H), which appeared as
the normalising constant in (3.7). Integrating the evidence for (α, β), we have:

P (D|H) =
∫

P (D|α, β,H)P (α, β|H) dαdβ. (3.13)

The evidence is the Bayesian’s transportable quantity for comparing models in the light of
the data.

3.3 Adapting the framework

For neural networks, M(w) is not quadratic. Indeed it is well known that M typically
has many local minima. And if the network has a symmetry under permutation of its
parameters, then we know that M(w) must share that symmetry, so that every single
minimum belongs to a family of symmetric minima of M . For example if there are H
hidden units in a single layer then each non–degenerate minimum is in a family of size
g = H ! 2H. Now it may be the case that the significant minima of M are locally quadratic,
so we might be able to evaluate ZM by evaluating (3.9) at each significant minimum and
adding up the ZMs; but the number of those minima is unknown, and this approach to
evaluating ZM would seem dubious.

Luckily however, we do not actually want to evaluate ZM . We would need to evaluate
ZM in order to assign a posterior probability over α, β for an entire model, and to evaluate
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the evidence for alternative entire models. This is not quite what we wish to do: when
we use a neural network to perform a mapping, we typically only implement one neural
network at a time, and this network will have its parameters set to a particular solution of
the learning problem. Therefore the alternatives we wish to rank are the different solutions
of the learning problem, i.e., the different minima of M . We would only want the evidence
as a function of the number of hidden units if we were somehow able to simultaneously
implement the entire posterior ensemble of networks for one number of hidden units. Sim-
ilarly, we do not want the posterior over α, β for the entire posterior ensemble; rather, it is
reasonable to allow each solution (each minimum of M) to choose its own optimal value for
these parameters. The same method of chopping up a complex model space is used in the
unsupervised classification system, AutoClass [31].

Having adopted this slight shift in objective, it turns out that to set α and β and to
compare alternative solutions to a learning problem, the integral we now need to evaluate
is a local version of ZM . Assume that the posterior probability consists of well separated
islands in parameter space each centred on a minimum of M . We wish to evaluate how
much posterior probability mass is in each of these islands. Consider a minimum located
at w∗, and define a solution Sw∗ as the ensemble of networks in the neighbourhood of w∗,
and all symmetric permutations of that ensemble. Let us evaluate the posterior probability
for alternative solutions Sw∗, and the parameters α and β:

P (Sw∗ , α, β,H|D)∝ g
Z∗

M(w∗, α, β)

ZW (α)ZD(β)
P (α, β|H)P (H), (3.14)

where g is the permutation factor, and Z∗

M (w∗, α, β) =
∫

Sw∗
dkw exp(−M(w, α, β)), where

the integral is performed only over the neighbourhood of the minimum at w∗. I will refer

to the quantity g
Z∗

M (w∗,α,β)

ZW (α)ZD(β) as the evidence for α, β, Sw∗. The parameters α and β will
be chosen to maximise this evidence. Then the quantity we want to evaluate to compare
alternative solutions is the evidence3 for Sw∗,

P (D, Sw∗|H) =
∫

g
Z∗

M(w∗, α, β)

ZW (α)ZD(β)
P (α, β|H) dαdβ. (3.15)

This thesis uses the Gaussian approximation for Z∗

M :

Z∗

M ≃ e−M (w∗)(2π)k/2det−
1
2A, (3.16)

where A = ∇∇M is the Hessian of M evaluated at w∗. For general α and β this approxi-
mation is probably unacceptable; however we only need it to be accurate for the small range
of α and β close to their most probable value. The regime in which this approximation will
definitely break down is when the number of constraints, N , is small relative to the number
of free parameters, k. For large N/k the central limit theorem encourages us to use the
Gaussian approximation [84]. It is a matter for further research to establish how large N/k
must be for this approximation to be reliable.

What obstacles remain to prevent us from evaluating the local Z∗M? We need to evaluate
or approximate the inverse Hessian of M , and we need to evaluate or approximate its
determinant and/or trace [49].

3Bayesian model comparison is performed by evaluating and comparing the evidence for alternative
models. Gull and Skilling defined the evidence for a model H to be P (D|H). The existence of multiple
minima in neural network parameter space complicates model comparison. The quantity in (3.15) is not
P (D|Sw] ,H) (it includes the prior for Sw] |H), but I have called it the evidence because it is the quantity
we should evaluate to compare alternative solutions with each other and with other models.
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Figure 3.1: Typical neural network output. (Inset – training set)
This is the output space (ya, yb) of the network. The target outputs are displayed as small x’s, and
the output of the network with 1σ error bars is shown as a a dot surrounded by an ellipse. The
network was trained on samples in two regions in the lower and upper half planes (inset). The
outputs illustrated here are for inputs extending a short distance outside the two training regions,
and bridging the gap between them. Notice that the error bars get much larger around the perimeter.
They also increase slightly in the gap between the training regions. These pleasing properties are
not obtained if the diagonal Hessian approximation of [19] is used. The above solution was created
by a three layer network with 19 hidden units.

Denker et al. have already discussed how to approximate the Hessian of ED for the
purpose of evaluating weight saliency and for assigning error bars to weights and network
outputs [19, 41]. The Hessian can be evaluated in the same way that backpropagation
evaluates ∇ED (see [9] for a complete algorithm and the appendix of this chapter for
a useful approximation). Alternatively A can be evaluated by numerical methods, for
example second differences. A third option: if variable metric methods are used to minimise
M instead of gradient descent, then the inverse Hessian is automatically generated during
the search for the minimum. It is important, for the success of this Bayesian method, that
the off–diagonal terms of the Hessian should be evaluated. Denker et al.’s method can do
this without any additional complexity. The diagonal approximation is no good because of
the strong posterior correlations in the parameters.

3.4 Demonstration

This demonstration examines the evidence for various neural net solutions to a small inter-
polation problem, the mapping for a two joint robot arm,

(θ1, θ2) → (ya, yb) = (r1 cos θ1 + r2 cos(θ1 + θ2), r1 sin θ1 + r2 sin(θ1 + θ2)).

For the training set I used r1 = 2.0 and r2 = 1.3, random samples from a restricted range of
(θ1, θ2) were made, and Gaussian noise of magnitude 0.05 was added to the outputs. The
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Figure 3.2: Data error versus number of hidden units.
Each point represents one converged neural network, trained on a 200 i/o pair training set. Each
neural net was initialised with different randomweights and with a different initial value of σ2

W
= 1/α.

The two point–styles correspond to small and large initial values for σW . The error is shown in
dimensionless χ2 units such that the expectation of error relative to the truth is 400± 20. The solid
line is 400− k, where k is the number of free parameters.
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Figure 3.3: Test error versus number of hidden units
The training set and test set both had 200 data points. The test error for solutions found using the
first regulariser is shown in dimensionless χ2 units such that the expectation of error relative to the
truth is 400± 20.
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Figure 3.4: Test error vs. data error.
Each point represents the performance of a single trained neural network on the training set and
on the test set. The horizontal axis displays the data error, that is, the network’s performance on
the training data. A small value of data error corresponds to a network that has learnt the training
data well. The vertical axis displays the test error, that is, how well each network generalises to new
examples. The smaller the test error, the better the generalisation ability of the network.
This graph illustrates the ‘Occam problem’ — the best generalisation is not achieved by the models

which fit the training data best.
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Figure 3.5: Log evidence for solutions using the first regulariser.
For each solution, the evidence was evaluated. Notice that an evidence maximum is achieved by
neural network solutions using 10, 11 and 12 hidden units. For more than ∼ 19 hidden units, the
quadratic approximations used to evaluate the evidence are believed to break down. The number of
data points N is 400 (i.e., 200 i/o pairs); c.f. number of parameters in a net with 20 hidden units
= 102.
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Figure 3.6: The number of well–determined parameters.
This figure displays γ as a function of k, for the same network solutions as in figure 3.5.
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Figure 3.7: Data misfit versus γ.
This figure shows χ2

D
against γ, and a line of gradient −1. Towards the right, the data’s misfit χ2

D
is

reduced by 1 for every well–measured parameter. When the model has too few parameters however
(towards the left), the misfit gets worse at a greater rate.
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Figure 3.8: Log evidence versus test error for the first regulariser
The desired correlation between the evidence and the test error has negative slope. A significant
number of points on the lower left violate this desired trend, so we have a failure of Bayesian
prediction. The points which violate the trend are networks in which there is a significant difference
in typical weight magnitude between the two layers. They are all networks whose learning was
initialised with a large value of σW . The first regulariser is ill–matched to such networks, and the
low evidence is a reflection of this poor prior hypothesis.
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Figure 3.9: Comparison of two test errors.
This figure illustrates how noisy a performance measure the test error is. Each point compares the
error of a trained network on two different test sets. Both test sets consist of 200 data points from
the same distribution as the training set.
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neural nets used had one hidden layer of sigmoid units and linear output units. During
optimisation, the regulariser (3.2) was used initially, and an alternative regulariser was
introduced later; β was fixed to its true value (to enable demonstration of the properties of
the quantity γ), and α was allowed to adapt to its locally most probable value.

Figure 3.1 illustrates the performance of a typical neural network trained in this way.
Each output is accompanied by error bars evaluated using Denker et al.’s method, including
off–diagonal Hessian terms. If β had not been known in advance, it could have been inferred
from the data using equation (3.11). For the solution displayed, the model’s estimate of β
in fact differed negligibly from the true value, so the displayed error bars are the same as if
β had been inferred from the data.

Figure 3.2 shows the data misfit versus the number of hidden units. Notice that, as
expected, the data error tends to decrease monotonically with increasing number of param-
eters. Figure 3.3 shows the error of these same solutions on an unseen test set, which does
not show the same trend as the data error. This Occam problem is illustrated by figure
3.4, which compares the test error with the data error. The data misfit cannot serve as a
criterion for choosing between solutions.

Figure 3.5 shows the evidence for about 100 different solutions using different numbers of
hidden units. Notice how the evidence maximum has the characteristic shape of an ‘Occam
hill’ — steep on the side with too few parameters, and shallow on the side with too many
parameters. The quadratic approximations break down when the number of parameters
becomes too big compared with the number of data points.

The next figures introduce the quantity γ, discussed in chapter 2, the number of well–
measured parameters. In cases where the evaluation of the evidence proves difficult, it
may be that γ will serve as a useful tool. For example, sampling theory predicts that
the addition of redundant parameters to a model should reduce χ2D by one unit per well–
measured parameter; a stopping criterion could detect the point at which, as parameters
are deleted, χ2D started to increase faster than with gradient 1 with decreasing γ (figure
3.7).4 This use of γ requires prior knowledge of the noise level β; that is why β was fixed
to its known value for these demonstrations.

Now the question is how good a predictor of network quality the evidence is. The fact
that the evidence has a maximum at a reasonable number of hidden units is promising. A
comparison with figure 3.3 shows that the performance of the solutions on an unseen test set
has similar overall structure to the evidence. However, figure 3.8 shows the evidence against
the performance on a test set, and it can be seen that a significant number of solutions with
poor evidence actually perform well on the test set. Something is wrong! Let us discuss
the relationship between the evidence and generalisation ability. We will then return to the
failure in figure 3.8 and see that it is rectified by the development of new, more probable
regularisers.

Relation to ‘generalisation error’

What is the relationship between the evidence and the generalisation error (or its close
relative, cross–validation)? A correlation between the two is certainly expected. But the
evidence is not necessarily a good predictor of generalisation error (see discussion in chapter
2). First, as illustrated in figure 3.9, the error on a test set is a noisy quantity, and a lot of
data has to be devoted to the test set to get an acceptable signal to noise ratio. Furthermore,
imagine that two models have generated solutions to an interpolation problem, and that

4This suggestion is closely related to Moody’s ‘generalised prediction error’, GPE = 1
N (χ2

D + 2γ) [54].
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their twomost probable interpolants are completely identical. In this case, the generalisation
error for the two solutions must be the same, but the evidence will not in general be the
same: typically, the model that was a priori more complex will suffer a larger Occam factor
and will have smaller evidence. Also, the evidence is a measure of plausibility of the whole
ensemble of networks about the optimum, not just the optimal network. Thus there is more
to the evidence than there is to the generalisation error.

What if the Bayesian method fails?

I do not want to dismiss the utility of the generalisation error: it can be important for
detecting failures of the model being used. For example, if we obtain a poor correlation
between the evidence and the generalisation error, such that Bayes fails to assign a strong
preference to solutions which actually perform well on test data, then we are able to detect
and attempt to correct such failures.

A failure indicates one of two things, and in either case we are able to learn and improve:
either numerical inaccuracies in the evaluation of the probabilities caused the failure; or else
the alternative models which were offered to Bayes were a poor selection, ill–matched to the
real world (for example, using inappropriate regularisers). When such a failure is detected,
it prompts us to examine our models and try to discover the implicit assumptions in the
model which the data didn’t agree with; alternative models can be tried until one is found
that makes the data more probable.

We have just met exactly such a failure. Let us now establish what assumption in our
model caused this failure and learn from it. Note that this mechanism for human learning
is not available to those who just use the test error as their performance criterion. Going by
the test error alone, there would have been no indication that there was a serious mismatch
between the model and the data.

Back to the demonstration: comparing different regularisers

The demonstrations thus far used the regulariser (3.2). This is equivalent to a prior that
expects all the weights to have the same characteristic size. This is actually an inconsistent
prior: the input and output variables and hidden unit activities could all be arbitrarily
rescaled; if the same mapping is to be performed (a simple consistency requirement), such
transformations of the variables would imply independent rescaling of the weights to the
hidden layer and to the output layer. Thus, the scales of the two layers of weights are
unrelated, and it is inconsistent to force the characteristic decay rates of these different
classes of weights to be the same. This inconsistency is the major cause of the failure
illustrated in figure 3.8. All the networks deviating substantially from the desired trend have

weights to the output layer far larger than the weights to the input layer; this poor match
to the model implicit in the regulariser causes the evidence for those solutions to be small.

This failure enables us to progress with insight to new regularisers. The alternative that
I now present is a prior which is not inconsistent in the way explained above, so there are
theoretical reasons to expect it to be ‘better’. However, we will allow the data to choose,
by evaluating the evidence for solutions using the new prior; we will find that the new prior
is indeed more probable.

The second prior has three independent regularising constants, corresponding to the
characteristic magnitudes of the weights in three different classes c, namely hidden unit
weights, hidden unit biases, and output weights and biases (see figure 3.10). The term
αEW is replaced by

∑

c αcE
c
W , where Ec

W =
∑

i∈cw
2
i /2. Hinton and Nowlan [57] have used
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Figure 3.10: The three classes of weights under the second prior
1: Hidden unit weights. 2: Hidden unit biases. 3: Output unit weights and biases. The weights in
one class c share the same decay constant αc.
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Figure 3.11: Log evidence versus number of hidden units for the second prior
The different point styles correspond to networks with learning initialised with small and large
values of σW ; networks previously trained using the first regulariser and subsequently trained on
the second regulariser; and networks in which a weight symmetry was detected (in such cases the
evidence evaluation is possibly less reliable).
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Figure 3.12: Log evidence for the second prior versus test error.
The correlation between the evidence and the test error for the second prior is very good. Note that
the largest value of evidence has increased relative to figure 3.8, and the smallest test error has also
decreased.

a similar prior modelling weights as coming from a Gaussian mixture, and using Bayesian
re–estimation techniques to update the mixture parameters; they found such a model was
good at discovering elegant solutions to problems with translation invariances. This model
also achieves better performance on the task of sunspot time series prediction than any
published model [58].

Using the second prior, each regularising constant is independently adapted to its most
probable value by evaluating the number of well–measured parameters γc associated with
each regularising function, and finding the optimum where 2αcE

c
W = γc. The increased

complexity of this prior model is penalised by an Occam factor for each new parameter αc
(see chapter 2). Let me preempt questions along the lines of ‘why didn’t you use four weight
classes, or non–zero means?’ — any other way of assigning weight decays is just another
model, and you can try as many as you like; by evaluating the evidence you can then find
out what preference the data have for the alternative decay schemes.

New solutions have been found using this second prior, and the evidence evaluated. The
evidence for these new solutions with the new prior is shown in figure 3.11. Notice that the
evidence has increased compared to the evidence for the first prior. For some solutions the
new prior is more probable by a factor of 1030.

Now the crunch: does this more probable model make good predictions? The evidence
for the second prior is shown against the test error in figure 3.12. The correlation between
the two is greatly improved. Notice furthermore that not only is the second prior more
probable, the best test error achieved by solutions found using the second prior is slightly
better than any achieved using the first prior, and the number of good solutions has increased
substantially. Thus, the Bayesian evidence is a good predictor of generalisation ability, and
the Bayesian choice of regularisers has enabled the best solutions to be found.
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3.5 Discussion

The Bayesian method that has been presented is well–founded theoretically, and it works
practically, though it remains to be seen how this approach will scale to larger problems.
For a particular data set, the evaluation of the evidence has led us objectively from an
inconsistent regulariser to a more probable one. The evidence is maximised by networks
which generalise best, showing that Occam’s razor has been successfully embodied with no
ad hoc terms. Furthermore the solutions with greatest evidence perform better on a test
set than any other solutions found. I believe there is currently no other technique that
could reliably find and identify better solutions using only the training set. Essential to
this success was the simultaneous Bayesian optimisation of the three regularising constants
(decay terms) αc. Optimisation of these parameters by any orthodox search technique such
as cross–validation would be laborious; if there were many more than three regularising
constants, as could easily be the case in larger problems, it is hard to imagine any such
search being possible.5

This brings up the question of how these Bayesian calculations scale with problem size.
In terms of the number of parameters k, calculation of the determinant and inverse of the
Hessian scales as k3. Note that this is a computation that needs to be carried out only a small
number of times compared with the immense number of derivative calculations involved in a
typical learning session. However, for large problems it may be too demanding to evaluate
the determinant of the Hessian. If this is the case, numerical methods are available to
approximate the determinant or trace of a matrix in k2 time [72].

Application to classification problems

This chapter has thus far discussed the evaluation of the evidence for backprop networks
trained on interpolation problems. Neural networks can also be trained to perform classi-
fication tasks. A future publication [52] will demonstrate that the Bayesian framework for
model comparison can be applied to these problems too.

Relation to V–C dimension

Some papers advocate the use of V–C dimension [1] as a criterion for penalising over–
complex models [2, 42]. V–C dimension is most often applied to classification problems;
the evidence, on the other hand, can be evaluated equally easily for both interpolation
and classification problems. V–C dimension is a worst case measure, so it yields different
results from Bayesian analysis [32]. For example, V–C dimension is indifferent to the use of
regularisers like (3.2), and to the value of α, because the use of such regularisers does not
rule out absolutely any particular network parameters. Thus V–C dimension assigns the
same complexity to a model whether or not it is regularised.6 So it cannot be used to set
regularising constants α or to compare alternative regularisers. In contrast, the preceding

5Radford Neal (personal communication) has pointed out that it is possible to evaluate the gradient of a
validation error with respect to parameters such as {αc}, using ∂Eval/∂αc = ∂Eval/∂wMP · ∂wMP/∂αc. The
first quantity could be evaluated by backprop, and the second term could be found within the quadratic ap-
proximation which gives ∂wMP/∂αc = A−1IcwMP, where Ic is the identity matrix for the weights regularised
by αc, and zero elsewhere. Alternatively, Radford Neal has suggested that the gradients ∂Eval/∂αc could
be more efficiently calculated using ‘recurrent backpropagation’ [61], viewing w as the vector of activities of
a recurrent network, and wMP as the fixed point whose error Eval we wish to minimise.

6However, E. Levin and I.Guyon et al.[30] have developed a measure of ‘effective V–C dimension’ of a
regularised model. This measure is identical to γ, equation (3.12), and their predicted generalisation error
based on Vapnik’s structural risk theory has exactly the same scaling behaviour as the evidence!
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demonstrations show that careful objective choice of regulariser and α is essential for the
best solutions to be obtained.

Worst case analysis has a complementary role alongside Bayesian methods. Neither can
substitute for the other.

Future tasks

Further work is needed to formalise the relationship of this framework to the pragmatic
model comparison technique of cross–validation. Moody’s work on ‘generalised prediction
error’ (GPE) is an interesting contribution in this direction [54]. His sampling theory
approach predicts that the generalisation error, in χ2 units, will be 1

N (χ2D +2γ). However, I
have evaluated the GPE for the interpolation models in this chapter’s demonstration, and
found the correlation between GPE and the actual test error was poor. More work is needed
to understand this.

The Gaussian approximation used to evaluate the evidence breaks down when the num-
ber of data points is small compared to the number of parameters. For the model problems
I have studied so far, the Gaussian approximation seemed to break down significantly for
N/k < 3± 1. It is a matter for further research to characterise this failure and investigate
techniques for improving the evaluation of the integral Z∗M , for example the use of random
walks on M in the neighbourhood of a solution.

It is expected that evaluation of the evidence should provide an objective rule for de-
ciding whether a network pruning or growing procedure should be stopped, but a careful
study of this idea has yet to be performed.

It will be interesting to see the results of evaluating the evidence for networks applied
to larger real–world problems.

Appendix: Numerical methods

Quick and dirty version

The three numerical tasks are automatic optimisation of αc and β, calculation of error bars,
and evaluation of the evidence. I will describe a cheap approximation for solving the first
of these tasks without evaluating the Hessian. If we neglect the distinction between well–
determined and poorly–determined parameters, we obtain the following update rules for α
and β:

αc := kc/2E
c
W

β := N/2ED.

If you want an easy–to–program taste of what a Bayesian framework can offer, try using
this procedure to update your decay terms.

Hessian evaluation

The Hessian of M , A, is needed to evaluate γ (which relates to Trace A−1), to evaluate
the evidence (which relates to det A), and to assign error bars to network outputs (using
A−1).

I used two methods for evaluating A: a) an approximate analytic method and b) second
differences. The approximate analytic method was, following Denker et al., to use backprop
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to obtain the second derivatives, neglecting terms in f′′, where f is the activation function
of a neuron. The Hessian is built up as a sum of outer products of gradient vectors:

∇∇ED ≃
∑

i,m

gm
i gmT

i , (3.17)

where gm
i = dyi(x

m)
dw . Unlike Denker et al., I did not ignore the off–diagonal terms; the

diagonal approximation is not good enough! For the evaluation of γ the two methods gave
similar results, and either approach seemed satisfactory. However, for the evaluation of the
evidence, the approximate analytic method failed to give satisfactory results. The ‘Occam
factors’ are very weak, scaling only as logN , and the above approximation apparently
introduces systematic errors greater than these. The reason that the evidence evaluation
is more sensitive to errors than the γ evaluation is because γ is related to the sum of
eigenvalues, whereas the evidence is related to the product; errors in small eigenvalues
jeopardise the product more than the sum. I expect an exact analytic evaluation of the
second derivatives [9] would resolve this. To save programming effort I instead used second
differences, which is computationally more demanding (∼ kN backprops) than the analytic
approach (∼ N backprops). There were still problems with errors in small eigenvalues, but
it was possible to correct these errors, by detecting eigenvalues which were smaller than
theoretically permitted.

Demonstrations

The demonstrations were performed as follows:
Initial weights: random weights drawn from a Gaussian with σW = 0.3.
Optimisation algorithm for M(w): variable metric methods, using code from [64], used
several times in sequence with values of the fractional tolerance decreasing from 10−4 to
10−8. Every other loop, the regularising constants αc were allowed to adapt in accordance
with the re–estimation formula:

αc := γc/2E
c
W . (3.18)

Precaution

When evaluating the evidence, care must be taken to verify that the permutation term
g is appropriately set. It may be the case (probably mainly in toy problems) that the
regulariser makes two or more hidden units in a network adopt identical connection values;
alternatively some hidden units might switch off, with all weights set to zero; in these cases
the permutation term should be smaller. Also in these cases, it is likely that the quadratic
approximation will perform badly (quartic rather than quadratic minima are likely), so it
is preferable to automate the deletion of such redundant units.
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Chapter 4

Information-based Objective

Functions for Active Data

Selection

Abstract

Learning can be made more efficient if we can actively select particularly salient data

points. Within a Bayesian learning framework, objective functions are discussed which

measure the expected informativeness of candidate measurements. Three alternative

specifications of what we want to gain information about lead to three different criteria

for data selection. All these criteria depend on the assumption that the hypothesis

space is correct, which may prove to be their main weakness.

4.1 Introduction

Theories for data modelling often assume that the data is provided by a source that we
do not control. However, there are two scenarios in which we are able to actively select
training data. In the first, data measurements are relatively expensive or slow, and we want
to know where to look next so as to learn as much as possible. According to Jaynes [36],
Bayesian reasoning was first applied to this problem two centuries ago by Laplace, who in
consequence made more important discoveries in celestial mechanics than anyone else. In
the second scenario, there is an immense amount of data and we wish to select a subset of
data points that are most useful for our purposes. Both these scenarios will benefit if we
have ways of objectively estimating the utility of candidate data points.

The problem of ‘active learning’ or ‘sequential design’ has been extensively studied in
economic theory and statistics [21, 23]. Experimental design within a Bayesian framework
using the Shannon information as an objective function has been studied by Lindley [44] and
by Luttrell [48]. A distinctive feature of this approach is that it renders the optimisation of
the experimental design independent of the ‘tests’ that are to be applied to the data and the
loss functions associated with any decisions. This chapter uses similar information–based
objective functions and discusses the problem of optimal data selection within the Bayesian
framework for interpolation described in chapters 2 and 3. Most of the results in this
chapter have direct analogs in Fedorov [23], though the quantities involved have different

0Chapter 4 of Ph.D. thesis ‘Bayesian Methods for Adaptive Models’ by David MacKay, California Institute
of Technology, submitted December 10 1991.
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interpretations: for example, Fedorov’s dispersion of an estimator becomes the Bayesian’s
posterior variance of the parameter. This work was directly stimulated by a presentation
given by John Skilling at Maxent 91 [76].

Recent work in the neural networks literature on active data selection, also known as
‘query learning’, has concentrated on slightly different problems: The work of Baum [5] and
Hwang et al. [35] relates to perfectly separable classification problems only; in both these
papers a sensible query–based learning algorithm is proposed, and empirical results of the
algorithm are reported; Baum also gives a convergence proof. But since the algorithms
are both human–designed, it is not clear what objective function their querying strategy
optimises, nor how the algorithms could be improved. In contrast, this chapter (which
discusses noisy interpolation problems) derives criteria from defined objective functions;
each objective function leads to a different data selection criterion. Chapter 5 will discuss
the application of the same ideas to classification problems.

Plutowski and White [62] study a different problem from the above, in the context of
noise–free interpolation: they assume that a large amount of data has already been gathered,
and work on principles for selecting a subset of that data for efficient training; the entire
data set (inputs and targets) is consulted at each iteration to decide which example to add
to the training subset, an option that is not permitted here.

Statement of the problem

Imagine that we are gathering data in the form of a set of input–output pairs DN =
{x(m), t(m)}, where m=1 . . .N . This data is modelled with an interpolant y(x;w,A). An
interpolation modelH specifies the ‘architecture’A, which defines the functional dependence
of the interpolant on the parameters wi, i=1 . . .k. The model also specifies a regulariser R,
or prior on w, and a cost function, or noise model N describing the expected relationship
between y and t. We may have more than one interpolation model, each of which may be
linear or non–linear in w. Chapters 2 and 3 described the Bayesian framework for fitting
and comparing such models, assuming a fixed data set. This chapter discusses how the
same framework for interpolation relates to the task of selecting what data to gather next.

Our criterion for how informative a new datum is will depend on what we are interested
in. Several alternatives spring to mind:

1. If we have decided to use one particular interpolation model, we might wish to select
new data points to be maximally informative about the values that that model’s
parameters w should take.

2. Alternatively, we might not be interested in getting a globally well–determined inter-
polant; we might only want to be able to predict the value of the interpolant accurately
in a limited region, perhaps at a point in input space which we are not able to sample
directly.

3. Lastly, we might be unsure which of two or more models is the best interpolation
model, and we might want to select data so as to give us maximal information to
discriminate between the models.

This chapter will study each of these tasks for the case where we wish to evaluate the utility
as a function of xN+1, the input location at which a single measurement of a scalar tN+1 will
be made. The more complex task of selecting multiple new data points will not be addressed
here, but the methods used can be generalised to solve this task, as is discussed in [23, 48].
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The similar problem of choosing the xN+1 at which a vector of outputs tN+1 is measured will
not be addressed either.

The first and third definitions of information gain have both been studied in the abstract
by Lindley [44]. All three cases have been studied by Fedorov [23], mainly in non–Bayesian
terms. In this chapter, solutions will be obtained for the interpolation problem by using
a Gaussian approximation and in some cases assuming that the new datum is a relatively
weak piece of information. In common with most other work on active learning, the utility
is evaluated assuming that the probability distributions defined by the interpolation model
are correct. For some models, this assumption may be the Achilles’ heel of this approach,
as discussed in section 4.6.

Can our choice bias our inferences?

One might speculate that the way we choose to gather data might be able to bias our
inferences systematically away from the truth. If this were the case we might need to make
our inferences in a way which undoes such biases by taking into account how we gathered
the data. In orthodox statistics many estimators and statistical tests do depend on the
sampling strategy.

However, the likelihood principle states that our inferences should depend on the like-
lihood of the actual data received, not on other data that we might have gathered but
didn’t. Bayesian inference is consistent with this principle; there is no need to undo biases
introduced by the data collecting strategy, because it is not possible for such biases to be
introduced — as long as we perform inference using all the data gathered [8, 47]. When
the models are concerned with estimating the distribution of output variables t given input
variables x, we are allowed to look at the x value of a datum, and decide whether or not to
include the datum in the data set. This will not bias our inferences about the distribution
P (t|x).

4.2 Choice of information measure

Before we can start, we need to select a measure of the information gained about an unknown
variable when we receive the new datum tN+1. Having chosen such a measure we will
then select the xN+1 for which the expected information gain is maximal. Two measures of
information have been suggested, both based on Shannon’s entropy, whose properties as a
sensible information measure are well known. Let us explore this choice for the first task,
where we want to gain maximal information about the parameters of the interpolant, w.

Let the probability distributions of the parameters before and after we receive the datum
tN+1 be PN (w) and PN+1(w). Then the change in entropy of the distribution is ∆S =
SN − SN+1, where:

SN =
∫

dkw PN(w) log
m(w)

PN(w)
, (4.1)

where m is the measure on w that makes the argument of the log dimensionless.1 The
greater ∆S is, the more information we have gained about w. In the case of the quadratic

1This measure m will be unimportant in what follows but is included to avoid committing dimensional
crimes. Note that the sign of ∆S has been defined so that our information gain corresponds to positive ∆S.



56 BAYESIAN METHODS FOR ADAPTIVE MODELS

models discussed in chapter 2, if we set the measure m(w) equal to the prior P0(w), the
quantity SN is closely related to the log of the ‘Occam factor’.2

An alternative information measure is the cross entropy between PN(w) and PN+1(w):

G =
∫

dkwPN+1(w) log
PN(w)

PN+1(w)
. (4.2)

Let us define G′ = −G so as to obtain a positive quantity; then G′ is a measure of how
much information we gain when we are informed that the true distribution of w is PN+1(w),
rather than PN(w).

These two information measures are not equal. Intuitively they differ in that if the
measurem(w) is flat, ∆S only quantifies how much the probability ‘bubble’ of P (w) shrinks
when the new datum arrives; G′ also incorporates a measure of how much the bubble moves

because of the new datum. Thus according to G′, even if the probability distribution does
not shrink and become more certain, we have learnt something if the distribution moves
from one region to another in w–space.

The question of which information measure is appropriate is potentially complicated by
the fact that G′ is not a consistent additive measure of information: if we receive datum A
then datum B, in general, G′

AB 6=G′

A + G′

B. This intriguing complication will not however
hinder our task: we can only base our decisions on the expectations of ∆S and G′; we will
now see that in expectation ∆S and G′ are equal, so for our purposes there is no distinction
between them. This result holds independent of the details of the models we study and
independent of any Gaussian approximation for P (w).

Proof that E(∆S) = E(G′)

To evaluate the expectation of these quantities, we have to assume a probability distribution
from which the datum tN+1 (hence abbreviated as t) comes. We will define this probability
distribution by assuming that our current model, complete with its error bars, is correct.
This means that the probability distribution of t is P (t|DN ,H), where H is the total
specification of our model. The conditioning variables on the right will be omitted in the
following proof.

We can now compare the expectations of ∆S and G′.

G′ = −
∫

dkwP (w|t) log P (w)

P (w|t)

= −
∫

dkwP (w|t) log m(w)

P (w|t) +
∫

dkwP (w|t) logm(w)

P (w)
, (4.3)

where m is free to be any measure on w; let us make it the same measure m as in (4.1).
Then the first term in (4.3) is −SN+1. So

E(G′) = −E(SN+1) +

∫

dtP (t)

∫

dkwP (w|t) logm(w)

P (w)

= −E(SN+1) +
∫

dkwP (w) log
m(w)

P (w)

= E(−SN+1 + SN) = E(∆S) •.

2If the Occam factor is O.F. = (2π)k/2det−
1

2A exp(−αEMP

W )/ZW (α), then SN = logO.F.+γ/2, using
notation from chapter 2.
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Thus the two candidate information measures are equivalent for our purposes. This proof
also implicitly demonstrates that E(∆S) is independent of the measure m(w). Other prop-
erties of E(∆S) are proved in [44]. The rest of this chapter will use ∆S as the information
measure, with m(w) set to a constant.

4.3 Maximising total information gain

Let us now solve the first task: how to choose xN+1 so that the expected information gain
about w is maximised. Intuitively we expect that we will learn most about the interpolant
by gathering data at the x location where our error bars on the interpolant are currently
greatest. Within the quadratic approximation, we will now confirm that intuition.

Notation

The likelihood of the data is defined in terms of a noise level σ2ν = β−1 by P ({t}|w, β,N ) =
exp(−βED(w))/ZD, where ED(w) =

∑

m
1
2 (t

m − y(x(m);w))2, and ZD is the appropriate
normalising constant. The likelihood could also be defined with an x–dependent noise level
β−1(x), or correlated noise in multiple outputs (in which case β−1 would be the covariance
matrix of the noise). From here on y will be treated as a scalar y for simplicity. When the
likelihood for the first N data is combined with a prior P (w|α,R) = exp(−αEW (w))/ZW ,
in which the regularising constant (or weight decay rate) α corresponds to the prior ex-
pected smoothness of the interpolant, we obtain our current probability distribution for w,
PN(w) = exp(−M(w))/ZM , where M(w) = αEW +βED . The objective function M(w)
can be quadratically approximated near to the most probable parameter vector, wMP, by

M(w) ≃ M∗(w) = M(wMP) +
1

2
∆wTA∆w, (4.4)

where ∆w = w−wMP and the Hessian A = ∇∇M is evaluated at the minimum wMP. We
will use this quadratic approximation from here on. If M has other minima, those can be
treated as distinct models as in chapter 3.

First we will need to know what the entropy of a Gaussian distribution is. It is easy to
confirm that if P (w) ∝ e−M∗(w), then for a flat measure m(w) = m,

S =
k

2
(1 + log 2π) +

1

2
log

(

m2 detA−1
)

. (4.5)

Thus our aim in minimising S is to make the size of the joint error bars on the parameters,
detA−1, as small as possible.

Expanding y around wMP, let

y(x) ≃ y(x;wMP) + g(x) ·∆w, (4.6)

where gj = ∂y
∂wj

is the (x–dependent) sensitivity of the output variable to parameter wj,

evaluated at wMP.
Now imagine that we choose a particular input x and collect a new datum. If the datum

t falls in the region such that our quadratic approximation applies, the new Hessian AN+1

is:
AN+1 ≃ A+ βggT, (4.7)

where we have used the approximation ∇∇1
2 (t−y(x;w))2 ≃ ggT. This expression neglects

terms in ∂2y
∂wj∂wk

; those terms are exactly zero for the linear models discussed in chapter
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2, but they are not necessarily negligible for non–linear models such as neural networks.
Notice that this new Hessian is independent of the value that the datum t actually takes,
so we can specify what the information gain ∆S will be for any datum, because we can
evaluate AN+1 just by calculating g.

Let us now see what property of a datum causes it to be maximally informative. The
new entropy SN+1 is equal to −1

2 log
(
m2 detAN+1

)
, neglecting additive constants. This

determinant can be analytically evaluated [23], using the identities

[A+ βggT]
−1

= A−1− βA−1ggTA−1

1 + βgTA−1g
and det [A+ βggT] = (detA)(1+βgTA−1g), (4.8)

from which we obtain:

Total information gain =
1

2
∆ log

(

m2 detA
)

=
1

2
log(1 + βgTA−1g). (4.9)

In the product βgTA−1g, the first term β tells us that, not surprisingly, we learn more
information if we make a low noise (high β) measurement. The second term gTA−1g is
precisely the variance of the interpolant at the point where the datum is collected.

Thus we have our first result: to obtain maximal information about the interpolant,
take the next datum at the point where the error bars on the interpolant are currently
largest (assuming the noise σ2ν on all measurements is the same). This rule is the same as
that resulting from the ‘D–optimal’ and ‘minimax’ design criteria [23].

For many interpolation models, the error bars are largest beyond the most extreme
points where data have been gathered. This first criterion would in those cases lead us to
repeatedly gather data at the edges of the input space, which might be considered non–
ideal behaviour; but we do not necessarily need to introduce an ad hoc procedure to avoid
this. The reason we do not want repeated sampling at the edges is that we do not want
to know what happens there. Accordingly, we can derive criteria from alternative objective
functions which only value information acquired about the interpolant in a defined region
of interest.

4.4 Maximising information about the interpolant in a re-

gion of interest

Thus we come to the second task. First assume we wish to gain maximal information about
the value of the interpolant at a particular point x(u). Under the quadratic approximation,
our uncertainty about the interpolant y has a Gaussian distribution, and the size of the
error bars is given in terms of the Hessian of the parameters by

σ2u = gT

(u)A
−1g(u),

where g(u) is ∂y/∂w evaluated at x(u). As above, the entropy of this Gaussian distribution

is 1
2 log σ

2
u + const. After a measurement t is made at x where the sensitivity is g, these

error bars are scaled down by a factor of 1−ρ2, where ρ is the correlation between the
variables t and y(u), given by ρ2=(gTA−1g(u))

2/(σ2u(σ
2
ν + σ2x)), where σ

2
x=gTA−1g. Thus

the information gain about y(u) is:

Marginal information gain =
1

2
∆ log σ2u = −1

2
log

(

1− (gTA−1g(u))
2

σ2u(σ
2
ν + σ2x)

)

. (4.10)
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The term gTA−1g(u) is maximised when the sensitivities g and g(u) are maximally correlated,
as measured by their inner product in the metric defined by A−1. The second task is thus
solved for the case of extrapolation to a single point. This objective function is demonstrated
and criticised in section 4.6.

Generalisation to multiple points

Now imagine that the objective function is defined to be the information gained about the
interpolant at a set of points {x(u)}. These points should be thought of as representa-
tives of the region of interest, for example, points in a test set. This case also includes
the generalisation to more than one output variable y; however the full generalisation, to
optimisation of an experiment in which many measurements are made, will not be made
here (see Fedorov [23] and Luttrell [48]). The preceding objective function, the information
about y(u), can be generalised in several ways, some of which lead to dissatisfactory results.

First objective function for multiple points

An obvious objective function is the joint entropy of the output variables that we are
interested in. Let the set of output variables for which we want to minimise the uncertainty
be {y(u)}, where u=1 . . . V runs either over a sequence of different input locations x(u), or
over a set of different scalar outputs, or both. Let the sensitivities of these outputs to the
parameters be g(u). Then the covariance matrix of the values {y(u)} is

Y = GTA−1G, (4.11)

where the matrix G =
[

g(1)g(2) . . .g(V )

]

. Disregarding the possibility that Y might not

have full rank, which would necessitate a more complex treatment giving similar results, the
joint entropy of our output variables S(P ({y(u)})) is related to log detY−1. We can find the
information gain for a measurement with sensitivity vector g, under which A→A+ βggT,
using the identities (4.8).

Joint information gain =
1

2
∆ log detY−1 = −1

2
log

[

1− (gTA−1G)Y−1(GTA−1g)

σ2ν+σ
2
x

]

.

(4.12)
The row vector v=gTA−1G measures the correlations between the sensitivities g and g(u).
The quadratic form vY−1vT measures how effectively these correlations work together to
reduce the joint uncertainty in {y(u)}. The denominator σ2ν+σ

2
x moderates this term in

favour of measurements with small uncertainty.

Criticism

I will now argue that actually the joint entropy S(P ({y(u)})) of the interpolant’s values is
not an appropriate objective function. A simple example will illustrate this.

Imagine that V = k, i.e., the number of points defining our region of interest is the same

as the dimensionality of the parameter spacew. The resulting matrixG =
[

g(1)g(2) . . .g(V )

]

may be almost singular if the points x(u) are close together, but typically it will still have
full rank. Then the parameter vector w and the values of the interpolant {y(u)} are in
one to one (locally) linear correspondence with each other. This means that the change
in entropy of P ({y(u)}) is identical to the change in entropy of P (w) [44]. This can be
confirmed by substitution of Y−1 =G−1AG−1T

into (4.12), which yields (4.9). So if the
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datum is chosen in accordance with equation (4.12), so as to maximise the expected joint
information gain about {y(u)}, exactly the same choice will result as is obtained maximising
the first criterion, the expected total information gain about w (section 4.3)! Clearly, this
choice is independent of our choice of {y(u)}, so it will have nothing to do with our region
of interest.

This criticism of the joint entropy is not restricted to the case V = k. The reason that
this objective function does not achieve what we want is that the joint entropy is decreased
by measurements which introduce correlations among predictions about {y(u)} as well as by
measurements which reduce the individual uncertainties of predictions. However, we don’t
want the variables {y(u)} to be strongly correlated in some arbitrary way; rather we want
each y(u) to have small variance, so that if we are subsequently asked to predict the value
of y at any one of the u’s, we will be able to make confident predictions.

Second objective function for multiple points

This motivates an alternative objective function: to maximise the average over u of the
information gained about y(u) alone. Let us define the mean marginal entropy,

SM =
∑

u

Pu S(P (y
(u))) =

1

2

∑

u

Pu log σ2u + const,

where Pu is the probability that we will be asked to predict y(u), and σ2u = gT

(u)A
−1g(u). For

a measurement with sensitivity vector g, we obtain from (4.10):

Mean marginal information gain = −1
2

∑

u

Pu log

(

1− (gTA−1g(u))
2

σ2u(σ
2
ν + σ2x)

)

. (4.13)

The mean marginal information gain is demonstrated and criticised in section 4.6.

Two simple variations on this objective function can be derived. If instead of minimising
the mean marginal entropy of our predictions y(u), we minimise the mean marginal entropy
of the predicted noisy variables t(u), which are modelled as deviating from y(u) under additive
noise of variance σ2ν , we obtain (4.13) with σ2u replaced by σ2u+σ

2
ν . This alternative may

lead to significantly different choices from (4.13) when any of the marginal variances σ2u fall
below the intrinsic variance σ2ν of the predicted variable.

If instead we take an approach based on loss functions, and require that the datum
we choose minimises the expectation of the mean squared error of our predictions {y(u)},
which is EM =

∑

u Puσ
2
u, then we obtain as our objective function, to leading order, ∆EM ≃

∑

u Pu(g
TA−1g(u))

2/(σ2ν+σ
2
x); this increases the bias in favour of reducing the variance of

the variables y(u) with largest σ2u. This is the same as the ‘Q–optimal’ design [23].

Comment on the case of linear models

It is interesting to note that for a linear model (one for which y(x;w)=
∑
whφh(x)) with

quadratic penalty functions, the solutions to the first and second tasks depend only on the
x locations where data were previously gathered, not on the actual data gathered {t}; this
is because g(x) = φ(x) independent of w, so A= α∇∇EW +β

∑

m ggT is independent of
{t}. A complete data–gathering plan can be drawn up before we start. It is only for a
non–linear model that our decisions about what data to gather next are affected by our
previous observations!
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4.5 Maximising the discrimination between two models

Under the quadratic approximation, two models will make slightly different Gaussian pre-
dictions about the value of any datum. If we measure a datum t at input value x, then

P (t|Hi) = Normal(µi, σ
2
i ),

where the parameters µi, σ
2
i are obtained for each interpolation model Hi from its own best

fit parameters wMP(i), its own Hessian A, and its own sensitivity vector gi:

µi = y(x;wMP(i))

σ2i = gT
i A

−1
i gi + 1/β.

Intuitively, we expect that the most informative measurement will be at a value of x such
that µ1 and µ2 are as separated as possible from each other on a scale defined by σ1, σ2.
Further thought will also confirm that we expect to gain more information if σ21 and σ22
differ from each other significantly; at such points, the ‘Occam factor’ penalising the more
powerful model becomes more significant.

Let us define the information gain to be ∆S = SN−SN+1, where S = −∑i P (Hi) logP (Hi).
Exact calculations of ∆S are not analytically possible, so I will assume that we are in the
regime of small information gain, i.e., we expect measurement of t to give us a rather weak
likelihood ratio P (t|H1)/P (t|H2). This is the regime where |µ1−µ2| ≪ σ1, σ2.

Using this assumption we can take the expectation over t, and a page of algebra leads
to the result:

E(∆S)≃ P (H1)P (H2)

2





(
1

σ21
+

1

σ22

)

(µ1 − µ2)
2 +

(

σ21 − σ22
σ1σ2

)2


 . (4.14)

These two terms correspond precisely to the two expectations stated above. The first term
favours measurements where µ1 and µ2 are well separated; the second term favours places
where σ21 and σ22 differ. Thus the third task has been solved.

Fedorov [23] makes a similar derivation but he uses a poor approximation which loses
the second term.

4.6 Demonstration and Discussion

A data set consisting of 21 points from a one–dimensional interpolation problem was in-
terpolated with an eight hidden unit neural network. The data were generated from a
smooth function by adding noise with standard deviation σν = 0.05. The neural network
was adapted to the data using weight decay terms αc which were controlled using the meth-
ods of chapter 3 and noise level β fixed to 1/σ2ν. The data and the resulting interpolant,
with error bars, are shown in figure 4.1a.

The expected total information gain, i.e., the change in entropy of the parameters, is
shown as a function of x in figure 4.1b. This is just a monotonic function of the size of
the error bars. The same figure also shows the expected marginal information gain about
three points of interest, {x(u)}= {−1.25, 0.0, 1.75}. Notice that the marginal information
gain is in each case peaked near the point of interest, as we would expect. Note also that
the height of this peak is greatest for x(u)=−1.25, where the interpolant oscillates rapidly,
and lower for x(u)=1.75, where the interpolant is smoother. At each x=x(u), the marginal
information gain about x(u) and the total information gain are equal.
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Figure 4.1c shows the mean marginal information gain, where the points of interest,
{x(u)}, were defined to be a set of equally spaced points on the interval [−2.1, 4.1] (the
same interval in which the training data lie). The mean marginal information gain gradually
decreases to zero away from the region of interest, as hoped. In the region to the left where
the characteristic period of the interpolant is similar to the data spacing, the expected
utility oscillates as x passes through the existing data points, which also seems reasonable.
The only surprising feature is that the estimated utility in that region is lower on the data
points than the estimated utility in the smooth region towards the right.

The Achilles’ heel of these methods

This approach has a potential weakness: there may be models for which, even though we
have defined the region of interest by the points {x(u)}, the expected marginal information
gain for a measurement at x still blows up as x→±∞, like the error bars. This can occur
because the information gain estimates the utility of a data point assuming that the model
is correct; if we know that the model is actually an approximation tool that is incorrect,
then it is possible that undesirable behaviour will result.

A simple example that illustrates this problem is obtained if we consider modelling data
with a straight line y=w1x, where w1 is the unknown parameter. Imagine that we want to
select data so as to obtain a model that predicts accurately at x(u). Then if we assume that
the model is right, clearly we gain most information if we sample at the largest possible
|x|, since such points give the largest signal to noise ratio for determining w1. If however
we assume that the model is actually not correct, but only an approximation tool, then
common sense tells us we should sample closer to x(u).

Thus if we are using models that we know are incorrect, the marginal information gain
is really the right answer to the wrong question. It is a task for further research to formulate
a new question whose answer is appropriate for any approximation model. Meanwhile, the
mean marginal information gain seems a promising objective function to test further.

Computational complexity

The computation of the suggested objective functions is moderately cheap once the inverse
Hessian A−1 has been obtained for the models concerned. This is a O(Nk2)+O(k3) process,
where N is the number of data points and k is the number of parameters; this process may
already have been performed in order to evaluate error bars for the models, to evaluate the
‘evidence’, to evaluate parameter ‘saliencies’, and to enable efficient learning. This cost can
be compared with the cost of locating a minimum of the objective function M , which in the
worst case scales as O(Nk3) (taking the result for a quadratic function). Evaluation of the
mean marginal information gain at C candidate points x then requires O(Ck2)+O(CV k)
time, where V is the number of points of interest x(u) (O(k2) to evaluate A−1g for each x,
and O(V k) to evaluate the dot product of this vector with each g(u)). So if C=O(k) and
V =O(k), evaluation of the mean marginal information gain will be less computationally
expensive than the inverse Hessian evaluation.

For contexts in which this is too expensive, work in progress is exploring the possibility
of reducing these calculations to O(k2) or smaller time by statistical methods.

The question of how to efficiently search for the most informative x is not addressed here;
gradient–based methods could be constructed, but figure 4.1c shows that the information
gain may be locally non–convex, on a scale defined by the inter–datum spacing.
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Figure 4.1: Demonstration of total and marginal information gain
a) The data set, the interpolant, and error bars. b) The expected total information gain and three

marginal information gains. c) The mean marginal information gain, with the region of interest

defined by 300 equally spaced points on the interval [−2.1, 4.1]. The information gains are shown

on a scale of nats (1 nat = log2 e bits).
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4.7 Conclusion

For three specifications of the information to be maximised, a solution has been obtained.
The solutions apply to linear and non–linear interpolation models, but depend on the valid-
ity of a local Gaussian approximation. Each solution has a direct analog in the non–Bayesian
literature [23], and generalisations to multiple measurements and multiple output variables
can be found there, and also in [48].

In each case a function of x has been derived that predicts the information gain for
a measurement at that x. This function can be used to search for an optimal value of x
(which in large–dimensional input spaces may not be a trivial task). This function could
also serve as a way of reducing the size of a large data set by omitting the data points that
are expected to be least informative. And this function could form the basis of a stopping
rule, i.e., a rule for deciding whether to gather more data, given a desired exchange rate of
information gain per measurement [44].

A possible weakness of these information–based approaches is that they estimate the
utility of a measurement assuming that the model is correct. This might lead to undesirable
results. The search for ideal measures of data utility is still open.
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Chapter 5

The Evidence Framework applied

to Classification Networks

Abstract

Three Bayesian ideas are presented for supervised adaptive classifiers. First, it is

argued that the output of a classifier should be obtained by marginalising over the pos-

terior distribution of its parameters; a simple approximation to this integral is proposed

and demonstrated. This involves a ‘moderation’ of the most probable classifier’s out-

puts, and yields improved performance. Second, it is demonstrated that the Bayesian

framework for model comparison described for regression models in chapters 2 and 3

can also be applied to classification problems. This framework successfully chooses the

magnitude of weight decay terms, and ranks solutions found using different numbers

of hidden units. Third, an information–based data selection criterion is derived and

demonstrated within this framework.

5.1 Introduction

A quantitative Bayesian framework has been described for learning of mappings in feed-
forward networks in chapters 2 and 3. It was demonstrated that this ‘evidence’ framework
could successfully choose the magnitude and type of weight decay terms, and could choose
between solutions using different numbers of hidden units. The framework also gives quan-
tified error bars expressing the uncertainty in the network’s outputs and its parameters. In
chapter 4 information–based objective functions for active learning were discussed within
the same framework.

These three chapters concentrated on interpolation (regression) problems. Neural net-
works can also be trained to perform classification tasks.1 This chapter will show that the
Bayesian framework for model comparison can be applied to these problems too.

Assume that a set of candidate classification models are fitted to a data set, using
standard methods. Three aspects of the use of classifiers can then be distinguished:

1. The individual classification models are used to make predictions about new targets.

0Chapter 5 of Ph.D. thesis ‘Bayesian Methods for Adaptive Models’ by David MacKay, California Institute
of Technology, submitted December 10 1991.

1In regression the target variables are real numbers, assumed to include additive errors; in classification
the target variables are discrete class labels.
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2. The alternative models are ranked in the light of the data.

3. The expected utility of alternative new data points is estimated for the purpose of
‘query learning’ or ‘active data selection’.

This chapter will present Bayesian ideas for these three tasks. Other aspects of classifiers
use such as prediction of generalisation ability are not addressed.

First let us review the framework for supervised adaptive classification.

Derivation of the objective function G =
∑

t ln p

The same notation and conventions will be used as in chapters 2 and 3. Let the data set be
D = {x(m), tm}, m = 1 . . .N . In a classification problem, each target tm is a binary (0/1)
variable (more than two classes can also be handled [15]), and the activity of the output
of a classifier is viewed as an estimate of the probability that t = 1. It is assumed that
the classification problem is noisy, that is, repeated sampling at the same x would produce
different values of t with certain probabilities; those probabilities, as a function of x, are
the quantities that a discriminative classifier is intended to model. It is well known that
the natural objective function in this case is an information–based distance measure, rather
than the sum of squared errors [15, 33, 34, 78].

A classification model H consists of a specification of its architecture A and the reg-
ulariser R for its parameters w. When a classification model’s parameters are set to a
particular value, the model produces an output y(x;w,A) between 0 and 1, which is viewed
as the probability P (t= 1|x,w,A). The likelihood, i.e., the probability of the data2 as a
function of w, is then:

P (D |w,A) =
∏

m

ytm(1− y)1−tm

= expG(D |w,A),

where
G(D |w,A) =

∑

m

tm log y + (1− tm) log(1− y). (5.1)

This is the probabilistic motivation for the cross–entropy objective function
∑
p log q

p . Now
if we assign a prior to alternative parameter vectors w,

P (w|{αc},A,R) =
exp(−∑c αcE

(c)
W )

ZW
, (5.2)

where E
(c)
W is a cost function for a subset (c) of the parameters, and αc is the associated

regularisation constant (see chapter 3), we obtain a posterior:

P (w|D, {αc},A,R) =
exp(−∑c αcE

(c)
W +G)

ZM
, (5.3)

where ZW and ZM are the appropriate normalising constants. Thus, the identical framework
is obtained to that in chapter 3, with −G replacing the term βED. Note that in contrast
to the framework in chapter 3 there is now no free parameter β and no ZD(β). If however
a teacher were to supply probability estimates t instead of binary targets, then a constant

2Strictly this is the probability of {tm} given {x(m)},w,A; the density over {x} is not modelled by the
‘discriminative’ classifiers discussed in this chapter.
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equivalent to β would appear, expressing the precision of the teacher’s estimates. This
constant would correspond to the effective number of observations on which the teacher’s
opinion is based.

The calculation of the gradient and Hessian of G is as easy as for a quadratic ED, if
the output unit’s activation function is the traditional logistic f(a) = 1/(1 + e−a), or the
generalised ‘softmax’ in the case of more than two classes [15]. The appropriateness of a
logisitic output function for a classifier is well known: it is the function that converts a log
probability ratio a into a probability f(a).

Gradient: If y(x(m)) = f(a(x(m))) as defined above, the gradient of G with respewct to
the parameters w is

∇G =
∑

m

(tm − y)g(m), (5.4)

where g(m) = ∂a/∂w|x=x(m) .

Hessian: The Hessian can be analytically evaluated [9], but a useful approximation ne-
glecting terms in ∂2a/∂2w is:

∇∇G ≃ −
∑

m

f ′g(m)g
T

(m). (5.5)

This approximation is expected to be adequate for the evaluation of error bars, for use in
data selection and for the evaluation of the number of well–determined parameters γ. A
more accurate evaluation of the Hessian is probably needed for estimation of the evidence.
In this chapter’s demonstrations, the Hessian is evaluated using second differences.

Validity of approximations

On account of the central limit theorem, we expect the posterior distribution to converge to
a set of locally Gaussian peaks with increasing quantities of data. However, the quadratic
approximation to G is expected to converge more slowly than the quadratic approximation
to ED, the error function for regression models, because (a) G is not a quadratic function
even for a linear model (a model for which a =

∑
whφh(x)): each term in G has the

large scale form of a ramp function; and (b) only inputs which fall in the ‘bend’ of the
ramp contribute curvature to G. If we have the opportunity for active data selection we
could improve the convergence of this quadratic approximation by selecting inputs that are
expected to contribute maximal curvature. A related data selection criterion is derived in
section 5.4.

5.2 Every classifier should have two sets of outputs

Consider a classifier with output y(x;w) = f(a(x;w)). Assume that we receive data D and
infer the posterior probability of the parameters w (i.e., we perform ‘learning’). Now if we
are asked to make predictions with this classifier, it is common for the most probable or best
fit parameter vector wMP to be used as the sole representative of the posterior distribution.
This strategy seems unwise, however, since there may be regions in input space where the
posterior ensemble is very uncertain about what the class is; in such regions the output of the
network should be y ≃ 0.5 (assuming equiprobable classes a priori), whereas typically the
network with parameters wMP will give a more extreme, unrepresentative and overconfident



68 BAYESIAN METHODS FOR ADAPTIVE MODELS

output. The error bars on the parameters should be taken into account when predictions are

made.

In regression problems, it is also important to calculate error bars on outputs, but the
problem is more acute in the case of classification because, on account of the non–linear
output, the mean output over the posterior distribution is not equal to the most probable
network’s output. To obtain an output representative of the posterior ensemble of networks
around wMP, we need to moderate the output of the most probable network in relation to
the error bars on wMP.

Of course this idea of averaging over the hidden parameters is not new: marginalisation
goes back to Laplace. More recently, and in a context closer to the present one, the same
message can be found for example in [79]. But it seems that most practitioners of adaptive
classification do not currently use marginalisation.

I suggest that any classifier should have two sets of outputs. The first set would give the
usual class probabilities corresponding to wMP, y(x;wMP); these outputs would be used for
learning, i.e., for calculating the error signals for optimisation ofwMP. The second set would
be the moderated outputs y(x;P (w|D)) =

∫
dkw y(x;w)P (w|D); these outputs would be

used for all other applications, e.g., prediction, evaluation of test error, and for evaluating
the utility of candidate data points (section 5.4). Let us now discuss how to calculate the
moderated outputs. It will then be demonstrated that these outputs do indeed make better
predictions.

Calculating the moderated outputs

If we assume a locally Gaussian posterior probability distribution3 over w = wMP + ∆w,
P (w|D) ≃ P (wMP) exp(−1

2∆wTA∆w), and if we assume that the activation a(x;w) is a lo-
cally linear function of w with ∂a/∂w = g, then for any x, the activation a is approximately
Gaussian distributed:

P (a(x)|D) = Normal(aMP, s2) =
1√
2πs2

exp

(

−(a− aMP)2

2s2

)

, (5.6)

where aMP=a(x;wMP) and s
2=gTA−1g. This means that the moderated output is:

P (t=1|x, D) = ψ(aMP, s2) ≡
∫

da f(a) Normal(aMP, s2). (5.7)

This is to be contrasted with the most probable network’s output, y(x;wMP)=f(a
MP). The

integral of a sigmoid times a Gaussian cannot be solved analytically; here I suggest a simple
numerical approximation to it:

ψ(aMP, s2) ≃ φ(aMP, s2) ≡ f(κ(s)aMP) (5.8)

with κ = 1/
√

1 + πs2/8. This approximation is not globally accurate over (aMP, s2), (for
large s2 > a the function should tend to an error function, not a logisitic) but it breaks
down gracefully. The value of κ was chosen so that the approximation has the correct gain
at aMP=0, as s2→∞. A representative of this approximation is given in figure 5.1 which
compares φ and φ′ with numerical evaluations of ψ and ψ′. A similar approximation in
terms of the error function is suggested in [79].

3Conditioning variables such as A,R, {αc} will be omitted in this section, since the emphasis is not on
model comparison.
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Figure 5.1: Approximation to the moderated probability
(a) The function ψ(a, s2), evaluated numerically. In (b) the functions ψ(a, s2) and φ(a, s2) defined

in the text are shown as a function of a for s2 = 4. In (c), the difference φ−ψ is shown for the same

parameter values. In (d), the breakdown of the approximation is emphasised by showing logφ ′ and

logψ′ (derivatives with respect to a). The errors become significant when a≫s.

If the output is immediately used to make a (0/1) decision, then the use of moderated
outputs will make no difference to the performance of the classifier (unless the costs asso-
ciated with error are assymetrical), since both functions pass through 0.5 at aMP =0. But
moderated outputs will make a difference if a more sophisticated penalty function is in-
volved. In the following demonstration the performance of a classifier’s outputs is measured
by the value of G achieved on a test set.

A model classification problem with two input variables and two possible classes is shown
in figure 5.2a. Figure 5.2b illustrates the output of a typical trained network, using its most

probable parameter values. Figure 5.2c shows the moderated outputs of the same network.
Notice how the moderated output is similar to the most probable output in regions where
the data are dense. In contrast, where the data are sparse, the moderated output becomes
significantly less certain than the most probable output; this can be seen by the widening
of the contours. Figure 5.2d shows the correct posterior probability for this problem given
the knowledge of the true class densities.

Several hundred neural networks having two inputs, one hidden layer of sigmoid units
and one sigmoid output unit were trained on this problem. During optimisation, the second
weight decay scheme of chapter 3 was used, using independent decay rates for each of three
weight classes: hidden weights, hidden unit biases, and output weights and biases. This
corresponds to the prior that models the weights in each class as coming from a Gaussian; the
scale of the Gaussians for different classes are independent and are specified by regularising
constants αc. Each regularising constant is optimised on line by intermittently updating it
to its most probable value as estimated within the ‘evidence’ framework.

The prediction abilities of a hundred networks using their ‘most probable’ outputs and
using the moderated outputs suggested above are compared in figure 5.3. It can be seen
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Figure 5.2: Comparison of most probable outputs and moderated outputs for a
toy problem
a) The data set. The data were generated from six circular Gaussian distributions, three Gaussians

for each class. The training sets for the demonstrations use between 100 and 1000 data points drawn

from this distribution. b) (Upper right) ‘Most probable’ output of an eight hidden unit network

trained on 100 data points. The contours are equally spaced between 0.0 and 1.0. c) (Lower left)

‘Moderated’ output of the network. Notice that the output becomes less certain compared with the

most probable output as the input moves away from regions of high training data density. d) The

true posterior probability, given the class densities that generated the data. The viewpoint is from

the upper right corner of (a). In (b,c,d) a common grey scale is used, linear from 0 (dark grey) to 1

(light grey).
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Figure 5.3: Moderation is a good thing!
The training set for all the networks contained 300 data points. For each network, the test error of

the ‘most probable’ outputs and the ‘moderated’ outputs were evaluated on a test set of 5000 data

points. The test error is the value of G. Note that for most solutions, the moderated outputs make

better predictions.

that the predictions given by the moderated outputs are in nearly all cases superior. The
improvement is most substantial for underdetermined networks with relatively poor perfor-
mance. In a small fraction of the solutions however, especially among the best solutions,
the moderated outputs are found to have slightly but significantly inferior performance.

5.3 Evaluating the evidence

Having established how to use a particular model H = {A,R} with given regularising
constants {αc} to make predictions, we now turn to the question of model comparison. As
discussed in chapter 2, three levels of inference can be distinguished: parameter estimation,
regularisation constant determination, and model comparison.4 The second two levels of
inference both require ‘Occam’s razor’; that is, the solution that best fits the data is not
the most plausible model, and we need a way to balance goodness of fit against complexity.
Bayesian inference embodies such an Occam’s razor automatically.

At the first level, a model H, with given regularising constants {αc} is fitted to the data
D. This involves inferring what value the parameters w should probably have. Bayes’ rule
for this level of inference has the form:

P (w|D, {αc},H) =
P (D|w, {αc},H)P (w|{αc},H)

P (D|{αc},H)
. (5.9)

Throughout this thesis this posterior is approximated locally by a Gaussian:

P (w|D, {αc},H) =
exp(−M(w))

ZM
≃ exp(−MMP − 1

2∆wTA∆w)

Z∗

M

, (5.10)

4The use of a specified model to predict the class of a datum can be viewed as the zeroeth level of
inference.
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Figure 5.4: Test error versus data error
This figure illustrates that the task of ranking solutions to the classification problem requires Occam’s

razor; the solutions with smallest data error do not generalise best.

where ∆w = w −wMP, M(w) =
∑

c αcE
(c)
W − G, and A = ∇∇M .

At the second level of inference, the regularising constants are optimised:

P ({αc}|D,H) =
P (D|{αc},H)P ({αc}|H)

P (D|H)
. (5.11)

The data–dependent term P (D|{αc},H) is the ‘evidence’, the normalising constant from
equation (5.9). The evaluation of this quantity and the optimisation of the parameters {αc}
is accomplished using a framework due to Gull and Skilling, discussed in detail in chapters
2 and 3.

Finally, at the third level of inference, the alternative models are compared:

P (H|D) ∝ P (D|H)P (H). (5.12)

Again, the data’s opinion about the alternatives is given by the evidence from the previous
level, in this case P (D|H).

Omitting the details of the second level of inference, since they are identical to the
methods in chapter 3, this demonstration presents the final inferences, the evidence for
alternative solutions. The evidence is evaluated within the Gaussian approximation from
the properties of the ‘most probable’ fit wMP, and the error barsA−1, as described in chapter
2.

Figure 5.4 shows the test error (calculated using the moderated outputs) of the solutions
against the data error, and the ‘Occam’s razor’ problem can be seen: the solutions with
smallest data error do not generalise best. Figure 5.5 shows the log evidence for the solutions
against the test error, and it can be seen that a moderately good correlation is obtained. The
correlation is not perfect. It is speculated that the discrepancy is mainly due to inaccurate
evaluation of the evidence under the quadratic approximation, but further study is needed
here. Finally, figure 5.6 explores the dependence of the correlation between evidence and
generalisation on the amount of data. It can be seen that the correlation improves as the
number of data points in the test set increases.
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Figure 5.5: Test error versus evidence
Each solution was found using the same training set of N = 300 data points. All solutions in which a

symmetry was detected among the hidden units were omitted from this graph because the evidence

evaluation for such solutions is unreliable.
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Figure 5.6: Correlation between test error and evidence as the amount of data
varies.
a) N = 150 data points. b) N = 600 data points. c.f. Figure 5.5, for which N = 300. For

comparison, the number of parameters in a typical (10 hidden unit) network is 41. Note that only

about 25% of the data points fall in informative decision regions; so the effective number of data

points is smaller in each case; bear in mind also that each data point only consists of one bit.

All solutions in which a symmetry was detected among the hidden units were omitted because the

evidence evaluation for such solutions is unreliable.
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5.4 Active learning

Assume now that we have the opportunity to select the input x where a future datum
will be gathered (‘query learning’). Several papers have suggested strategies for this active
learning problem, for example Hwang et al. [35] propose that samples should be made on
and near the current decision boundaries. This strategy and that of Baum [5] are both
human–designed strategies and it is not clear what objective function if any they optimise,
nor is it clear how the strategies could be improved. In this chapter, as in chapter 4,
the philosophy will be to derive a criterion from a defined sensible objective function that
measures how useful a datum is expected to be. This criterion may then be used as a guide
for query learning, or for the alternative scenario of pruning uninformative data points from
a large data set.

Desiderata

Let us criticise Hwang et al.’s strategy to try to establish a reasonable objective function.
The strategy of sampling on decision boundaries is motivated by the argument that we
are unlikely to gain information by sampling in a region where we are already confident
of the correct classification. But similarly, if we have already sampled a great deal on one
particular boundary then we don’t gain useful information by repeatedly sampling there
either, because the location of the boundary has been established! Repeated sampling at
such locations generates data with large entropy that are ‘informative’ in the same way that
white noise is informative. There must be more to the utility of a sample than its distance
from a decision boundary. We would prefer to sample near boundaries whose location
has not been well determined, because this would probably enable us to make more precise
predictions there. Thus we are interested in measurements which conveymutual information
about the unknowns that we are interested in.

A second criticism is that a strategy that only samples near existing boundaries is not
likely to make new discoveries; a strategy that also samples near potential boundaries is
expected to be more informative. A final criticism is that to be efficient, a strategy should
take into account how influential a datum will be: some data may convey information about
the discriminant over a larger region than others. So we want an objective function that
measures the global expected informativeness of a datum.

Objective function

This chapter will study the ‘mean marginal information’. This objective function was
suggested in chapter 4, and a discussion of why it is probably more desirable than the joint
information is given there. To define this objective function, we first have to define a region
of interest. (The objective of maximal information gain about the model’s parameters
without a region of interest would lead us to sample at unsampled extremes of the input
space.) Here this region of interest will be defined by a set of representative points x(u),
u = 1 . . .V , with a normalised distribution Pu on them. Pu can be interpreted as the
probability that we will be asked to make a prediction at x(u). (The theory could be
worked out for the case of a continuous region defined by a density ρ(x), but the discrete
case is preferred since it relates directly to practical implementation.) The marginal entropy
of a distribution over w, P (w), at one point x(u) is defined to be

S
(u)
M = yu log yu + (1− yu) log(1− yu), (5.13)
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where yu = y(x(u);P (w)) is the average output of the classifier over the ensemble P (w).
Under the Gaussian approximation for P (w), yu is given by the moderated output (5.7),
and may be approximated by φ(aMP

u , s2u) (5.8).
The mean marginal entropy is

S̄M(P (w)) =
∑

u

PuS
(u)
M . (5.14)

The sampling strategy studied here is to maximise the expected change in mean marginal
entropy. (Note that our information gain is minus the change in entropy.)

Estimating marginal entropy changes

Let a measurement be made at x. The result of this measurement is either t = 1 or
t=0. Assuming that our current model, complete with Gaussian error bars, is correct, the
probability of t=1 is ψ(aMP(x), s2(x))≃φ(aMP, s2). We wish to estimate the average change
in marginal entropy of tu at x(u) when this measurement is made.

This problem can be solved by calculating the joint probability distribution P (t, tu) of
t and tu, then finding the mutual information between the two variables. The four values
of P (t, tu) have the form:

P (t=1, tu=1) =

∫ ∫

da dau f(a)f(au)
1

Z
exp

(

−1

2
∆aTΣ−1∆a

)

, etc., (5.15)

where ∆aT = (∆a,∆au) and the activations a = aMP+∆a and au = aMP
u +∆au are assumed

to have a Gaussian distribution with covariance matrix

Σ =

(

gTA−1g gTA−1g(u)
gTA−1g(u) gT

(u)A
−1g(u)

)

≡
(

s2 ρssu
ρssu s2u

)

. (5.16)

The normalising constant is Z = 2πssu(1− ρ2)
1
2 . The expected change in entropy of tu is:

E(∆S
(u)
M |t) = S(P (t, tu))− S(P (t))− S(P (tu)). (5.17)

Notice that this mutual information is symmetric in t and tu. We can approximateE(∆S
(u)
M |t)

by Taylor–expanding P (t, tu) about independence (ρ = 0). The first order perturbation to
P (t, tu) introduced by ρ can be written in terms of a single variable c:

P (t=1, tu=1) = P (t=1)P (tu=1) + c P (t=1, tu=0) = P (t=1)P (tu=0)− c
P (t=0, tu=1) = P (t=0)P (tu=1)− c P (t=0, tu=0) = P (t=0)P (tu=0) + c.

(5.18)

Taylor–expanding (5.17), we find

E(∆S
(u)
M |t) ≃ − 1

P (t=1)P (tu=1)P (t=0)P (tu=0)
c2/2. (5.19)

Finally, we Taylor–expand (5.15) so as to obtain the dependence of c on the correlation
between the activations. The derivative of P (t=1, tu=1) with respect to ρ at ρ = 0 is

∂

∂ρ
P (t=1, tu=1) =

∫ ∫

da dau f(a)f(au)
∆a∆au
ssu

1

Z
exp

(

−1

2
∆aTΣ−1∆a

)

= sψ′(aMP, s2) suψ
′(aMP

u , s2u),
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where ψ is the moderated probability defined in (5.8) and ψ′ denotes ∂ψ/∂a. This yields

c ≃ ρ
∂

∂ρ
P (t=1, tu=1) = gTA−1g(u) ψ

′(aMP, s2)ψ′(aMP
u , s2u). (5.20)

Substituting this into (5.19), we find

E(∆S
(u)
M |t) ≃ −(gTA−1g(u))

2 ψ′(aMP, s2)2 ψ′(aMP
u , s2u)

2

2 P (t=1)P (tu=1)P (t=0)P (tu=0)
. (5.21)

Assuming that the approximation ψ ≃ φ ≡ f(κ(s)aMP) is good, we can numerically
approximate ∂ψ(aMP, s2)/∂a by κ(s)f ′(κ(s)aMP).5 Using f ′ = f(1− f) we obtain

E(∆S
(u)
M |t) ≃ −κ(s)2κ(su)2 f ′(κ(s)aMP)f ′(κ(su)a

MP
u ) (gTA−1g(u))

2/2. (5.22)

The two f ′ terms in this expression correspond to the two intuitions that sampling near
decision boundaries is informative, and that we are able to gain more information about
points of interest if they are near boundaries. The term (gTA−1g(u))

2 modifies this tendency
in accordance with the desiderata.

The expected mean marginal information gain is computed by adding up the ∆S
(u)
M s

over the representative points x(u). The resulting function is plotted on a grey scale in figure
5.7, for the network solving the toy problem described in figure 5.2. For this demonstration
the points of interest x(u) were defined by drawing 100 input points at random from the
test set. A striking correlation can be seen between the regions in which the moderated
output is uncertain and regions of high expected information gain. In addition the expected
information gain tends to increase in regions where the training data were sparse.

Now to the negative aspect of these results. The regions of greatest expected information
gain lie outside the region of interest to the right and left; these regions extend in long
straight ridges hundreds of units away from the data. This estimation of utility, which
reveals the ‘hyperplanes’ underlying the model, seems unreasonable. The utility of points
so far from the region of interest, if they occurred, could not really be so high. There
are two plausible explanations of this. It may be that the Taylor approximations used to
evaluate the mean marginal information are at fault, in particular (5.20). Or as discussed
in chapter 4, the problem might arise because the mean marginal information estimates
the utility of a point assuming that the model is true; if we assume that the classification
surface really can be described in terms of hyperplanes in the input space, then it may
be that the greatest torque on those planes can be obtained by sampling away from the
core of the data. Comparison of the approximation (5.22) with numerical evaluations of

∆S
(u)
M indicate that the approximation is never more than a factor of two wrong. Thus the

latter explanation is favoured, and we must tentatively conclude that the mean marginal
information gain is likely to be most useful only for models well matched to the real world.

5.5 Discussion

Moderated outputs: The idea of moderating the outputs of a classifier in accordance
with the uncertainty of its parameters should have wide applicability, for example to hid-
den Markov models for speech recognition. Moderation should be especially important

5This approximation becomes inaccurate where aMP ≫ s≫1 (see figure 5.1c). Because of this it might

be wise to use numerical integration then implement ∆S
(u)
M in look–up tables.
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Figure 5.7: Demonstration of expected mean marginal information gain
The mean marginal information gain was computed for the network demonstrated in figures 5.2b,c.

The region of interest was defined by 100 data points from the test set. The grey level represents the

utility of a single observation as a function of where it is made. The darkest regions are expected

to yield little information, and white corresponds to large expected information gain. The contours

that are superposed represent the moderated output of the network, as shown in figure 5.2c. The

mean marginal information gain is quantified: the grey scale is linear from 0 to 0.0025 nats.
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where a classifier is expected to extrapolate to points outside the training region. There is
presumably a relationship of this concept to the work of Seung et al. [69] on generalisation
‘at non–zero temperature’.

If the suggested approximation to the moderated output and its derivative is found
dissatisfactory, a simple brute force solution would be to set up a look–up table of values
of ψ(a, s2) and ψ′(a, s2).

It is likely that an implementation of marginalisation that will scale up well to large
problems will involve Monte Carlo methods [56].

Evidence: The evidence has been found to be well correlated with generalisation ability.
This depends on having a sufficiently large amount of data. There remain open questions,
including what the theoretical relationship between the evidence and generalisation ability
is, and how large the data set must be for the two to be well correlated; how well these
calculations will scale up to larger problems; and when the quadratic approximation for the
evidence breaks down.

Mean marginal information gain: This objective function was derived with active
learning in mind. It could also be used for selection of a subset of a large quantity of data,
as a filter to weed out fractions of the data which are unlikely to be informative. Unlike
Plutowski and White’s approach [62] this filter only depends on the input variables in the
candidate data. A strategy that selectively omits data on the basis of their output values
would violate the likelihood principle and risk leading to inconsistent inferences.

A comparison of the mean marginal information gain in figure 5.7 with the contours of
the most probable networks output in figure 5.2b indicates that this proposed data selection
criterion offers some improvements over the simple strategy of just sampling on and near
decision boundaries: the mean marginal information gain shows a plausible preference for
samples in regions where the decision boundary is uncertain. On the other hand, this
criterion may give artefacts when applied to models that are poorly matched to the real
world. How useful the mean marginal information gain will be for real applications remains
an open question.
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Chapter 6

Inferring an Input-dependent

Noise Level

Abstract

Assume that when interpolating a data set, we wish to model an input–dependent

noise level. This short chapter shows how to calculate an unbiased gradient.

Given a data set D = {xm, tm} modelled with an interpolant–plus–noise model tm =
y(xm;w) + νm, chapter 2 described the Bayesian framework for regularisation and model
comparison assuming a single global noise level β−1 = σ2ν. It is also possible to invent
models in which β is x–dependent. For example we might use two coupled neural networks,
the first of which predicts y(x), and the second of which predicts log β(x). These networks
would be coupled in that the gradient of the objective function for each network would be
calculated by consulting the output of the other. Intuitively, if the first network’s errors
in the neighbourhood of x are large, then we encourage the second network to give a large
value of β−1(x) = σ2ν(x) there; and similarly the error signals that teach the first network
need to be scaled up and down by the second network — where there is a small value of
σ2ν(x), errors are penalised more strongly.

What should the gradients for optimisation of such a model be? A simple approach
would be to maximise the likelihood of the data. For the traditional quadratic model, the
log likelihood of the data is −∑m β(xm)EDm +

∑

m
1
2 log β(xm), where EDm = 1

2 (tm −
y(xm;w))2. However, maximisation of this function would lead to biased estimates of β(x).
As was discussed earlier, the maximum likelihood noise estimate is not the most probable
value of the noise. This distinction is not caused by the use of priors; rather it is a result of
marginalisation. The worst symptom of maximising the likelihood would be that in regions
in which data is sparse, such that the best fit interpolant passes very close to the data, the
maximum likelihood estimate of β blows up: the estimated noise level goes to zero.

Separating the two levels of inference

Let us consider the case of a single noise level σ2 for a moment, and imagine that we are
estimating a single parameter µ corresponding to the mean of a Gaussian cluster. We
already examined this problem in chapter 2. The likelihood, as a function of µ and σ2, has
a skew peak. The maximum is located at (x̄, σ2N), where σ

2
N =

∑
(x− x̄)2/N , but this peak

0Chapter 6 of Ph.D. thesis ‘Bayesian Methods for Adaptive Models’ by David MacKay, California Institute
of Technology, submitted December 10 1991.
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is not in the same place as the centre of mass of the likelihood. When we marginalise over
µ, with a flat prior, we find that the most probable value of σ2 is σ2N−1 =

∑
(x− x̄)2/(N−1).

The subtraction of one from the denominator represents the fact that one parameter µ has
been determined by the data, which typically consumes one unit (χ2) of noise. It is well
known that σ2N and σ2N−1 are respectively ‘biased’ and ‘unbiased’ estimators of variance.

The generalisation of this distinction has already been given. When we fit a regularised
interpolation model, there are distinct levels of inference. At the first level, we assume a
particular noise level β and regularisation constant α, and find the most probable parameters
w with error bars. Then at the second level of inference, we compare alternative values of α,
and alternative values of β. When this separation is made, we find that the most probable
noise level is given by σ2 = 2ED/(N − γ), where γ is the number of well–determined
parameters. This quantity will be significantly less than the total number of parameters k
if the regulariser (prior) is playing a significant role in determining the interpolant. The
separation of the two levels of inference and the use of marginalisation thus leads to an
unbiased estimator for β and an automatic Occam’s razor for the choice of α.

Let us now see how this should work in the case of an x–dependent noise level.
At the first level of inference, the gradients with respect to model parameters will be

calculated in the obvious way: ∂M/∂w = α∂EW/∂w+
∑

m β(xm)∂EDm/∂w.
The second level of inference centres on the log evidence for α and β, which can be

written (neglecting additive constants):

logP (D|α, β(x),H) = −αEMP
W −

∑

m

β(xm)EMP
Dm− 1

2
log detA− logZW (α)+

∑

m

1

2
log β(xm).

(6.1)
The most probable values of α and β, if we have a flat prior, are obtained by maximising
the log evidence. Of course if we infer an x–dependent noise level, we typically will be
imposing a prior on β(x) by the choice of model; in this case we will still need the gradient
of the evidence, which at this level serves as the likelihood driving the learning. When we
differentiate the evidence with respect to log β(xm), we obtain:

∂ log P (D|α, β,A,R)

∂ log β(xm)
= −β(xm)EMP

Dm − 1

2
β(xm) Trace

[

A−1Bm

]

+
1

2
, (6.2)

where β(xm)Bm is the contribution to A made by the mth datum, which in the case
of a linear model is β(xm)Bm = β(xm)gmgT

m, with gm = ∂y(xm)/∂w. The quantity
Trace

[
A−1Bm

]
is precisely the magnitude of the error bars on the interpolant at xm,

gT
mA−1gm. Thus the term β(xm)Trace

[

A−1Bm

]

= gT
mA−1gm/σ

2(xm) is the ratio of the
error bars on the interpolant to the presumed variance of the measurement at xm. The
quantity γm ≡ 1 − gT

mA−1gm/σ
2(xm) is a measure of how good a noise measurement the

datum at xm contributed.
The gradient can then be written:

∂ logP (D|α, β,A,R)

∂ log β(xm)
= −β(xm)EMP

Dm + γm/2. (6.3)

The terms γm are easy to evaluate from the error bars at xm. It can be noted that in the
case of an isolated data point, the contribution to the gradient is well–behaved, because
EDm and γ both go to zero. So there is no singular behaviour involving β blowing up, as
occurs if the likelihood is maximised.

If γm ≃ 0, the interpolant is determined locally only by the datum at xm, and the
measurement gives no information about the noise. If γm ≃ 1, the interpolant is locally
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determined more by the other measurements and by the regulariser than by tm, and the
error EDm does convey information about the noise level.

The similarity of γm to the concept of the number of well–determined parameters, γ,
will be obvious, and in fact there is a mathematical relationship too. The number of
bad noise measurements is identical to the number of well–determined parameters, i.e.,
∑

m(1− γm) = γ.
An implementation of this framework will depend on two further issues. First, a prior

should of course be placed on the parameters of the network that produces log β(x); this
prior might contain unknown regularisation constants which can be controlled using the
methods of chapter 3. Secondly, the management of these different levels of optimisation
will not be trivial. A suggested procedure is to start optimising the noise model only once
the interpolant is fitting the data quite well; then the three levels (fitting the interpolant,
inferring the noise level, and setting regularisation constants of the noise model) could be
optimised cyclically.
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Chapter 7

Postscript

It is common that, following several years’ devotion to a religion, a student’s views about
that religion will have matured. This postscript is intended to communicate the reservations
and criticisms I now have about the Bayesian methods described, and the open questions
and problems that remain.

7.1 The closed hypothesis space

Bayesian hard–liners often thump the ‘Cox axioms’ drum, proclaiming that consistent in-
ference can only be Bayesian; but it is rarely made clear what Cox’s axioms are. In fact
Cox’s result assumes (among other things) that we are performing inductive inference in a
defined closed hypothesis space.

This is a two edged sword. The good aspect is that Bayesian inductive inference cannot
proceed until all properties of our hypothesis space have been articulated; thus we are
forced to make explicit all our assumptions. Furthermore, once the hypothesis space is
defined, Bayesian inference is a mechanical and well–defined process. Bayesianism does not
need to consult sampling theory criteria such as ‘efficiency’, ‘unbiasedness’, ‘consistency’,
‘sufficiency’, ‘uniform convergence’, or ‘minimum variance’ — desiderata which can often
be mutually conflicting! We simply write down the conditional assumptions that we are
making (for example the data that have occurred), and the propositions whose plausibilities
we wish to infer, and evaluate P (Proposition|Assumptions) by using the sum and product
rules of probability within the defined hypothesis space. The axioms on which probabilistic
inference are based guarantee that inferences made in this way will be coherent.

On the other hand, several deficiencies arise from the constraint of a closed hypothesis
space. The central problem is that our Bayesian inferences are obtained assuming that the
hypothesis space is right, but we have no Bayesian way of assessing whether our hypothesis
space is right, apart from coming up with alternative hypothesis spaces with which com-
parisons can be made. Box and Tiao [13] share the view that ‘model criticism’, an essential
part of the modelling process, is not addressed by Bayesian inference.

For example, the error bars discussed throughout this thesis are evaluated assuming
that the model is true. I do not think that any non–Bayesian procedures improve on this
(orthodox confidence intervals are identical to Bayesian error bars in the Gaussian case),
but it is important to be aware that it is possible for the true interpolant to lie well outside
the error bars assigned by a model, if that model is defective in some way. An example of
this can be seen in figure 2.4b, where the error bars fail to include a point that in fact was
not an outlier. The Bayesian resolution of this is to examine other models; when the radial
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basis function model in figure 2.4 is replaced by a more probable neural network model
(Table 2.1), the interpolant goes much closer to this data point (which is probably why the
neural network model is more probable).

A second defect of the closed hypothesis space assumption is discussed in Chapter 4.
The expected information gain provided by a datum was defined, like the error bars, by
assuming that the model is correct. In extreme cases this may lead to ludicrous results
— distant data points may be evaluated as mutually informative because of a misleading
interdependence in the model. In Chapter 5 it is shown that the mean marginal expected
information gain does seem to be marred by artifacts arising from the assumption that the
model is correct.

Thirdly, Bayes’ rule provides no mechanism for ‘alternative–free tests’ of a hypothesis
space. This reservation about Bayesian methods has also been expressed by Lindley [45].
Hard line Bayesians would retort that there is no such thing as an alternative–free test, and
certainly most classical alternative–free tests do have an implicit alternative. For example,
a classical test of a parameter being zero has as an implicit alternative the hypothesis that
the parameter has a value in an interval with a derivable prior width [47]. But I do believe
that we perform alternative–free tests. Often, we become dissatisfied with a theory because
it seems to be making unusually poor predictions. This prompts us to start searching for
superior theories. Without any alternative being more than very vaguely specified, we are
able to infer that something is wrong (as, for example, in chapter 3). Once we find a superior
alternative, we can then come back and use Bayes’ rule to reject the original theory; but the
initial decision to search for a new theory was alternative–free and could not be made with
Bayes’ rule alone. Nor can Bayes’ rule alone direct you towards new models. The invention
of hypothesis spaces remains a human’s domain.

Having recognised that Bayes’ rule cannot perform the alternative–free inferences that
are part of the modelling process (the right–hand loop of figure 1.1), I would end on a more
optimistic note. I believe that Bayesian methods, together with traditional methods such
as cross–validation, yield a powerful tool for alternative–free hypothesis testing and new
model formation. This was illustrated in Chapter 3, where the poor correlation between
the evidence and the test error highlighted an inconsistency in the model space; if one only
used the test error (cross–validation) for model comparison, this opportunity for learning
would be lost; likewise, if only the Bayesian evidence were evaluated, we would be none
the wiser. I think that Bayesians would do well to include similar alternative–free ‘warning
bells’ in their algorithms.

7.2 For approximation, are probabilities relevant?

The Bayesian approach to model comparison evaluates how probable alternative models are
given the data. In fields such as image reconstruction and NMR, this may be precisely the
right thing to do. In contrast, in adaptive modelling, the real problem is often to estimate
how well each model is expected to generalise. We know perfectly well that the truth is not
that the data were generated by some neural network whose parameters we now wish to
infer! We know that all the models are false, so the Bayesian assessment of the relative
probabilities of alternative parameterised models seems almost irrelevant to what we are
interested in, which is how well each of the models approximates. Really the Bayesian
solution to this task would be to use a model that we really believe in to infer what the
truth might be, then use decision theory to select from the false models the one that is
expected to minimse the appropriate cost function.
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The startling fact is that in spite of this, the evidence for the false models does seem
to be well correlated with generalisation ability, when the model space is well–matched to
the problem (figures 3.12 and 5.5). There are theories which attempt to directly predict
generalisation ability, leading to Akaike’s FPE criterion, and Moody’s GPE [3, 54]. But
for the toy problems I have studied, neither of these criteria has a better correlation with
the generalisation error than that achieved by the evidence. Theories based on the V–C
dimension lead to structural risk minimisation criteria [30], which seem better correlated
with generalisation error. In fact, it is interesting that the form of Guyon et al.’s predicted
generalisation error has scaling behaviour identical to that of the evidence!

More work is called for on the relationship between the evidence, cross–validation and
generalisation ability to understand these results.

7.3 Having to make too much explicit

Statistical problems that are precisely enough stated for the sampling theory school can be
too vague for a Bayesian [45]. When the Bayesian adds additional constraints to such a
problem to make it solveable, he comes under fire for making assumptions that may be, in
detail, not justified. ‘Order statistics’ provide an example of such a problem.

Imagine that we wish to infer the median of a density given N samples from it, without
a precise specification of what type of density we are dealing with (in particular, we do
not know the distribution is Gaussian). A Bayesian analysis would have to assume an
explicit parameterised form for the density (for example a free form density with a maxent
prior), solve for the posterior distribution of the parameters, then marginalise over that
distribution to get a posterior for the median of the density. I think that in principle this is
the right thing to do (and, to their credit, some Bayesians have shown that it can be done
[16]), but it is an approach that involves introducing and then eliminating a large amount
of irrelevant baggage (the explicit parameterised form for the density). The details of this
parameterisation will probably be hard to justify, and anyway the answer that we obtain is
unlikely to depend sensitively on them. It seems unfortunate to have to introduce so much
explicit and arbitrary detail in order to answer a simple question. Having said this, I should
make it clear that I am not advocating the orthodox sampling theory approach to order
statistics; like most sampling theory procedures, order statistics are incoherent. It will be
interesting if Bayesian methods can be developed which avoid having to explicitly handle
detailed parameterisations that are then marginalised away again. Perhaps Monte Carlo
methods like Radford Neal’s [55] are a step in this direction.

7.4 An alternative interpretation of weight decay

Geoff Hinton (personal communication) has suggested an alternative view of mixture weight
decay. The decay mechanism is still viewed as implementing prior knowledge, but not the
literal prior that says the wi are modelled as coming from a mixture of Gaussians. Rather,
our real prior assumption is that a fraction of the weights ought to be exactly zero. Thus
the true width of the component at the origin ought to be zero; it is only set to a non–zero
value as a computational artifice. This view, that weight decay is intended to switch off
weights, is apparently shared by other workers [39, 87].

Under this interpretation, there is no reason to suppose that the Bayesian choice of the
width of this component should be appropriate.1 (The width of the other broad compo-

1All the same, Nowlan and Hinton have applied the Bayesian procedure to networks predicting sunspot
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nent(s) of the mixture distribution should still be inferred using Bayesian methods.) It will
be interesting to see if this interpretation can be formalised, leading to an alternative well–
founded procedure for setting the parameters of a zero mixture. This would also necessitate
changes in the evaluation of the evidence.

7.5 Future tasks, open problems

More expensive evidence calculations, cheaper Hessian calculations

The Bayesian calculations throughout this thesis all depend on the inverse Hessian A−1,
under the Gaussian approximation. There are two directions for further work. In the more
expensive direction, we can ask how to make the Bayesian calculations more accurate by
improving on the Gaussian approximation, by the use of Monte Carlo methods, for example.
In addition, methods for integrating over regularisation constants need to be developed,
rather than fixing those constants to their most probable values. These are questions that
Skilling and Sibisi (personal communication) are working on.

In the cheaper direction, we can ask how to make the Hessian calculations more approx-
imate and more efficient so as to reduce the cost of these calculations. I hope to investigate
statistical methods for reducing the O(Nk2)+O(k3) calculation of properties of A−1 to
O(k2) or less time.

Noisy input variables

The tasks of interpolation and classification given noisy input variables has yet to be inte-
grated into the evidence framework.

Missing data

Imagine that we are asked to interpolate a data setD = {x, t}, in which some of the elements
x are incomplete, lacking a specification of some of their components. The interpolation
framework described in this thesis cannot handle this case because the density over x is not
modelled. It is an open problem to find a simple, well-defined way to integrate data with
missing components into these interpolation models.

This problem has much in common with the task of combining unlabelled data with dis-
criminative training. In discriminative training we adapt a classifier that models P (t|x,w,H)
to a data set D1 = {x, t}; now if additional unlabelled data D2 = {x} is available, it is
likely to provide useful information, if we assume some sort of density over x. The reason
that we are reluctant to specify such a density over x in speech recognition, however, is
because that is where we have come from — discriminative training is used instead of full
probabilistic modelling because it obtains better performance from poor models. Ideally
we would like to be able to develop superior word models but what if we are stuck with a
particular model space, either because of computational constraints or because of lack of
creativity? Combining discriminative training with unlabelled data seems to me to be one
of the current frontiers of Bayesian methods.

time series, and obtained better performance than any published model [58].
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Other applications

The concepts of Bayesian data modelling described in this thesis have great generality
and should be relevant to any experimental scientist. Example applications include the
following:

Speech recognition: automated control of hidden Markov model structure
In speech recognition, selection between alternative models for a single word could be
made using the evidence, and the concept of moderation (i.e., incorporation of error
bar information) is expected to be useful when fitting a model to utterances.

Point source image reconstruction
When estimating point sources in an astronomical image, Occam’s razor is needed to
avoid fitting too many stars to the image.

Neurophysiology: multi–neuron recording
The task is to infer the activities of multiple neurons in a piece of brain tissue from
the signals in an array of recording electrodes. This will require development of non–
parametric Bayesian methods.

Density estimation
The evidence could be evaluated for the problem of choosing the number of Gaus-
sians in a mixture model, and the problem of choosing between Gaussian models and
more ‘robust’ clustering models. The latter problem would also be relevant to regres-
sion problems where non–Gaussian noise models are thought appropriate; a definitive
Bayesian attack on the problem of inferring a slightly non–Gaussian distribution has
been made by Box and Tiao [10, 12].

Further applications in neural networks
It remains to be investigated whether these methods scale up to real, larger problems.
Also this framework has yet to be applied to more sophisticated regularisers such as
the mixture decay models of Hinton and Nowlan [57].

The power and unifying perspective of Bayesian methods are becoming more widely ap-
preciated. This thesis has demonstrated their utility for adaptive models such as neural
networks. There are thousands more data modelling tasks waiting for the ‘evidence’ to be
evaluated. It will be exciting to see how much we can learn when this is done.
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Springer–Verlag.

[16] M.K. Charter (1991). Quantifying drug absorption, in [25], 245–252.

[17] R.T. Cox (1946). Probability, frequency, and reasonable expectation, Am. J. Physics

14, 1–13.

[18] A.R. Davies and R.S. Anderssen (1986). Optimization in the regularization of ill–posed
problems, J. Austral. Mat. Soc. Ser. B 28, 114–133.

[19] J.S. Denker and Y. Le Cun (1991). Transforming neural-net output levels to probability
distributions, in Advances in neural information processing systems 3, ed. R.P. Lipp-
mann et al., 853–859, Morgan Kaufmann.

[20] R. Duda and P. Hart (1973). Pattern Classification and Scene Analysis, Wiley.

[21] M.A. El–Gamal (1991). The role of priors in active Bayesian learning in the sequential
statistical decision framework, in [25], 33–38.

[22] R.L. Eubank (1988). Spline smoothing and non–parametric regression, Marcel Dekker.

[23] V.V. Fedorov (1972). Theory of optimal experiments, Academic press.

[24] K. Fukunaga (1972). Introduction to statistical pattern recognition, Academic press.

[25] W.T. Grandy, Jr. and L.H. Schick, eds. (1991).Maximum Entropy and Bayesian Meth-

ods, Laramie, Wyoming, 1990, Kluwer.

[26] S.F. Gull (1988). Bayesian inductive inference and maximum entropy, in Maximum En-

tropy and Bayesian Methods in science and engineering, vol. 1: Foundations, G.J. Er-
ickson and C.R. Smith, eds., Kluwer.

[27] S.F. Gull (1989). Developments in Maximum entropy data analysis, in [71], 53–71.

[28] S.F. Gull (1989). Bayesian data analysis: straight–line fitting, in [71], 511–518.

[29] S.F. Gull and J. Skilling (1991).Quantified Maximum Entropy. MemSys5 User’s manual,

M.E.D.C., 33 North End, Royston, SG8 6NR, England.

[30] I. Guyon, V.N. Vapnik, B.E. Boser, L.Y. Bottou and S.A. Solla (1992). Structural risk
minimization for character recognition, in Advances in neural information processing

systems 4, ed. J.E. Moody, S.J. Hanson and R.P. Lippmann, Morgan Kaufmann.

[31] R. Hanson, J. Stutz and P. Cheeseman (1991). Bayesian classification theory, NASA
Ames TR FIA–90-12-7-01.

[32] D. Haussler, M. Kearns and R. Schapire (1991). Bounds on the sample complexity of
Bayesian learning using information theory and the V–C dimension, preprint.

[33] G.E. Hinton and T.J. Sejnowski (1986). Learning and relearning in Boltzmann ma-
chines, in Parallel Distributed Processing, Rumelhart et al., MIT Press.



BIBLIOGRAPHY 89

[34] J.J. Hopfield (1987). Learning algorithms and probability distributions in feed–forward
and feed–back networks, Proc. Natl. Acad. Sci. USA 84, 8429–33.

[35] J-N. Hwang, J.J. Choi, S. Oh, and R.J. Marks II (1991). Query–based learning applied
to partially trained multilayer perceptrons, IEEE Trans. on neural networks 2 1, 131–
136.

[36] E.T. Jaynes (1986). Bayesian methods: general background, in Maximum Entropy and

Bayesian Methods in applied statistics, ed. J.H. Justice, C.U.P..

[37] W.H. Jefferys and J.O. Berger (1992). Ockham’s razor and Bayesian analysis, American

Scientist 80, 64–72.

[38] H. Jeffreys (1939). Theory of Probability, Oxford Univ. Press.

[39] C. Ji, R.R. Snapp and D. Psaltis (1990). Generalizing smoothness constraints from
discrete samples, Neural Computation 2 2, 188-197.

[40] R.L. Kashyap (1977). A Bayesian comparison of different classes of dynamic models
using empirical data, IEEE Transactions on Automatic Control AC-22 5, 715–727.

[41] Y. Le Cun, J.S. Denker and S.S. Solla (1990). Optimal Brain Damage, in Advances

in neural information processing systems 2, ed. David S. Touretzky, 598–605, Morgan
Kaufmann.

[42] W.T. Lee and M.F. Tenorio (1991). On Optimal Adaptive Classifier Design Criterion
— How many hidden units are necessary for an optimal neural network classifier?,
Purdue University TR-EE-91-5.

[43] E. Levin, N. Tishby and S. Solla (1989). A statistical approach to learning and general-
ization in layered neural networks, COLT ’89: 2nd workshop on computational learning

theory, 245–260.

[44] D.V. Lindley (1956). On a measure of the information provided by an experiment,
Ann. Math. Statist. 27, 986–1005.

[45] D.V. Lindley (1970). Bayesian analysis in regression problems, in Bayesian statistics,

D.L. Meyer and R.O. Collier, eds., Peacock publishers.

[46] D.V. Lindley (1972). Bayesian statistics, a review, Society for Industrial and Applied
Mathematics, Philadelphia.

[47] T.J. Loredo (1989). From Laplace to supernova SN 1987A: Bayesian inference in as-
trophysics, in Maximum Entropy and Bayesian Methods, ed. P. Fougere, Kluwer.

[48] S.P.Luttrell (1985). The use of transinformation in the design of data sampling schemes
for inverse problems, Inverse Problems 1, 199–218.

[49] D.J.C. MacKay (1991). Bayesian interpolation, Neural Computation 4 3 415–447;
Chapter 2 of this dissertation.

[50] D.J.C. MacKay (1991). A practical Bayesian framework for backprop networks, Neural

Computation 4 3 448–472; Chapter 3 of this dissertation.



90 BIBLIOGRAPHY

[51] D.J.C. MacKay (1991). Information–based objective functions for active data selection,
Neural Computation 4 4 589–603; Chapter 4 of this dissertation.

[52] D.J.C. MacKay (1991). The evidence framework applied to classification networks,
Neural Computation 4 5 698–714; Chapter 5 of this dissertation.

[53] K.E. Mark and M.I. Miller (1992). Bayesian model selection and minimum description
length estimation of auditory–nerve discharge rates, J. Acoust. Soc. Am. 91 2, 989–
1002.

[54] J.E. Moody (1991). Note on generalization, regularization and architecture selection
in nonlinear learning systems, First IEEE–SP Workshop on neural networks for signal

processing.IEEE Computer society press

[55] R.M. Neal (1991). Bayesian mixture modelling by Monte Carlo simulation, Technical
Report CRG–TR–91–2 Dept. of Computer Science, University of Toronto.

[56] R.M. Neal (1992). Bayesian training of backpropagation networks by the hybrid Monte
Carlo method, Technical Report CRG–TR–92–1 Dept. of Computer Science, University
of Toronto.

[57] S.J. Nowlan (1991). Soft competitive adaptation: neural network learning algorithms
based on fitting statistical mixtures, Carnegie Mellon University Doctoral thesis CS–
91–126.

[58] S.J. Nowlan and G.E. Hinton (1991). Soft weight sharing, preprint.

[59] D.B. Osteyee and I.J. Good (1974). Information, weight of evidence, the singularity

between probability measures and signal detection, Springer.

[60] J.D. Patrick and C.S. Wallace (1982). Stone circle geometries: an information theory
approach, in Archaeoastronomy in the Old World, D.C. Heggie, editor, Cambridge
Univ. Press.

[61] F.J. Pineda (1989). Recurrent back–propagation and the dynamical approach to adap-
tive neural computation, Neural Computation 1, 161–172.

[62] M. Plutowski and H. White (1991). Active selection of training examples for network
learning in noiseless environments, Dept. Computer Science, UCSD TR 90-011.

[63] T. Poggio, V. Torre and C. Koch (1985). Computational vision and regularization
theory, Nature 317 6035, 314–319.

[64] W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling (1988). Numerical

Recipes in C, Cambridge.

[65] J. Rissanen (1978). Modeling by shortest data description, Automatica 14, 465–471.

[66] D.E. Rumelhart, G.E. Hinton and R.J. Williams (1986). Learning representations by
back–propagating errors, Nature 323, 533–536.

[67] D.E. Rumelhart (1987). Cited in [39].

[68] G. Schwarz (1978). Estimating the dimension of a model, Ann. Stat. 6 2, 461–464.



BIBLIOGRAPHY 91

[69] H.S. Seung, H. Sompolinsky and N. Tishby (1991). Statistical mechanics of learning
from examples, preprint.

[70] S. Sibisi (1991). Bayesian interpolation, in [25], 349–355.

[71] J. Skilling, editor (1989). Maximum Entropy and Bayesian Methods, Cambridge 1988,

Kluwer.

[72] J. Skilling (1989). The eigenvalues of mega–dimensional matrices, in [71], 455–466.

[73] J. Skilling (1991). On parameter estimation and quantified MaxEnt, in [25], 267–273.

[74] J. Skilling, D.R.T. Robinson, and S.F. Gull (1991). Probabilistic displays, in [25], 365–
368.

[75] J. Skilling (1991). Fundamentals of MaxEnt in data analysis, in Maximum Entropy in

action, B. Buck and V.A. MacAulay, eds., Oxford, 19–40..

[76] J. Skilling (1992). Bayesian solution of ordinary differential equations, in Maximum

Entropy and Bayesian Methods, Seattle 1991, G.J. Erickson and C.R. Smith, eds.,
Kluwer.

[77] A.F.M. Smith and D.J. Spiegelhalter (1980). Bayes factors and choice criteria for linear
models, Journal of the Royal Statistical Society B 42 2, 213–220.

[78] S.A. Solla, E. Levin and M. Fleisher (1988). Accelerated learning in layered neural
networks, Complex systems 2, 625–640.

[79] D.J. Spiegelhalter and S.L. Lauritzen (1990). Sequential updating of conditional prob-
abilities on directed graphical structures, Networks 20, 579–605.

[80] S.M. Stigler (1986). Laplace’s 1774 memoir on inverse probability, Stat. Sci. 1 3, 359–
378.

[81] R. Szeliski (1989). Bayesian modeling of uncertainty in low level vision, Kluwer.

[82] N. Tishby, E. Levin and S.A. Solla (1989). Consistent inference of probabilities in
layered networks: predictions and generalization, Proc. IJCNN, Washington.

[83] D. Titterington (1985). Common structure of smoothing techniques in statistics, Int.
Statist. Rev. 53, 141–170.

[84] A.M. Walker (1967). On the asymptotic behaviour of posterior distributions, J. R.

Stat. Soc. B 31, 80–88.

[85] C. S. Wallace and D. M. Boulton (1968). An information measure for classification,
Comput. J. 11 2, 185–194.

[86] C. S. Wallace and P. R. Freeman (1987). Estimation and Inference by Compact Coding,
J. R. Statist. Soc. B 49 3, 240-265.

[87] A.S. Weigend, D.E. Rumelhart and B.A. Huberman (1991). Generalization by weight–
elimination with applications to forecasting, in Advances in neural information pro-

cessing systems 3, ed. R.P. Lippmann et al., 875–882, Morgan Kaufmann.



92 BIBLIOGRAPHY

[88] N. Weir (1991). Applications of maximum entropy techniques to HST data, in Pro-
ceedings of the ESO/ST–ECF Data Analysis Workshop, April 1991.

[89] A. Zellner (1984). Basic issues in econometrics, Chicago.


