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Unfortunately, this problem is not intrinsic to astrophysics, but has been inherited fromstatistics itself. To an outsider, statistics can have the appearance of being merely an\industry" where statistical methods are invented without a clear design rationale, andthen evaluated by mass-producing simulated data sets and analyzing the average, long-run behavior of the methods. As a result, there often are several methods available foraddressing a particular statistical question, each giving a somewhat di�erent answer fromthe others, with no compelling criteria for choosing among them. Further, the reliance onlong-run behavior for the evaluation of statistical methods makes the connection betweentextbook statistical inferences and the real life problems of scientists seem rather tenuous.This problem can be particularly acute in astrophysics, where the notion of a statisticalensemble is often extremely contrived and can hence seem irrelevant. The gamma-rayastronomer does not want to know how an observation of a gamma-ray burst would comparewith thousands of other observations of that burst; the burst is a unique event which can beobserved only once, and the astronomer wants to know what con�dence should be placedin conclusions drawn from the one data set that actually exists. Similarly, the cosmologistis not comforted to learn that his statement about the large scale structure of the Universewould be correct 95% of the time were he to make similar observations in each of thousandsof universes \like" our own. He wants to know how much con�dence should be placed inhis statement about our particular Universe, the only one we know exists.Given these di�culties, it is no wonder that many scientists are dubious about resultsobtained using any but the simplest statistical methods, and no wonder that some openlyassert, \If it takes statistics to show it, I don't believe it." It is no wonder, but it isunfortunate. Among all scientists, it is perhaps most unfortunate for the astronomer, whostudies objects inaccessible to direct manipulation in a laboratory, and whose inferencesare thus fraught with uncertainty, uncertainty crying out for quanti�cation.It is the thesis of this paper that this situation is unnecessary, that there exists a simplemathematical language for the quanti�cation of uncertainty, that this language producesunique answers to well-posed problems, and that its answers are demonstrably optimal byrather simple, compelling desiderata. This language is Bayesian Probability Theory (BPT),and far from being a new approach to statistics, it is the original approach to statistics,predating the current long-run performance approach by a century. Ironically, it was orig-inally developed by an astrophysicist: Laplace used such methods to analyze astronomicalobservations for comparison with his famous calculations in celestial mechanics, and devel-oped them at length in his Th�eorie Analytique des Probabilit�es (Laplace 1812). Heighteningthe irony, many later developments of Laplace's theory also came from mathematicians andphysicists analyzing astronomical problems (see Feigelson 1989 for a brief review). More re-cently, a full development of Laplace's theory, including the solutions to dozens of practicalstatistical problems, was published by Sir Harold Je�reys while a professor of astronomyat Cambridge University in the chair previously held by Eddington (Je�reys 1939).*The Bayesian approach to probable inference is remarkably straightforward and intuitive.In fact, it is most likely what the reader already believes probability theory is, since the* This work remains little known among astronomers. A recent obituary of Je�reys (Runcorn1989) fails even to mention this important work, described by the prominent statistician I. J. Goodas being \of greater importance for the philosophy of science, and obviously of greater immediatepractical importance, than nearly all the books on probability written by professional philosopherslumped together" (Good 1980). 83



intuitive understanding physicists have of the more common statistical notions (such as 1�error bars) is often identical to the Bayesian interpretation of the notion, and far from therigorous \classical" or \orthodox" interpretation. But the precise quanti�cation of suchintuitive notions in Bayesian inference allows one to extend them into the realm wheresubtleties often leave our intuition|and classical statistics|at a loss. In such cases, theBayesian solution often appears beautifully intuitive a posteriori, our intuition having beentrained and sharpened by probability theory.The plan of this paper is as follows. First, we will have to discuss exactly what onemeans by the word \probability." This may sound like a topic for philosophers, but thewhole course of probability theory is set by what one decides the conceptual playgroundof the theory is, so the discussion is crucial. Next we will see that the Bayesian notionof probability, which appears at �rst to be too vague for quantitative analysis, in factallows one to develop a complete mathematical language for dealing with uncertainty thatis both simpler than standard statistics and more general than it, including much of it asa special case. Following this, we will learn how to use the theory to address two classes ofproblems of particular interest to scientists: the estimation of parameters in a model, andthe assessment of competing models. The basic ideas will be illustrated by comparing theBayesian approach to measuring a signal in Gaussian noise with the standard long termperformance approach.Once the general theory is set up, we will outline its application to two real astrophys-ical problems: the measurement of a weak photon counting signal in a (possibly strong)background, and the analysis of the neutrinos detected from the supernova SN 1987A. Thefailure of orthodox methods to guide astronomers to a single, optimal solution to a problemas simple and fundamental as the measurement of a weak signal is a powerful indication ofthe poverty of such methods. The Bayesian solution to this problem is so simple that it isreduced from a research problem (Hearn 1969; O'Mongain 1973; Cherry et al. 1980) to anundergraduate homework problem.This is a lot of ground to cover in the pages of a single paper, and much of it will becovered unevenly and incompletely. Hopefully, the reader will be induced to study the citedreferences where the theory is developed both more eloquently and more fully. To this end,the concluding section not only summarizes the contents of this work, but also points thereader to Bayesian literature covering several topics of particular interest to astrophysicists,including Bayesian spectrum analysis and the Bayesian approach to inverse problems.2. What is Probability?2.1 TWO DEFINITIONS OF PROBABILITYTraditionally, probability is identi�ed with the long-run relative frequency of occurrence ofan event, either in a sequence of repeated experiments or in an ensemble of \identicallyprepared" systems. We will refer to this view of probability as the \frequentist" view; it isalso called the \classical," \orthodox," or \sampling theory" view. It is the basis for thestatistical procedures currently in use in the physical sciences.Bayesian probability theory is founded on a much more general de�nition of probability.In BPT, probability is regarded as a real-number-valued measure of the plausibility of aproposition when incomplete knowledge does not allow us to establish its truth or falsehood84



with certainty. The measure is taken on a scale where 1 represents certainty of the truthof the proposition, and 0 represents certainty of its falsehood. This de�nition has anobvious connection with the colloquial use of the word \probability." In fact, Laplaceviewed probability theory as simply \common sense reduced to calculation" (Laplace 1812,1951). For Bayesians, then, probability theory is a kind of \quantitative epistemology", anumerical encoding of one's state of knowledge.Few works on statistics for the physical sciences bother to note that there is controversyover so fundamental a notion as the de�nition of probability. In fact, two of the mostin
uential works introducing statistical methods to physical scientists neither de�ne prob-ability nor discuss the complicated frequentist derivation and interpretation of concepts assimple and as widely used as the 1� con�dence region (Bevington 1969; Press et al. 1986).Other texts, noting that there is some controversy over the de�nition, adopt the frequencyde�nition, asserting that there is little practical di�erence between the approaches (Eadieet al. 1971; Martin 1971; Mendenhall et al. 1981).Of course, it is futile to argue over which is the \correct" de�nition of probability. Thedi�erent de�nitions merely re
ect di�erent choices for the types of problems the theory canaddress, and it seems possible that either de�nition could lead to a consistent mathematicaltheory. But though this is true, it leaves open the question of which approach is more usefulor appropriate, or which approach addresses the types of problems actually encountered byscientists in the most straightforward manner.In fact, it will not take much deep thought for us to see that the Bayesian approachto probability theory is both more general than the frequentist approach, and much moreclosely related to how we intuitively reason in the presence of uncertainty. We will also �ndthat Bayesian solutions of many important statistical problems are signi�cantly simpler toderive than their frequentist counterparts. But if this is true, and if, as noted earlier, theBayesian approach is the historically older approach, why was the frequentist de�nitionadopted, and why has it dominated statistics throughout this century? To address thesequestions, our discussion of the contrast between Bayesian and frequentist reasoning willbe quasi-historical. More extensive discussions of the history of probability theory andthe Bayesian/frequentist controversy are available in R�enyi (1972, Appendices III and IV),Jaynes (1978, 1986a), and Grandy (1987, Ch. 2).2.2 SOME EARLY HISTORY: BERNOULLI, BAYES, AND LAPLACE2.2.1. Frequency from Probability. Though statistical problems, particularly those relatedto gambling and games of chance, have entertained the minds of thinkers since ancient times,the �rst formal account of the calculation of probabilities is Bernoulli's Ars Conjectandi(\The Art of Conjecture", Bernoulli 1713). Bernoulli was what we would today term aBayesian, holding that probability is \the degree of certainty, which is to the certaintyas the part to the whole." He clearly recognized the distinction between probability andfrequency, deriving the relationship between probability of occurrence in a single trial andfrequency of occurrence in a large number of independent trials now known as Bernoulli'stheorem, or the law of large numbers.Bernoulli's theorem tells us that, if the probability of obtaining a particular outcomein a single trial is known to be p, the relative frequency of occurrence of that outcome in alarge number of trials converges to p.Also of interest to Bernoulli was the inverted version of this problem: supposing the85



probability of occurrence in a single trial is unknown, what does the observation of the out-come n times in N repeated, independent trials tell us about the value of the probability?Bernoulli never solved this problem, but his interest in it further emphasizes the distinc-tion made by him and his contemporaries between probability (\degree of certainty") andfrequency.2.2.2. Probability from Frequency: Bayes' Theorem. A solution to Bernoulli's problem waspublished posthumously by the Rev. Thomas Bayes (1763). It was soon rediscovered byLaplace, in a much more general form, and this general form is known as Bayes' Theorem(BT). It can be derived very simply as follows.The mathematical content of the probability theory of Bernoulli, Bayes, and Laplace wasspeci�ed by taking as axioms the familiar sum rule,p(A j C) + p(A j C) = 1; (1)and product rule, p(AB j C) = p(A j BC)p(B j C): (2)Here the symbols, A;B; C, represent propositions, A represents the denial of A (read \notA"), and AB means \A and B," a proposition that is true only if A and B are both true.The vertical bar is the conditional symbol, indicating what information is assumed for theassignment of a probability. We must always assume something about the phenomenon inquestion, and it is good practice to put these assumptions out in the open, to the right ofthe bar. Failure to do this can lead to apparent paradoxes when two problems with di�erentbackground assumptions are compared; see Jaynes (1980a) for an educational example.All legitimate relationships between probabilities can be derived from equations (1) and(2). For example, we may want to know the probability that either or both of two propo-sitions is true. Denoting this by p(A+B j C), it can be easily shown (Jaynes 1958, 1990b;Grandy 1987) that the axioms implyp(A+ B j C) = p(A j C) + p(B j C) � p(AB j C): (3)In fact, we can take this in place of (1) as one of our axioms if we wish. If A and Bare exclusive propositions, so that only one of them may be true, p(AB j C) = 0, andequation (3) becomes the familiar sum rule for exclusive propositions: p(A+B j C) = p(A jC) + p(B j C).It is important to keep in mind that the arguments for a probability symbol are propo-sitions, not numbers, and that the operations inside the parentheses are logical operations.The symbols for logical operations are here chosen to make the axioms mnemonic. Thuslogical \and," represented by juxtaposition in the argument list, leads to multiplicationof probabilities. Similarly, logical \or," indicated by a \+" in the argument list, leads tosums of probabilities. But the meanings of juxtaposition and the \+" sign di�er inside andoutside of the probability symbols.The propositions AB and BA are obviously identical: the ordering of the logical \and"operation is irrelevant. Thus equation (2) implies that p(A j BC)p(B j C) = p(B j AC)p(A jC). Solving for p(A j BC), we �ndp(A j BC) = p(A j C)p(B j AC)p(B j C) : (4)86



This is Bayes' theorem; it is a trivial consequence of axiom (2).Bayesian probability theory is so-called because of its wide use of BT to assess hypotheses,though of course Bayesians use all of probability theory, not just BT. To see how BT canhelp us assess an hypothesis, make the following choices for the propositions A, B, andC. Let A = H , an hypothesis we want to assess. Let B = D, some data we have that isrelevant to the hypothesis. Let C = I , some background information we have indicatingthe way in which H and D are related, and also specifying any alternatives we may haveto H .* With these propositions, BT readsp(H j DI) = p(H j I)p(D j HI)p(D j I) : (5)Thinking about this a little, we see that BT represents learning. Speci�cally, it tells us howto adjust our plausibility assessments when our state of knowledge regarding an hypothesischanges through the acquisition of data. It tells us that our \after data" or posteriorprobability of H is obtained by multiplying our \before data" or prior probability p(H j I)by the probability of the data assuming the truth of the hypothesis, p(D j HI), anddividing it by the probability that we would have seen the data anyway, p(D j I). Thefactor p(D j HI) is called the sampling distribution when considered as a function of thedata, or the likelihood function, L(H), when considered as a function of the hypothesis.For reasons that will become clear below, p(D j I) is sometimes called the global likelihood,and usually plays the role of an ignorable normalization constant.Two points are worth emphasizing immediately about BT. First, there is nothing aboutthe passage of time built into probability theory. Thus, our use of the terms \after data,"\before data," \prior probability," and \posterior probability" do not refer to times beforeor after data is available. They refer to logical connections, not temporal ones. Thus, to beprecise, a prior probability is the probability assigned before consideration of the data, andsimilarly for the other terms.Second, for those who may have been exposed to BT before and heard some ill-informedcriticisms of it, the I that is always to the right of the bar in equation (5) is not somemajor premise about nature that must be true to make our calculation valid. Nor is itsome strange, vague proposition de�ning some universal state of ignorance. It simply isthe background information that de�nes the problem we wish to address at the moment.It may specify information about H that we are content to assume true, or it may simplyspecify some alternative hypotheses we wish to compare with H . We will have the chanceto elaborate on this point below, when we see how to use (5) to solve concrete problems.To solve Bernoulli's problem, Bayes used a special case of BT to evaluate di�erentpropositions about the the value of the single trial probability of an outcome, given itsrelative frequency of occurrence in some �nite number of trials (Bayes 1763; Jaynes 1978).Later, independently, Laplace greatly developed probability theory, with BT playing a keyrole. He used it to address many concrete problems in astrophysics. For example, heused BT to estimate the masses of the planets from astronomical data, and to quantifythe uncertainty of the masses due to observational errors. Such calculations helped himchoose which problems in celestial mechanics to study by allowing him to identify signi�cantperturbations and to make predictions that would be testable by observers.* To be precise, H is a proposition asserting the truth of the hypothesis in question (\Theplasma temperature is T ."), D is a proposition asserting the values of the data (\The observedphoton energy is �."), etc., but we will usually be a bit free with our language in this regard.87



2.3 FREQUENTIST PROBABILITYDespite the success of Laplace's development of probability theory, his approach was soonrejected by mathematicians seeking to further develop the theory. This rejection was dueto a lack of a compelling rationale for some of the practices of Bernoulli, Bayes, Laplace,and their contemporaries.First, the idea that probability should represent a degree of plausibility seemed too vagueto be the foundation for a mathematical theory. The mathematical aspect of the theoryfollowed from the axioms (1) and (2), but it was certainly not obvious that calculationswith degrees of plausibility had to be governed by those axioms and no others. The axiomsseemed arbitrary.Second, there were problems associated with how prior probabilities should be assigned.The probability axioms described how to manipulate probabilities, but they did not specifyhow to assign the probabilities that were being manipulated. In most problems, it seemedclear how to assign the sampling probability, given some model for the phenomenon beingstudied. But �nding compelling assignments of prior probabilities proved more di�cult.In a certain class of problems, Bernoulli and his successors found an intuitively reasonableprinciple for such an assignment that we will call the Principle of Indi�erence (PI; it isalso known as the Principle of Insu�cient Reason). It is a rule for assignment of prob-abilities to a �nite, discrete set of propositions that are mutually exclusive and exhaustive(i.e., one proposition, and only one, must be true). The PI asserts that if the availableevidence does not provide any reason for considering proposition A1 to be more or lesslikely than proposition A2, then this state of knowledge should be described by assigningthe propositions equal probabilities. It follows that in a problem with N mutually exclusiveand exhaustive propositions, and no evidence distinguishing them, each proposition shouldbe assigned probability 1=N .While the PI seemed compelling for dealing with probability assignments on discrete�nite sets of propositions, it was not clear how to extend it to cases where there werein�nitely many propositions of interest. Such cases arise frequently in science, wheneverone wants to estimate the value of a continuous parameter, �. In this case, � is a label fora continuous in�nity of propositions about the true value of the parameter, and we need toassign a prior probability (density) to all values of � in order to use BT. We might specifyindi�erence about the value of � by assigning a 
at probability density, with each value of� having the same prior probability as any other. Unfortunately, it seems that we couldmake the same statement about prior probabilities for the value of �0 � �2. But a 
atdensity for �0 does not correspond to a 
at density for �. For this reason, inferences aboutcontinuous parameters seem to have a disturbing subjectivity, since di�erent investigatorschoosing to label hypotheses di�erently by using di�erent parameters could come to di�erentconclusions.The mathematicians of the late nineteenth and early twentieth centuries dealt with theselegitimate problems by surgical removal. To eliminate the arbitrariness of the probabilityaxioms, they drastically restricted the domain of the theory by asserting that probabilityhad to be interpreted as relative frequency of occurrence in an ensemble or in repeatedrandom experiments. The algebra of relative frequencies obviously satis�ed the axioms, sotheir arbitrariness was removed.As a byproduct, the second problem with the Laplace theory disappeared, because thefrequency de�nition of probability made the concept of the probability of an hypothesis88



illegitimate. This is because the frequency de�nition can only describe the probability of arandom variable: a quantity that can meaningfully be considered to take on various valuesthroughout an ensemble or a series of repeated experiments. An hypothesis, being eithertrue or false for every element of an ensemble or every repetition of an experiment, isnot a random variable; its \relative frequency of occurrence" throughout the ensemble orsequence of experiments is either 0 or 1. For example, were we to attempt to measure theradius of a planet by repeated observation, the observed radius would vary from repetitionto repetition, but the actual radius of the planet would be constant, and hence not amenableto frequentist description. Put another way, were we to analyze the observations with BT,we would be attempting to �nd a posterior distribution for the radius; but if this posteriordistribution is a frequency distribution, there is an obvious problem: how can the frequencydistribution of a parameter become known from data that were taken with only one valueof the parameter actually present?For these reasons, the concept of the probability of an hypothesis is held as meaninglessin frequentist theory. A consequence is that scientists are denied the ability to use BT toassess hypotheses, so the problem of assigning prior probabilities disappears. The resultingtheory was originally deemed superior to BPT, especially because it seemed more objective.The apparent subjectivity of prior probability assignments was avoided, and the frequencyde�nition of probability, by its reference to observation of repeated experiments, seemedto make probability an objective property of \random" phenomena, and not a subjectivedescription of the state of knowledge of a statistician.2.4 CRITICISM OF THE FREQUENTIST APPROACH2.4.1. Arbitrariness and Subjectivity. Unfortunately, assessing hypotheses was one of theprinciple aims of probability theory. Denied the use of BT for this task, frequentist theoryhad to develop ways to accomplish it without actually calculating probabilities of hypothe-ses. The frequentist solution to this problem was the creation of the discipline of statistics.Basically, one constructs some function of observable random variables that is somehowrelated to what one wishes to measure; such a function is called a statistic. Familiar statis-tics include the sample mean and variance, the �2 statistic, and the F statistic. Since astatistic is a function of random variables, its probability distribution, assuming the truthof the hypothesis of interest, can be calculated. A hypothesis is assessed by comparing theobserved value of the statistic with the long-run frequency distribution of the values of thestatistic in hypothetical repetitions of the experiment.Intuition was a clear guide for the construction of statistics for simple problems (thefamiliar statistics mentioned above refer to the rather simple gaussian distribution). Butfor complicated problems, there is seldom a compelling \natural" choice for a statistic.Several statistical procedures may be available to address a particular problem, each givinga di�erent answer. For example, to estimate the value of a parameter, one can use themethod of moments, the maximum likelihood method, or a more specialized ad hocmethod.Or, to compare unbinned data with an hypothesized continuous distribution, one could useone of the three Kolmogorov-Smirnov tests, the Smirnov-Cramer-von Mises test, or any ofa number of obvious generalizations of them.To provide a rationale for statistic selection, many principles and criteria have beenadded to frequentist theory, including unbiasedness, e�ciency, consistency, coherence, theconditionality principle, su�ciency, and the likelihood principle. Unfortunately, there is89



an arbitrariness to these principles, and none of them have been proved to be of universalvalidity (for example, there is currently a growing literature endorsing the use of biasedstatistics in some situations; see Efron 1975 and Zellner 1986). Further, with the exceptionof the concept of su�ciency (which applies to only a limited family of distributions), noneof these criteria alone leads to a unique choice for a statistic. Thus in practice more thanone criterion must be invoked; but there are no principles specifying the relative importanceof the criteria.Once a statistic is selected, it must be decided how its frequency distribution will be usedto assess an hypothesis. To replace the Bayesian notion of the probability of an hypothesis,other real number measures of the plausibility of an hypothesis are introduced, includingcon�dence regions, signi�cance levels, type I and II error probabilities, test size and power,and so on. These all require the consideration of hypothetical data for their de�nitions.The resulting frequentist theory is far from uni�ed, and the proliferation of principlesand criteria in the theory and the availability of a plurality of methods for answering asingle question place the objectivity of the theory in question. This situation is ironic. Thefrequency de�nition was introduced to eliminate apparent arbitrariness and subjectivity inthe Laplace theory. Yet a large degree of arbitrariness must enter the frequency theory toallow it to address the problems Laplace could address directly.2.4.2. Comparison with Intuition. Once a statistical procedure is chosen in frequentisttheory, it is used to assess an hypothesis by calculating its long-term behavior, imaginingthat the hypothesis is true and that the procedure is applied to each of many hypotheticaldata sets. But this is strongly at variance with how we intuitively reason in the presenceof uncertainty. We do not want a rule that will give good long term behavior; rather, wewant to make the best inference possible given the one set of evidence actually available.Consider the following three examples of everyday plausible inference. When we come toan intersection and must decide whether to cross, or wait for oncoming tra�c to pass, weconsider whether we will make it across safely or be hit, given the current tra�c situationat the intersection. When a doctor diagnoses an illness, he or she considers the plausibilityof each of a variety of diseases in the light of the current symptoms of the patient. Whena juror attempts to decide the guilt or innocence of a defendant, the juror considers theplausibility of guilt or innocence in light of the evidence actually presented at the trial.These three examples have a common structure: in the presence of uncertainty, weassess a variety of hypotheses (safe crossing or a collision; cold or 
u or bronchitis; guilty orinnocent) in the light of the single set of evidence actually presented to us. In addition, wemay have strong, rational prior prejudices in favor of one or more hypotheses. The doctormay know that there is a 
u epidemic in progress, or that the patient has had a recurrentviral infection in the past.Bayes' theorem has just this structure. A variety of hypotheses, speci�ed in I , areeach assessed by calculating their posterior probability, which depends both on the priorprobability of the hypothesis, and on the probability of the one data set actually observed.In contrast, the roles of hypothesis and data are reversed in frequentist reasoning. For-bidden the concept of the probability of an hypothesis, the frequentist must assume thetruth of a single hypothesis, and then invent ways to assess this decision. The assessmentis made considering not only the data actually observed, but also many hypothetical datasets predicted by the hypothesis but not seen. It is as if the juror tried to decide guilt orinnocence by taking into consideration a mass of evidence that might possibly have beenpresented at the trial but which was not. 90



In a word, frequentist reasoning assesses decisions to assume the truth of an hypothesis byconsidering hypothetical data, while the Bayesian approach assesses hypotheses directly bycalculating their probabilities using only the data actually observed, the only hypotheticalelements of the calculation being the hypotheses themselves.2.4.3. Randomness vs. Uncertainty. Frequentist theory is forced to base inferenceson hypothetical data because data, and not hypotheses, are considered to be \randomvariables." The concept of randomness is at the heart of the theory. But a close inspectionof the notion of randomness reveals further di�culties with the frequentist viewpoint.In frequentist theory, a quantity is random if it unpredictably takes on di�erent valuesin otherwise identical repetitions of an experiment or among identically prepared membersof an ensemble. To explore this concept, we will consider as an example the prototypicalrandom experiment: the 
ip of a coin. Imagine an experiment speci�ed by the statement,\A fair (i.e., symetrical) coin is 
ipped." Since either heads or tails can come up in a 
ip,and since we cannot predict with certainty which will come up, the outcome of a 
ip isconsidered random. The probability of a particular outcome|heads, say|is de�ned as thelimiting frequency with which heads comes up in an inde�nitely large number of 
ips. Thisde�nition seems to refer to an observable property of the coin. For this reason, frequentistprobability appears more objective than Bayesian probability; the latter describes a stateof knowledge, while the former seems to describe an observable property of nature.But certainly the motion of a coin is adequately described by classical mechanics; if weknew the physical properties of the coin (mass, inertia tensor, etc.), the initial conditionsof the 
ip, and exactly how it was 
ipped, we could predict the outcome with certainty. Ifthe same coin was 
ipped under precisely the same conditions, the outcome would be thesame for each 
ip. What, then, gives rise to the \randomness" of the outcomes of repeated
ips?If \identical" repetitions of a coin 
ip experiment produce di�erent outcomes, somethingmust have changed from experiment to experiment. The experiments could not have beenprecisely identical. Hidden in the adjective, \identical", describing repetitions of an exper-iment or elements of an ensemble in frequentist theory is the true source of \randomness":the repeated experiments must be identical only in the sense that in each of them we arein the same state of knowledge in regard to the detailed conditions of the 
ip. Put anotherway, the description of the experiment is incomplete, so that repetitions of the experimentthat agree with our description vary in details which, though not speci�ed in our descrip-tion, nevertheless a�ect the outcome. In the coin example, we have speci�ed only that thesame (i.e., physically identical) coin be 
ipped in repeated experiments. But this leaves theinitial conditions of the 
ips, and the precise manner of 
ipping, completely unspeci�ed.Since the outcome of a 
ip depends as much on these unspeci�ed details as on the physicalproperties of the coin, it is unpredictable.There is variability in the outcome of \random" experiments only because our incompleteknowledge of the details of the experiment permit variations that can alter the outcome. Insome cases, our knowledge may not constrain the outcome at all. This could be the case ina coin 
ipping experiment, where merely specifying that the same coin be 
ipped leaves somuch room for variation that the outcome is totally uncertain, heads and tails being equallyprobable outcomes for a particular 
ip. But often our knowledge, though incomplete,su�ciently constrains the experiment so that some general features of the outcome can bepredicted, if not with certainty, than at least with high plausibility. The best example isstatistical mechanics. There, measurement of the temperature of an equillibrium system91



provides us with knowledge about its total energy. Though many, many microstates arecompatible with the measurement, our limited knowledge of the precise microstate of thesystem still permits us to make very accurate predictions of, say, its pressure. This isbecause the vast majority of microstates compatible with our limited knowledge have verynearly identical pressures.Thus even in frequency theory, situations are described with probability, not becausethey are intrinsically random or unpredictable, but because we want to make the mostprecise statements or predictions possible given the variations permitted by the uncertaintyand incompleteness of our state of knowledge (Jaynes 1985d). \Randomness", far frombeing an objective property of an object or phenomenon, is the result of uncertainty andincompleteness in one's state of knowledge. Once this is realized, the frequentist distinc-tion between the uncertainty one may have about the value of a \random variable" andthe uncertainty one may have about the truth of an hypothesis appears highly contrived.Randomness, like any uncertainty, is seen to be \subjective" in the sense of resulting froman incomplete state of knowledge.*Two operational di�culties with frequentist theory clearly indicate that it is as subjectiveas BPT, and in some contexts even more subjective. First, though probability is de�nedas long-term frequency, frequency data is seldom available for assignment of probabilitiesin real problems. In fact, the in�nite amount of frequency data required to satisfy thefrequentist de�nition of probability is never available. As a result, the frequentist must ap-peal to an imaginary in�nite set of repeated experiments or an imaginary in�nite ensemble.Often, which imaginary reference set to choose will not be obvious, as the single data setwe wish to analyze can often be considered to be a member of many reasonable referencesets. This subjectivity of frequentist theory has led to statistical paradoxes where simple,apparently well-posed problems have no obvious solution. In the Bayesian approach, whereprobability assignments describe the state of knowledge de�ned by the problem statement,such paradoxes disappear (see Jaynes 1973 for an instructive example).The second operational di�culty arises in the analysis of data consisting of multiplesamples of a random quantity. Since frequentist theory requires the consideration of hy-pothetical data to assess an hypothesis, analysis requires the speci�cation, not only of thephenomenon being sampled and the results of the sample, but also the speci�cation of whatother samples might have been seen. These hypothetical samples are needed to specify thereference set for the observed sample, but unfortunately their speci�cation can depend onthe thoughts of the experimenter in disturbing ways. This complicated phenomenon is bestdescribed by an example (Berger and Berry 1988).Consider again the 
ip of a coin, and imagine that a coin has been 
ipped N = 17 times,giving nH = 13 heads and nT = 4 tails. Is this evidence that the coin is biased? Strangely,a frequentist cannot even begin to address this question with the data provided, because itis not clear from these data what the reference set for the data is. If the frequentist is told* A reader may object at this point, arguing that the success of quantum theory \proves"that phenomena can be intrinsically random. But the successes of quantum theory no more provethe randomness of nature than the success of statistical description of coin 
ipping proves that coin
ipping is intrinsically random, or the fact that a random number algorithm passes statistical testsproves that the numbers it produces (in a purely deterministic fashion!) are random. Indeed, BPTo�ers much hope in helping us to unravel inference from physics in quantum theory; see Jaynes(1989a,b) for preliminary analyses. 92



that the experimenter planned beforehand on 
ipping the coin 17 times, then analysis canproceed, with probabilities determined by embedding the data in a reference set consistingof many sets of 17 
ips. But this is not the only way the data could have been obtained.For example, the experimenter may have planned to 
ip the coin until he saw 4 tails. Inthat case, the reference set will be many sets of 
ips di�ering in their total number, butwith each set containing 4 tails.In the �rst case, the number of heads (or tails) is the random quantity, and in the second,the total number of 
ips is the random quantity. Depending on which quantity is identi�edas random, a di�erent reference set will be used, and di�erent probabilities will result.The results of the analysis thus depend on the stopping rule used by the experimenter.Experiments must therefore be carefully planned beforehand to be amenable to frequentistanalysis, and if the plan is altered during execution for any reason (for example, if theexperimenter runs out of funds or subjects), the data is worthless and cannot be analyzed.An example is worked out in Section 4.3.1, where it is shown that this so-called optionalstopping problem can lead to dispute over whether or not an hypothesis is rejected by agiven data set.Intuition rebells against this strange behavior. Surely my conclusions, given the one dataset observed, should not depend on what I or anyone else might have done if di�erent datawere obtained. And surely, if my plan for an experiment has to be altered (as is often thecase in astronomy, where observations can be cut short due to bad weather or �ckle satelliteelectronics), I should still be able to analyze the resulting data. In Bayesian probabilitytheory, the stopping rule plays no role in the analysis, and this has been an importantfactor in bringing many statisticians over to the Bayesian school of thought (Berger andBerry 1988). There is no ambiquity over which quantity is to be considered a \randomvariable", because the notion of a random variable and the consequent need for a referenceset of hypothetical data is absent from the theory. All that is required is a speci�cation ofthe state of knowledge that makes the outcome of each element of the data set uncertain.2.4.4. The Frequentist Failure. The frequentist approach to probability theory was mo-tivated by important de�ciencies in the Bayesian theory that it replaced. Unfortunately,frequentist theory addressed these de�ciencies only by burying them under a super�ciallymore objective facade. When examined more deeply, we see that frequentist theory onlyexacerbates the ambiguity and subjectivity of the Bayesian theory.One motivation for frequentist theory was the apparent arbitrariness of the probabilityaxioms. To make the axioms compelling, the frequency de�nition of probability was intro-duced. But this de�nition forbade the use of Bayes' Theorem for the analysis of hypotheses,and the resulting frequentist theory cannot by itself produce unique solutions to well-posedproblems. A wide variety of principles and criteria must be added to the theory, each atleast as arbitrary as the probability axioms seemed to be.Another importantmotivation for frequentist theory was the subjective nature of Bayesianprobability assignments, particularly in regard to prior probabilities for hypotheses. Fre-quentist theory replaces the subjective probability assignments of BPT with relative fre-quencies of occurence of random variables. But the notion of randomness is itself subjective,dependent on one's state of knowledge in a manner very similar to that of Bayesian prob-ability. In many problems, it is substantially more subjective, since the identi�cation ofrandom variables and their probability assignments can depend in disturbing ways on thethoughts of the experimenter. Such is the case in the optional stopping problems justdescribed. 93



Finally, frequentist theory is badly at odds with the manner in which we intuitively reasonin the presence of uncertainty. Rather than evaluate a variety of hypotheses in the light ofthe available evidence, the theory attempts to evaluate a single hypothesis by considering avariety of hypothetical data. It also ignores any prior information one may have regardingthe possible hypotheses.Frequentist theory has thus failed to address the problems that motivated it, and in facthas exacerbated them. Though it has been used with great success for the analysis of manyproblems, it is far from uni�ed, and can give anti-intuitive and paradoxical results. Theseproblems signal a deep 
aw in the theory, and indicate the need to �nd a better theory. Thisnew theory should duplicate the successes of frequentist theory, and eliminate its defects.In the remainder of this paper, we will see that such a better theory exists, and is infact identical to the original probability theory of Bernoulli, Bayes, Laplace, and theircontemporaries, though with a sounder rationale.2.5 SOME RECENT HISTORYSir Harold Je�reys was one of the earliest critics of the frequentist statistics of his day. Buthe did more than criticize; he o�ered an alternative. In his book (Je�reys 1939) he presentedBayesian solutions to dozens of practical statistical problems. He also tried to provide acompelling rationale for Bayesian probability theory, and although he was not completelysuccessful in this, his mass of intuitively appealing results, many of them inaccessible tofrequentists, should have been a clear indication that \something is right here." But his workwas rejected on philosophical grounds, and has remained largely unnoticed until recently.In the 1940's and 1950's, R. T. Cox, E. T. Jaynes, and others began to provide the missingrationale for Bayesian probability theory. Their work was little appreciated at �rst, butothers rediscovered some of this rationale, and over the past few decades there has been aslow but steady \Bayesian revolution" in statistics. Astrophysicists have been slow to reapthe bene�ts of this revolution. But in the last 15 years Gull, Skilling, Bretthorst and othershave begun working out astrophysical applications of BPT. In the remainder of this paper,we will examine the rationale and foundations of BPT, learn how it is used to addresswell-posed statistical problems, and then brie
y review some of the recent astrophysicalapplications of BPT.3. Bayesian Probability Theory: A Mathematical Language for InferenceThe di�culties with frequentist theory, particularly its clash with common sense reasoning,lead us to conclude that it is not generally appropriate for the analysis of scienti�c data.The intuitive appeal of BPT and the mass of successful results from it lead us to suspectthat it may be the correct theory. But can a compelling, rigorous mathematical theory beerected upon a concept as apparently vague as the notion that probability is a measure ofdegree of plausibility?Happily, the answer is yes. In this section we will see that a small set of compellingqualitative desiderata for a measure of plausibility will be su�cient to completely spec-ify a quantitative theory for inference that is identical to the probability theory used byLaplace and Je�reys. Speci�cally, these qualitative desiderata will allow us to derive the\axioms" of probability theory, giving them an unassailable status as the correct rules for94



the manipulation of real number valued degrees of plausibility. We will also recognize thatthese rules for combination and manipulation|a \grammar" for plausible inference|areonly half of the required theory. The other half of the theory is the problem of assigninginitial probabilities to be manipulated|the \vocabulary" of the mathematical language|and the desiderata will provide us with rules for unambiguous assignment of probabilitiesin well-posed problems.The desiderata make no reference to frequencies, random variables, ensembles, or imagi-nary experiments. They refer only to the plausibility of propositions. Deductive reasoning,by which we reason from true propositions to other true propositions, will be a limitingcase of the theory, and will guide its development. Thus, the theory can be viewed asthe extension of deductive logic to cases where there is uncertainty (Jaynes 1990a,b). Ofcourse, we are free to use the resulting theory to consider propositions about frequencies inrepeated experiments. In this way, connections between probability and frequency, includ-ing Bernoulli's theorem and its generalizations, will be derived consequences of the theory,and all the useful results of frequentist theory will be included in the new theory as specialcases.The missing rationale for BPT was �rst provided by Cox (1946, 1961) and Jaynes (1957,1958). Similar results were soon found in other forms by other statisticians (see Lindley1972 for a terse review). We will only be able to describe brie
y this profound and beautifulaspect of BPT here. More detailed, highly readable developments of these ideas may befound in Jaynes (1957, 1958), Tribus (1969), Grandy (1987), and Smith and Erickson (1989).A particularly eloquent and complete development will be available in the upcoming bookby Jaynes (1990b).3.1 THE DESIDERATAOur �rst desideratum for a theory of plausibility is simple:(I) Degrees of plausibility are represented by real numbers.Perhaps there are useful generalizations of the theory to di�erent number systems. But ifour theory is to represent something similar to the way we reason, or if we wish to considerit possible to design a computer or robot that follows our quantitative rules, at some pointwe will have to associate plausibility with some physical quantity, meaning we will have toassociate it with real numbers.Not yet identifying degrees of plausibility with probability, we will indicate the plausi-bility of proposition A given the truth of proposition C by the symbol A j C. We will takeit as a convention that greater plausibility will correspond to a greater number.Our second desideratum will be(II) Qualitative consistency with common sense.There are several speci�c ways we will use this; they are noted below. For example, if theplausibility of A increases as we update our background information from C to C 0 (thatis, A j C 0 > A j C), but our plausibility of B is una�ected (B j C 0 = B j C), then weexpect that the new information can only increase the plausibility that A and B are bothtrue, and never decrease it (AB j C 0 > AB j C). E�ectively, this desideratum will ensurethat the resulting theory is consistent with deductive logic in the limit that propositionsare certainly true or certainly false. 95



Our �nal desideratum is(III) Consistency.More explicitly, we want our theory to be consistent in 3 ways.(IIIa) Internal Consistency: If a conclusion can be reasoned out in more than oneway, every possible way must lead to the same result.(IIIb) Propriety: We demand that the theory take into account all informationprovided that is relevant to a question.(IIIc) Jaynes Consistency: Equivalent states of knowledge must be represented byequivalent plausibility assignments. This desideratum, a generalization ofthe Principle of Indi�erence, is the key to the problem of assigning priorprobabilities. Though it seems obvious once stated, its importance has onlybeen appreciated beginning with the work of Jaynes (1968).Amazingly, these few compelling desiderata will be su�cient to completely specify theform of Bayesian probability theory.3.2 THE GRAMMAR OF INFERENCE: THE PROBABILITY AXIOMSGiven two or more propositions, we can build other, more complicated propositions outof them by considering them together. We would like to have rules to tell us how theplausibilities of these new, compound propositions can be calculated from the plausibilitiesof the original propositions. We will assume for the moment that the original plausibilitiesare given. The rules we seek will play the role of a \grammar" for our theory.Some of the ways we can build new propositions out of a set of propositions fA;B; C : : :ginclude logical negation (A, \not A"), logical conjunction (AB, \A and B"), and logicaldisjunction (A+B, \A or B"), mentioned above. An example of another important opera-tion is implication: A) B is the proposition, \If A is true, then B follows." The symbolicsystem governing the combination of propositions like this is Boolean Algebra. We wantour plausibility calculus to enable us to calculate the plausibility of any proposition builtfrom other propositions using Boolean algebra.It will come as no surprise to students of computer science that only a subset of the logicaloperations we have listed is needed to generate all possible propositions. For example, theproposition A+B is identical to the proposition A B; that is, A+B is true unless both Aand B are false. One adequate subset of Boolean operations that will be convenient for us toconsider is conjunction and negation. If we can determine how to calculate the plausibilityof the negation of a proposition, given the plausibility of the original proposition, and ifwe can determine how to calculate the plausibility of the conjunction of two propositionsfrom their separate plausibilities, then we will be able to calculate the plausibilities of allpossible propositions that can be built from one or more \elementary" propositions.Our desiderata are su�cient to specify the desired rules for calculation of the plausibilityof a negated proposition and of the conjunction of two propositions; not surprisingly, theyare the sum rule and product rule, equations (1) and (2) above. We do not have thespace to discuss the derivation of these rules fully here. But since the resulting rules are thefoundation for probability theory, and since the kind of reasoning by which such quantitativerules are derived from qualitative desiderata is prevalent in Bayesian probability theory, itis important to have an understanding of the derivation. Therefore, we will outline here96



the derivation of the product rule, and only present the results of the similar derivation ofthe sum rule; the above mentioned references may be consulted for further details.3.2.1 The Product Rule. We will �rst look for a rule relating the plausibility of AB to theplausibilities of A and B separately. That is, we want to �nd AB j C given informationabout the plausibilities of A and B. The separate plausibilities of A and B that may beknown to us include the four quantities u � (A j C), x � (B j C), y � (A j BC), andv � (B j AC). By desideratum (IIIb), we should use all of these, if they are relevant.Now we invoke desideratum (II) to try to determine if only a subset of these four quan-tities is actually relevant. Common sense tells us right away, for example, that (AB j C)cannot depend on only one of x; y; u; or v. This leaves eleven combinations of two or moreof these plausibilities. A little deeper thought reveals that most of these combinations areat variance with common sense. For example, if (AB j C) depended only on u and x wewould have no way of taking into account the possibility that A and B are exclusive.Tribus (1969) goes through all eleven possibilities, and shows that all but two of themexhibit qualitative violations of common sense. The only possible relevant combinationsare x and y, or u and v. We can understand this by noting that there are two ways adecision about the truth of AB can be broken down into decisions about A and B. Eitherwe �rst decide that A is true, and then, accepting the truth of A, decide that B is true.Or, we �rst decide that B is true, and then make our decision about A given the truth ofB. Finally, we note that since the proposition AB is the same as the proposition BA, wecan exchange A and B in all the quantities. Doing so, we see that the di�erent pairs, x; yand u; v, merely re
ect the ordering of A and B, so we may focus on one pair, the otherbeing taken care of by the commutativity of logical conjunction.Denoting (AB j C) by z, we can summarize our progress so far by stating that we seeka function F such that z = F (x; y): (6)Now we impose desideratum (IIIa) requiring internal consistency. We set up a problemthat can be solved two di�erent ways, and demand that both solutions be identical. Onesuch problem is �nding the plausibility that three propositions, A;B; C; are simultaneouslytrue. The joint proposition ABC can be built two di�erent ways: ABC = (AB)C =A(BC). The �rst of these equations and equation (6) tell us that (ABC j D) = F [(BC jD); (A j BCD)], where we treat the proposition AB as a single proposition. A similarequation follows from the second equality. Internal consistency then requires that thefunction F obey the equation, F [F (x; y); z] = F [x; F (y; z)]; (7)for all real values of x, y, and z. Crudely, the function F is \associative." The generalsolution of this functional equation is F (x; y) = w�1[w(x)w(y)], where w(x) is any posi-tive, continuous, monotonic function of plausibility. Thus equation (7) does not uniquelyspecify F , but only constrains its form. Using this solution in equation (6), our consistencyrequirement tells us that w(AB j C) = w(A j BC)w(B j C): (8)This looks like the product rule of probability theory. But at this point we cannot identifyprobability with plausibility, because equation (8) involves the arbitrary function w.97



3.2.2 The Sum Rule. We may apply similar reasoning to determine how to calculatew(A j B) from w(A j B). Consistency with common sense and internal consistency againlead to a functional equation whose solution implies thatwm(A j B) + wm(A j B) = 1: (9)Here w(x) is the same function as in (8), and m is an arbitrary positive number. Alongthe way, it is found that certainty of the truth of a propositition must be represented byw = 1, and by convention, w = 0 is chosen to represent impossibility.A new arbitrary element|the number m|has appeared; but since the function w isitself arbitrary, we are free to make a simple change of variables from w(x) to the di�erentmonotonic function p(x) � wm(x), so that we may always writep(A B) + p(A j B) = 1; (10)and p(AB j C) = p(A j BC)p(B j C); (11)in place of equations (8) and (9). Thus the choice of m is irrelevant, and does not o�er usany degree of freedom we did not already have in our choice of w(x).The arbitrary function p(x) indicates that our desiderata do not lead to unique rules forthe manipulation of plausibilities. There are thus an in�nite number of ways to use realnumbers to represent plausibility. But what we have shown is that for any such plausibilitytheory that is consistent with our desiderata, there must be a function p(x) such that thetheory can be cast in the form of equations (10) and (11). These equations thus containthe content of all allowed plausibility theories.Equations (10) and (11) are the \axioms" of probability theory, so we identify the quan-tity p(A j B) as the probability of A given B. That is, probability is here taken to bea technical term referring to a monotonic function of plausibility obeying equations (10)and (11). We have shown that every allowed plausibility theory is isomorphic to probabilitytheory. The various allowed plausibility theories may di�er in form from probability theory,but not in content. Put another way, since p(x) is a monotonic function of the plausibilityx, x is a monotonic function of p. Therefore all allowed plausibility theories can be createdby considering all possible functions x(p) and the corresponding transformations of (10)and (11). Of all these theories, di�ering in form but not in content, we are choosing touse the one speci�ed by x(p) = p, since this leads to the simplest rules of combination,equations (10) and (11).An analogy can be made with the concept of temperature in thermodynamics, a realnumber encoding of the qualitative notion of hot and cold (Jaynes 1957, 1990b). Di�erenttemperature scales can be consistently adopted, each monotonically related to the others,but the Kelvin scale is chosen for the formulation of thermodynamics, because it leads tothe simplest expression of physical laws.3.3 THE VOCABULARY OF INFERENCE: ASSIGNING PROBABILITIESWe have found the rules for combining probabilities, a kind of \grammar" for inference.Now we ask how to assign numerical values to the probabilities to be so combined: we wantto de�ne a \vocabulary" for inference. Probabilities that are assigned directly, rather than98



derived from other probabilities using equations (10) and (11), are called direct probabilities.We seek rules for converting information about propositions into numerical assignments ofdirect probabilities. Such rules will play a role in probability theory analogous to decidingthe truth of a proposition in deductive logic. Deductive logic tells us that certain propo-sitions will be true or false given the truth or falseness of other assumed propositions, butthe rules of deductive logic do not determine the truth of the assumed propositions; theirtruth must be decided in some other manner, and provided as input to the theory. Directprobabilities are the analogous \input" for probability theory.It is worth emphasizing that probabilities are assigned, not measured. This is becauseprobabilities are measures of the plausibilities of propositions; they thus re
ect whateverinformation one may have bearing on the truth of propositions, and are not properties ofthe propositions themselves. This is re
ected in our nomenclature, in that all probabilitysymbols have a vertical bar and a conditioning proposition indicating exactly what wasassumed in the assignment of a probability. In this sense, BPT is \subjective," it describesstates of knowledge, not states of nature. But it is \objective" in that we insist thatequivalent states of knowledge be represented by equal probabilities, and that problems bewell-posed: enough informationmust be provided to allow unique, unambiguous probabilityassignments.We thus seek rules for assigning a numerical value to p(A j B) that expresses the plausi-bility of A given the informationB. Of course, there are many di�erent kinds of informationone may have regarding a proposition, so we do not expect there to be a universal methodof assignment. In fact, only recently has it been recognized that �nding rules for convertinginformation B into a probability assignment p(A j B) is fully half of probability theory.Finding such rules is a subject of much current research.Rules currently exist for several common types of information; we will outline some ofthe most useful here. The simplest kind of information we can have about some propositionA1 is a speci�cation of alternatives to it. That is, we can only be uncertain of A1 if thereare alternativesA2; A3 : : : that may be true instead of A1; and the nature of the alternativeswill have a bearing on the plausibility of A1. Probability assignments that make use of onlythis minimal amount of information are important in BPT as objective representations ofinitial ignorance, and they deserve a special name. We will refer to them as least informativeprobabilities (LIPs).* Probability assignments that make use of information beyond thespeci�cation of alternatives we will call informative probabilities.3.3.1 Least Informative Probabilities. For many problems, our desiderata are su�cient tospecify assignment of a LIP. Consider a problem where probabilities must be asigned totwo propositions, A1 and A2. Suppose we know from the very nature of the alternativesthat they form an exclusive, exhaustive set (one of them, and only one, must be true), butthat this is all we know. We might indicate this symbolically by writing our conditioninginformation as B = A1 +A2. Since the propositions are exclusive, p(A1A2 j B) = 0, so thesum rule (3) implies that p(A2 j B) = 1� p(A1 j B). But this does not specify numbers forthe probabilities.Now imagine someone else addressing this problem, but labeling the propositions dif-ferently, writing A01 = A2 and A02 = A1. This person's conditioning information is B0 =A01 + A02 = A1 + A2 = B. Obviously, p(A01 j B) = p(A2 j B), and p(A02 j B) = p(A1 j B).But now note that since B is indi�erent to A1 and A2, the state of knowledge of this second* Such probabilities are also referred to as uninformative probabilities in the literature.99



person regarding A01 and A02, including their labeling, is the same as that in the origi-nal problem. By desideratum (IIIc), equivalent states of knowledge must be representedby equivalent probability assignments, so p(A01 j B) = p(A1 j B). But this means thatp(A2 j B) = p(A1 j B) which, through the sum rule, implies p(A1 j B) = p(A2 j B) = 1=2.We �nally have a numerical assignment!This line of thought can ge generalized to a set of N exclusive, exhaustive propositionsAi(i = 1 toN), leading to the LIP assignments p(Ai j B) = 1=N (Jaynes 1957, 1990b). This isjust Bernoulli's principle of indi�erence mentioned earlier, now seen to be a consequence ofconsistency when all the information we have is an enumeration of an exclusive exhaustiveset of possibilities, with no information leading us to prefer some possibilities over theothers.Note that other information could lead to the same assignment. For example, if we aretossing a coin, and we know only that it has head and tail sides, we would assign leastinformative probabilities of 1=2 to the possibilities that heads or tails would come up ona single toss. Alternatively, we may have made careful measurements of the shape andinertia tensor of the coin, compelling us to conclude that both outcomes are equally likelyand hence to assign informative probabilities of 1=2 to both heads and tails. The di�erencebetween these assignments would show up once we 
ipped the coin a few times and thenreassessed our probabilities. If three 
ips gave three heads, in the �rst state of knowledgethis would constitute evidence that the coin was biased and lead us to alter our probabilityassignment for the next toss, but in the informative state of knowledge it would not, sinceour information leads us to believe very strongly that the two sides are equally probable.When the set of possibilities is in�nite, as when we want to assign probabilities to thepossible values of continuous parameters, the analysis becomes more complicated. This isbecause it may not be obvious how to transform the original problem to an equivalent onethat will help us determine the probability assignment. In the �nite discrete case, the onlytransformation that preserves the identity of the possibilities is permutation, leading to thePI. But in the continuous case, there is an in�nite number of possible reparametrizations.The key to resolving this dilemma is to realize that specifying the possibilities not onlyprovides labels for them, but tells you about their nature. For example, the �nite discreteproblem we solved assumed that the nature of the possibilities indicated they formed anexhaustive, exclusive set (this implied p(A1A2 j B) = 0, which we used in the sum rule).In problems with continuous parameters, transformations that lead to equivalent problemsthat can help one assign a LIP can often be identi�ed by the nature of the parametersthemselves. Information unspeci�ed in the problem statement can be as important for thisidenti�cation as the speci�ed information itself, for problems that di�er with respect tounspeci�ed details are equivalent.For example, suppose we want to �nd the probability that a marble dropped at random(e.g., by a blindfolded person) will land in a particular region of a small target on the 
oor.Intuition tells us that the probability is proportional to the area of the region. How could wehave established this by logical analysis? Draw an (x; y) coordinate system on the target, sothe possibilities are speci�ed by intervals in x and y. Write the probability that the ball willfall in the small area dxdy about (x; y) as p(x; y; dxdy j I) = f(x; y)dxdy; here I speci�esthe target region. But nothing in the problem speci�ed an origin for the coordinate system,so our assignments to p(x; y; dxdy j I) and p(x0 = x+ a; y0 = y + b; dx0dy0 j I) must be thesame for any choice of a or b. It follows that f(x; y) = f(x + a; y + b) for any (a; b), sof(x; y) = const (the constant is determined by normalization to be 1=[target area]), and the100



probability is proportional to the area dxdy.* Such arguments can produce LIPs for manyinteresting and useful problems (Jaynes 1968, 1973, 1980; Rosenkrantz 1977; Bretthorst1989). This tells us that mere speci�cation of the possibilities we are considering, includingtheir physical meaning, is a well-de�ned state of knowledge that can be associated with anunambiguous probability assignment.3.3.2 Informative Probabilities, Bayes' Theorem, and Maximum Entropy. Besides thespeci�cation of possibilities, I , we may have some additional information IA that shouldlead us to probability assignments di�erent from least informative assignments. Ratherthan p(Ai j I), we seek p(Ai j IIA), an informative probability assignment.One way to �nd p(Ai j IIA) is to use Bayes' Theorem, equation (5), to update ourassignments for each of the Ai one at a time. To do this, the additional informationD � IA must be able to play the role of data, that is, it must be meaningful to considerfor each Ai the \sampling probability" p(D j IAi) that occurs on the right hand side ofBT. Speci�cally, D has to be a possible consequence of one or more of the Ai consideredindividually, since each application of BT will require us to assume that one of the Ai istrue to calculate the likelihood of the additional information. If the informationD is of thistype, we do not need any new rules for probability assignment; our rules of combinationtell us how to account for the additional information by using BT.**But data|observation of one of the possible consequences of the Ai|is not the onlykind of information we may have about the various possibilities. Our information mayrefer directly to the possibilities themselves, rather than to their consequences. In ourcoin example above, the evidence E provided by the measurements took the form of theproposition, \the probability of heads is the same as that of tails." Information like thiscannot be used in Bayes' theorem because it does not refer to a consequence of one of thepossibilities being considered. For example, here our possibilities are A1 = heads on thenext toss, A2 = tails. To use BT, we need p(E j IA1), which in words is \the probabilitythat heads and tails are equally probable if heads comes up on the next toss." But sinceeither heads or tails must come up on the next toss, asserting that one or the other willcome up tells us nothing about their relative probabilities. Put another way, a statementabout the relative probabilities of A1 or A2 is not a possible logical implication of the truthof either of them, so it cannot be used in BT. Yet such information is clearly relevant forassessing the plausibility of the propositions. We must therefore �nd rules that will allowus to use information of this kind to make probability assignments.Such a rule exists for converting certain types of information called testable information toa probability assignment. The information E is testable if, given a probability distributionover the Ai, we can determine unambiguously if the distribution is consistent with theinformation E. In the example above, this was trivially true; E asserted all probabilitieswere equal, and only one distribution is consistent with this. But in general, there may* We expect the result to also be invariant with respect to rotations and scale changes. Sincethe area element is already invariant to these operations, considering them does not alter the result.** Of course, we must now address the problem of assigning p(D j IAi). This is no di�erentin principle than assigning p(Ai j I), and is treated analogously. We start by specifying whatother consequences of Ai are possible, assign a LIP, and then account for any other information wehave about the possible consequences. In this sense, the distinction between prior probabilities andsampling probabilities is somewhat arti�cial; both are direct probabilities, and the same rules areused for their assignment. 101



be many distributions consistent with testable information E. For example, we may knowthat the mean value of many roles of a die was 4.5 (rather than 3.5 expected for a fair die),and want to use this knowledge to assign probabilities to the six possible outcomes of thenext role of the die. This information is testable|we can calculate the mean value of anyprobability distribution for the six possible outcomes of a roll and see if it is 4.5 or not|but it does not single out one distribution. But despite the multiplicity of distributionsconsistent with this information, our common sense seems to tell us something about thedistribution which represents knowledge of the mean value, and nothing else, beyond thefact that it must be one of the distributions with the indicated mean value. For example, wewould reject the assignment fp1 = 0:3, p6 = 0:7, all other pi = 0g as unreasonable, despitethe fact that it agrees with the mean value constraint. This is because this particulardistribution, by excluding several of the possibilities that the evidence does not compel usto exclude, violates our propriety desideratum (IIIb).Denote the operation of altering a LIP distribution to re
ect testable information E byO, writing p(H j IE) = O[p(H j I);E)]. Shore and Johnson (1980) have shown that ourdesiderata are su�cient to specify the operation O. They consider three general types oftransformations of a problem into an equivalent one, and show that the requirement thatthe solutions of these equivalent problems be consistent uniquely speci�es O: It selectsfrom among all the possible normalized distributions satisfying the constraints imposed byE, the one with maximum entropy, where the entropy of a �nite discrete distribution overexclusive, exhaustive alternatives is de�ned byH = � NXi=1 pi log pi; (12)and that of a continuous distribution is de�ned analogously byH = � Z p(�) log� p(�)m(�)� d�; (13)with m(�) the LIP assignment for the parameter �. (Actually any monotonic function ofentropy will su�ce.) This rule is of enormous practical and theoretical importance; it iscalled the maximum entropy principle (MAXENT).MAXENT assignments have a number of intuitively appealing interpretations, and werein fact introduced long before the work of Shore and Johnson, based on just such interpre-tations (Jaynes 1957a,b, 1958; Tribus 1969). For example, we can seek a measure of theamount of uncertainty expressed in a distribution. Arguments originating with Shannon(1948) show that a few compelling desiderata lead to entropy as the appropriate measureof uncertainty. It then seems reasonable to choose from among all distributions satisfyingthe constraints imposed by E that which is otherwise the most uncertain (i.e., assumingthe least in addition to E); this leads to MAXENT (Jaynes 1957, 1958). An example of theuse of MAXENT to assign a direct probability distribution will be mentioned in Section5.1 below; instructive worked examples can be found in Jaynes (1958, 1963, 1978), Tribus(1962, 1969), Fougere (1988, 1989), and Bretthorst (1990).3.4 THE FREQUENCY CONNECTIONSince there is presumably no end to the types of information one may want to incorporateinto a probability assignment, BPT will never be a �nished theory. Yet the existing rules are102



already su�cient for the analysis of uncertainty in many problems in the physical sciences,and in this sense the theory is complete.Note that the entire theory has been developed without ever even mentioning relativefrequencies or random variables. Yet the success of some frequentist methods indicatesthat there must be a connection between frequency and probability. There is, and suchconnections arise naturally in the theory, as derived consequences of the rules, when onecalculates the probabilities of propositions referring to frequencies.For example, given that the probability of a particular outcome in a single trial of anexperiment is p, we can calculate the probability that N repetitions of the experiment willgive this outcome n times. This calculation is just what Bernoulli did to prove his largenumber theorem|the equality of long-term relative frequency and probability in a singletrial|mentioned above. Note, however, that the theorem is restricted to the case whereeach trial is independent of all the others; BPT is not so restricted.Bernoulli's theorem is an example of reasoning from probability to frequency. But BPT,through Bayes' Theorem, also allows us to reason from observed frequency to probability.The observed frequency constitutes data which we can use to estimate the value of thesingle trial probability. Such a calculation can be done for any number of trials; it is notrestricted to the in�nite case. This is of immense importance. In frequentist theory, thereis no way to reason from an observed frequency in a �nite number of trials to the value ofthe probability (identi�ed as long-term frequency). This is an awkward situation, becausethe theory by de�nition deals with long-term frequencies, but has no way of inferring theirvalues from actual data.Other connections between frequency and probability can also be derived within BPTby considering other propositions about frequencies. One connection of particular interestis a kind of consistency relationship between Bayes' Theorem and MAXENT. Testableinformation|information that refers directly to the relative probabilities of the events orhypotheses under consideration|cannot be used in Bayes' Theorem because such infor-mation does not refer to possible consequences in a single trial. But if we consider manyrepeated trials, and reinterpret the testable information as referring to relationships be-tween relative frequencies in many trials rather than probabilities in single trials, we canuse the information in BT to infer probabilities. For any �nite number of trials, precisevalues of the probabilities will not be speci�ed; rather, BT will provide a distribution forthe values. But as the number of trials becomes in�nite, the assignment from BT convergesto the MAXENT assignment for a single trial (Jaynes 1978, 1982, 1988a; van Campenoutand Cover 1981). This result has been used as a justi�cation for MAXENT when the notionof repeated independent trials is meaningful. But MAXENT is not restricted to such cases.4. Some Well-Posed ProblemsOur theory so far is rather abstract; now we take a step toward concreteness by illustratinghow two common types of statistical problems are addressed using BPT. We begin by notingthat any problem we wish to address with BPT must be well-posed, in the sense that enoughinformationmust be provided to allow unambiguous assignment of all probabilities requiredin a calculation. As a bare minimum, this means that an exhaustive set of possibilitiesmust be speci�ed at the start of every problem.* We will call this set the sample space if it* Readers familiar with Kolmogorov's measure theory approach to probability theory will103



refers to possible outcomes of an experiment, or the hypothesis space if it speci�es possiblehypotheses we wish to assess.Using experimental data to analyze parametrizedmodels is an important task for physicalscientists. The two classes of well-posed problems we will focus on here are designed for suchanalysis. They are called estimation and model comparison.** Estimation explores theconsequences of assuming the truth of a particular model, and model comparison assessesa model by comparing it to one or more alternatives. These problems thus di�er in regardto the speci�cation of an hypothesis space. We discuss them in turn. Further details maybe found in the excellent review of Bretthorst (1990).4.1 BAYESIAN PARAMETER ESTIMATION4.1.1 Parametrized Models. A parametrized model is just a set of exclusive hypotheses,each labeled by the value of one or more parameters. The parameters may be eithercontinuous or discrete. For simplicity, we will focus attention on a model with a singleparameter, �.In an estimation problem one assumes that the model is true for some (unknown) valueof its parameter, and explores the constraints imposed on the parameter by the data usingBT. The hypothesis space for an estimation problem is thus the set of possible values ofthe parameter, H = f�ig. The data consist of one or more samples; to make the problemwell-posed, the space of possible samples, S = fsig, must also be speci�ed. The hypothesisspace, the sample space, or both can be either discrete or continuous.Writing the unknown true value of the parameter as �, we can use BT to addressan estimation problem by calculating the probability that each of the possible parametervalues is the true value. To do this, make the following identi�cations in equation (5). LetD represent a proposition asserting the values of the data actually observed. Let H be theproposition � = � asserting that one of the possible parameter values, �, is the true value(we will abbreviate this by just using the proposed value, �, as H in BT). The backgroundinformation I will de�ne our problem by specifying the hypothesis space, the sample space,how the hypotheses (parameter values) and sample values are related, and any additionalinformation we may have about the hypotheses or the possible data. Symbolically, we mightwrite I as the proposition asserting (1) that the true value of the parameter is in H; (2)that the observed data consisting of N samples is in the space SN ; (3) the manner in whichthe parameter value relates to the data, Ir; and (4) any additional information IA; that is,I = (� 2 H)(D 2 SN)IrIA. Of course, the physical nature of the model parameters andthe data is implicit in the speci�cation of H, S, and Ir.Bayes' Theorem now reads*p(� j DI) = p(� j I)p(D j �I)p(D j I) : (14)recognize this as similar to the requirement that probabilities refer to elements of a �-�eld. Theclose connection of BPT with Kolmogorov's theory is elaborated on in Jaynes (1990b).** Some model comparison problems are also called signi�cance tests in the literature.* Bayes' Theorem refers to probabilities, not probability densities. Thus when consideringcontinuous parameters, we technically should write p(� j DI)d� = p(� j I)d�p(D j �I)dD=p(D jI)dD, where the p's are here understood to be densities. But the di�erentials cancel, so equation(14) is correct for densities as well as probabilities.104



To use it, we need to know the three probabilities on the right hand side. The prior p(� j I)and the likelihood p(D j �I) are both direct probabilities and must be assigned a prioriusing the methods described previously; concrete examples are given below. The term inthe denominator is independent of �. Given the prior and the likelihood, its value can becalculated using the probability axioms as follows.First, recall that we are assuming the model to be true for some value of its parameter(s).Thus the proposition, \� = �1 or � = �2 or : : :" is true, and so has a probability of 1, givenI . Writing this proposition symbolically as (�1 + �2 + : : :), we thus have from axiom (2),p(D[�1 + �2 + : : :] j I) = p(D j I)p(�1 + �2 + : : : j I)= p(D j I): (15)But by expanding the logical product on the left, and again using (2), we also havep(D[�1 + �2 + : : :] j I) = p(D�1 j I) + p(D�2 j I) + : : :=Xi p(D�i j I)=Xi p(�i j I)p(D j �iI): (16)Equations (14) and (15) together imply thatp(D j I) =Xi p(�i j I)p(D j �iI): (17)This expresses p(D j I) in terms of the prior and the likelihood, as promised. Each term inthe sum is just the numerator of the posterior probability for each �i. Thus in an estimationproblem, the denominator of BT is just the normalization constant for the posterior. Theprobability, p(D j I), is sometimes called the prior predictive distribution, since it is theprobability with which one would predict the data, given only the prior information aboutthe model. Though here it is just a normalization constant, it plays an important role inmodel comparison, as will be shown below.The trick we just used to calculate p(D j I)|inserting a true compound proposition andexpanding|arises frequently in BPT. It is just like expanding a function in a completeorthogonal basis; here we are expanding a proposition in a complete \orthogonal" basis.This trick is important enough to deserve a name: it is called marginalization.* Thequantity p(D j I) is sometimes called the marginal likelihood or the global likelihood. Ofcourse, when dealing with continuous parameters, the sum becomes an integral, and (17)reads p(D j I) = Z p(� j I)p(D j �I)d�: (18)Inserting the various probabilities into BT, we can calculate the posterior probabilities forall values of the parameters. The resulting probability distribution represents our inferenceabout the parameters completely. As an important matter of interpretation, note that inthis and any Bayesian distribution, it is the probability that is distributed, not the parameter* This name is historical, and refers to the practice of listing joint probabilities of two discretevariables in a table, and listing in the margins the sums across the rows and columns.105



(Jaynes 1986a). Stating an inference by saying something like \the parameter is distributedas a gaussian: : :" is misleading. The parameter had a single value during the experiment,and we want to infer something about this single value. We do not know it precisely, butthe data tell us something about it. We express this incomplete knowledge by spreadingour belief regarding the true value among the possible values according to the posteriordistribution.4.1.2 Summarizing Inferences. We can present the full posterior graphically or in a table.But usually we will want to summarize it with a few numbers. This will be especially truefor multiparameter problems, where graphical or tabular display of the full posterior maybe impossible because of the dimension of the parameter space. There are various ways tosummarize a distribution, depending on what is going to be done with the information.One summarizing item is a \best �t" value for the parameter. Which value to choose willdepend on what is meant by \best". One obvious choice is the most probable parametervalue, the mode. It is the best in the sense of being the single value one has greatestcon�dence in. But its selection does not re
ect how our con�dence is spread among othervalues at all. For example, if a distribution is very broad and 
at with a small \bump" toone side, the mode will not be a good summarizing item, since most of the probability willbe to one side of it. In this case, the mean of the distribution would be a better \best"value. On the other hand, if the distribution has two narrow peaks, the mean could liebetween them at a place where the probability is small or even zero. So some commonsense has to be used in choosing a best �t value.There is a formal theory for making decisions about best �t values; it is called decisiontheory (Eadie et al. 1971; Berger 1985). Decision theory is very important in business andeconomics where one frequently must make a decision about a best value and then act asif it were true. But in the physical sciences, best values are usually just a convenient wayto summarize a distribution. For this, common sense is usually a good enough guide, anda formal decision theory is not needed.Besides a best value, it is useful to have a simple measure of how certain one is of thisvalue. Again, decision theory can be brought to bear on this problem, but the traditionalpractice of quoting either the standard deviation (second moment about the mean) orthe size of intervals containing speci�ed fractions of the posterior probability is usuallyadequate. Of course, since probability is a measure of the plausibility of the parametervalues, when we quote an interval, we should choose its boundaries so that all values insideit have higher probability than those outside. Such an interval is called a credible region,or a highest posterior density interval (HPD interval) when it is used to summarize theposterior distribution of one or more continuous parameters.*In multiparameter problems, we may be interested only in certain subsets of the pa-rameters. Depending on how many parameters are of interest, the distribution may besummarized in di�erent ways. If the values of all of the parameters are of interest, a best �tpoint can be found straightforwardly by locating the mean or mode in the full parameterspace. To quantify the uncertainty in the best �t point, all of the second moments can becalculated and presented as an N �N matrix; but o�-diagonal moments are not an intu-itively appealing measure of the width of the distribution. Alternatively, one can calculate* Sometimes the name con�dence interval is given to credible intervals, and indeed it re
ectswell the intuitive meaning of a credible interval. But \con�dence interval" has a technical meaningin frequentist theory that is di�erent from its meaning here, and so we avoid this term.106



an HPD region in the full parameter space, and present it by plotting its projection ontoone, two, or three dimensional subspaces of the full parameter space. Some information islost in such projections|the HPD region cannot be uniquely reconstructed from them |but they conservatively summarize the HPD region in the sense that they will show the fullrange of parameter values permitted in the region. They will also probably indicate thenature of any correlations among parameters, though two dimensional cross sections of theHPD better reveal correlations.If only a subset of the parameters is of interest, the other parameters are called nuisanceparameters and can be eliminated from consideration by marginalization. For example,if a problem has two parameters, � and �, but we are interested only in �, then we cancalculate p(� j DI) from the full posterior p(�� j DI) by using the trick we used to calculatep(D j I). The result is p(� j DI) = R d� p(�� j DI); this is called the marginal distributionfor �. Using BT and the product rule, the marginal distribution can be writtenp(� j DI) = 1p(D j I) Z p(� j I)p(� j �I)p(D j ��I)d�: (19)Marginalization is of great practical and theoretical importance, because it can often be usedto signi�cantly reduce the dimensionality of a problem by eliminating nuisance parameters,making numerical calculations and graphical presentation much more tractable. Denied theconcept of the probability of a parameter value, frequentist theory is unable to deal withnuisance parameters, except in special cases where intuition has led to results equivalentto marginalization (Lampton, Margon, and Bowyer 1976; Dawid 1980). Marginalization isthus an important technical advantage of BPT. It is a quantitative way of saying, in regardto the uninteresting parameters, \I don't know, and I don't care."As useful and necessary as summaries of distributions are, we must always rememberthat the entire distribution is the full inference, not the summary.4.2 BAYESIAN MODEL COMPARISONEstimation problems assume the truth of the model under consideration. We often wouldlike to test this assumption, calling into question the adequacy of a model. If the model isinadequate, then some alternative model must be better, and so BPT assesses a model bycomparing it to one or more alternatives. This is done by assuming that some member ofa set of competing models is true, and calculating the probability of each model, given theobserved data, with BT. As we will see in Section 5, the Bayesian solution to this problemprovides a beautiful quanti�cation of Ockham's razor: simpler models are automaticallypreferred unless a more complicated model provides a signi�cantly better �t to the data.To use BT for model comparison, I asserts that one of a set of models is true. This meansthat I will have all the information needed to address an estimation problem for each model,plus any additional information I0 that may lead us to prefer certain models over othersa priori. Denote the information needed to address an estimation problem with modelnumber k as Ik (k = 1 to M). Then symbolically we may write I = (I1 + I2 + : : :+ IM)I0.Let D stand for the data, and let k stand for the hypothesis, \Model number k is true."BT can now be used to calculate the probability of a model:p(k j DI) = p(k j I)p(D j kI)p(D j I) (20)107



To use this, we must calculate the various probabilities. Here we will consider the casewhere we have no prior information preferring some models over the other, so the prior isp(k j I) = 1=M .To calculate p(D j kI), note that since k asserts the truth of model number k, only theinformation Ik in I is relevant: kI = k(I1 + I2 + : : :)I0 = Ik . Thus, p(D j kI) = p(D j Ik),the marginal likelihood for model k, described above. Labeling the parameters of model kby �k , this can be calculated fromp(D j kI) = Z d�kp(�k j Ik)p(D j �kIk): (21)To calculate p(D j I), we marginalize by inserting the true proposition (k = 1 + k =2 + : : :). This gives p(D j I) =Xk p(k j I)p(D j kI): (22)As in an estimation problem, p(D j I) is simply a normalization constant. In modelcomparison problems, we can avoid having to calculate it by focusing attention on theratios of the probabilities of the models, rather than the probabilities themselves. Suchratios are called odds, and the odds in favor of model k over model j we will write asOkj � p(k j DI)=p(j j DI). From the above equations, the odds can be calculated fromOkj = �p(k j I)p(j j I)� R d�kp(�k j Ik)p(D j �kIk)R d�jp(�j j Ij)p(D j �jIj)� �p(k j I)p(j j I)�Bkj ; (23)where the factor in brackets is called the prior odds (and is here equal to 1), and Bkj is calledthe Bayes factor. The Bayes' factor is just the ratio of the prior predictive probabilities,Bkj = p(D j Ik)=p(D j Ij).Equation (22) is the solution to the model comparison problem. In principle, such prob-lems are little di�erent from estimation problems; Bayes' theorem is used similarly, withan enlarged hypothesis space. In practice, more care must be exercised in calculating prob-abilities for models than for model parameters when there is little prior knowledge of thevalues of the parameters of the models under consideration. This is illustrated by way ofan example in Section 5 below.4.3 PROBLEMS WITH FREQUENTIST MODEL ASSESSMENTAs a basic principle for the design of well-posed problems, we have demanded that anexhaustive set of possibilities be speci�ed at the beginning of any problem. In an estimationproblem, this is accomplished by asserting the truth of a model, so that the hypotheseslabeled by values of model parameters form an exhaustive set of alternatives. In modelcomparison, we satis�ed this principle by explicitly specifying a set of competing models.How does this compare with frequentist methods for estimation and model assessment?One of the most important frequentist statistics in the physical sciences is the �2 statistic.It is used both for parameter estimation and for assessing the adequacy of a model (see,e.g., Lampton, Margon, and Bowyer 1976). The use of �2 for obtaining best �t parameters108



and con�dence regions is mathematically identical to Bayesian parameter estimation formodels with gaussian \noise" probabilities and with 
at priors for the parameters. This isbecause �2 is proportional to the log of the likelihood when there is gaussian noise, and BTtells us that the posterior is proportional to the likelihood when the priors are 
at.Besides being used for estimation, frequentist theory also uses the �2 statistic to assess anhypothesis by calculating the tail area above the minimum �2 value in the �2 distribution|the probability of seeing a �2 value as large or larger than the best �t value if the modelis true with its best �t parameters. This is very di�erent in character from the Bayesianapproach to model assessment. In particular, in this �2 goodness-of-�t (GOF) test andother GOF tests (e.g., the Kolmogorov-Smirnov test, the Smirnov-Cramer-von Mises test,etc.) no explicit alternatives are speci�ed. At �rst sight, this seems to be an importantadvantage of frequentist theory, because it may be di�cult to specify concrete alternativesto a model, and because it appears restrictive and subjective to have to specify an explicitset of alternatives to assess a model.Deeper thought reveals this apparent advantage of frequentist GOF tests to be a defect,a defect that can be all the more insidious because its manifestations can be subtle andhidden. The resulting problems with GOF tests and other frequentist procedures that relyon tail areas began to be discussed openly in the statistics literature at least as early as thelate 1930s (Je�reys 1939), and continue to be expounded today (see Berger and Berry 1988and references therein). Disturbingly, they are seldom mentioned in even the most recentfrequentist texts. We will brie
y note some of these important problems here.4.3.1. Reliance on Many Hypothetical Data Sets. The �2 GOF test is based on the calcu-lation of the probability P that �2 values equal to or larger than that actually observedwould be seen. If P is too small (the critical value is usually 5%), the model is rejected.The earliest objections to the use of tests like �2 focused on the reliance of such tests,not only on the probability of the observed value of the statistic, but on the probability ofvalues that have not been observed as well. Je�reys (1939) raised the issue with particulareloquence:What the use of P implies, therefore, is that a hypothesis that may be true may be rejectedbecause it has not predicted observable results that have not occurred. This seems a remarkableprocedure. On the face of it the fact that such results have not occurred might more reasonablybe taken as evidence for the law, not against it.Indeed, many students of statistics �nd that the unusual logic of P -value reasoning takessome time to \get used to."Later critics strengthened and quanti�ed Je�reys' criticism by showing how P -valuereasoning can lead to surprising and anti-intuitive results. This is because the relianceof P -values on unobserved data makes them dependent on what one believes such datamight have been. The intent of the experimenter can thus in
uence statistical inferencesin disturbing ways, a phenomenon alluded to in Section 2.4.3 above, and known in theliterature under the name optional stopping. Here is a simple example (after Iverson 1984,and Berger and Berry 1988).Suppose a theorist predicts that the number of A stars in an open cluster should be afraction a = 0:1 times the total number of stars in that cluster. An observer who wants totest this hypothesis studies the cluster and reports that his observations of 5 A stars out of96 stars observed rejects the hypothesis at the 95% level, giving a �2 P -value of 0.03. Tocheck the observer's claim, the theorist calculates �2 from the reported data, only to �ndthat his hypothesis is acceptable, giving a P -value of 0.12. The observer checks his result,109



and insists he is correct. What is going on?The theorist calculated �2 as follows. If the total number of stars isN = 96, his predictionis nA = 9:6 A stars and nX = 86:4 other stars. Pearson invented the �2 test for just sucha problem; �2 is calculated by squaring the di�erence between the observed and expectednumbers for each group, dividing by the expected numbers, and summing (Eadie et al.1971). From the predictions and the observations, the theorist calculates �2 = 2:45, whichhas a P -value of 0.12, using the �2 distribution for one degree of freedom (given N , nX isdetermined by nA, so there is only one degree of freedom).Unknown to the theorist, the observer planned his observations by deciding beforehandthat he would observe until he found 5 A stars, and then stop. So instead of the number ofA and non-A stars being random variables, with the sample size N being �xed, the observerconsiders nA;obs = 5 to be �xed, and the sample size as being the random variable. Fromthe negative binomial distribution, the expected value of N is 5=a = 50, and the variance ofthe distribution for N is 5(1�a)=a2 = 450. Using the observed N = 96 and the asymptoticnormality of the negative binomial distribution, these give �2 = 4:70 with one degree offreedom, giving a P -value of 0.03 as claimed.The reason for the di�erence between the two analyses is due to di�erent ideas of whatother data sets might have been observed, resulting in di�erent conclusions regarding whatobserved quantities should be treated as \random." But why should the plans of theobserver regarding when to stop observing a�ect the inference made from the data? If,because of poor weather, his observing run had been cut short before he observed 5 Astars, how then should his analysis proceed? Should he include the probability of poorweather shortening the observations? If so, shouldn't he then include the probability ofpoor weather in the calculation when he is able to complete the observations?Because of problems like this, some statisticians have adopted the conditionality principleas a guide for the design of statistical procedures. This principle asserts that only the dataactually observed should be considered in a statistical procedure. Birnbaum (1962) gavethis principle an intuitively compelling rationale through a reductio ad absurdum as follows.Suppose there are two experiments that may be performed to assess an hypothesis, but thatonly one can be performed with existing resources. A coin is 
ipped to determine whichexperiment to perform, and the data is obtained. If the data are analyzed with any methodrelying on P -values, we have to consider what other data might have been observed. Butin doing so, should we consider the possibility that the coin could have landed with itsother face up, and therefore consider all the data that might have come from the otherexperiment in our analysis? Most people's intuition compels them to assert that only datafrom the experiment actually performed should be relevant. Birnbaum argued that if thisis accepted, the conditionality principle follows, and only the one data set actually obtainedshould be considered. Of course, BT obeys the conditionality principle, since it uses onlythe probability of the actually observed data in the likelihood and the marginal likelihood.In the same work, Birnbaum shows that another technical criterion (su�ciency) alreadywidely employed by statisticians implies with the conditionality principle that all the evi-dence of the data is contained in the likelihood function. This likelihood principle is alsoadhered to in BPT. Though widely discussed in the literature (see Berger and Wolpert 1984,and references therein), the likelihood principle has so far had little e�ect on statistics inthe physical sciences.As Je�reys himself noted (Je�reys 1939), the fundamental idea behind the use of P -values|that the observation of data that depart from the predictions of a model call the110



model into question|is natural. It is the expression of this principle in terms of P that isunacceptable. The reason we would want to reject a model with large �2 is not that �2is large, but that large values of �2 are less probable than values near the expected value.But very small values, with P near 1, are similarly unexpected, a fact not expressed byP -values.*We have argued that only the probability of the actually observed �2 value is relevant.But this probability is usually negligible even for the expected value of �2 or any otherGOF statistic. P -values adjust for this by considering hypothetical data. Bayes' Theoremremedies the problem by dividing this small probability by another small probability, themarginal likelihood. But the use of BT requires the speci�cation of alternative hypotheses.The apparent absence of such alternatives in frequentist tests is the basis for the next twocriticisms of such tests.4.3.2. Reliance on a Single Hypothesis. GOF tests require one to assume the truth of asingle hypothesis, without reference to any alternatives. But this is clearly a weakness whensuch tests are used to evaluate parameterized models, because they require one to assume,not only that the model under consideration is true, but also that the best �t parametervalues are the true values. This raises two questions regarding the logic of GOF tests.First, if we decide to reject the hypothesis, then certainly we must reject probabilitiescalculated conditional on the truth of the hypothesis. But the P -value itself is such aprobability! Thus when an hypothesis is rejected, tail area reasoning seems to invalidateitself. Bayes' theorem avoids this problem because rather than calculating probabilitiesof hypothetical data conditional on a single hypothesis, it calculates the probabilities ofvarious hypotheses conditional on the observed data (Jaynes 1985c, 1986a).Second, even if the model is true or adequate, it is almost certain that the best �tparameter values are not the true values. This again seems to put the logical status ofthe test in question, since its probabilities must always be calculated conditional on anhypothesis we are virtually certain is false. One might appeal to intuition and argue thatif the model is rejected with its best �t parameter values, then surely the model as a wholemust be rejected. But if the best �t model is acceptable, the acceptability of the model as awhole does not necessarily follow. For example, we feel that a model that produces a good�t over a wide range of its parameter space is to be preferred to a model with the samenumber of parameters but which requires parameter values to be carefully \�ne-tuned" toexplain the data; the data are a more natural consequence of the former model. FrequentistGOF tests have no way to account for such characteristics of a model, since they consideronly the best �t parameter values.Bayesian methods account for our uncertainty regarding the model parameters naturallyand easily through marginalization. The probability of model k is proportional to itsmarginal likelihood p(D j Ik), which takes into account all possible parameter values.Bayesian methods also take this uncertainty into account when making predictions aboutfuture data. The probability of seeing data D0, given the observation of data D and the* Many astronomers seem to consider a �t with, say, �2 = 16 with 25 degrees of freedom(P = 0:915) to be better than one with, say, �2 = 27 (P = 0:356); in fact, the former value of�2 is 40% less probable than the latter, despite the fact that its P -value is over 2.5 times greater.To account for this, Lindley (1965) has advocated a 2-tailed �2 test, in which P is calculated byintegrating over all less probable values of �2, not just greater values.111



truth of model k, is easily shown to bep(D0 j DIk) = Z d�kp(�k j DIk)p(D0 j �kIk): (24)This is called the posterior predictive distribution, and it is derived by marginalizing withrespect to �k . It says that the probability of D0 is just its average likelihood, takingthe average over the posterior distribution for �k based on the observed data, D. Surelyany model assessment based on how unexpected the data are should rely on the marginallikelihood or the predictive distribution, and not on distributions assuming the truth ofparticular parameter values.4.3.3. Implicit Alternatives: The Myth of Alternative-Free Tests. Though GOF tests appearto make no assumptions about alternatives, in fact the selection of a test statistic corre-sponds to an implicit selection of a class of alternatives. For example, the �2 statistic is thesum of the squares of the residuals, and thus contains none of the information present inthe order of the data points. The �2 test is thus insensitive to patterns in the residuals, andwill not account for small but statistically signi�cant trends or features in the residuals inits assessment of an hypothesis. Thus the �2 test implicitly assumes a class of alternativesfor which the data are exchangeable, so that their order is irrelevant (Jaynes 1985c).This characteristic of test statistics has long been recognized, beginning with the workof Neyman and Pearson (the inventor of �2) in 1938. It has led to the characterizationof statistical tests, not only by P -values, but also by their power, the probability thatthey correctly identify a true model against a particular alternative. But though modernstatistical theory insists that tests be characterized both by P -values and by their power,few statistics texts for the physical sciences even mention the concept of power (Eadie et al.1971 is a notable exception), and as a rule, the power of a test is never considered byphysical scientists.It is a far from trivial asset of Bayesian probability theory that by its very structure itforces us to specify a set of alternative hypotheses explicitly, in I , rather than implicitly inthe choice of a test statistic.4.3.4. Violation of Consistency and Rationality. The many problems of alternative freeGOF tests and tail area reasoning should come as no surprise in the light of the Cox-Jaynesderivation of the probability axioms. This is because the P -value is an attempt to �nd areal number measure of the plausibility of an hypothesis. But in Section 3 we saw that anysuch measure that is consistent with common sense and is internally consistent must bea monotonic function of the probability of the hypothesis. In general, a P -value will notbe a monotonic function of the probability of the hypothesis under consideration, and soanti-intuitive and paradoxical behavior of P -value tests should be expected.It also comes as no surprise that some of the most useful tail area tests have been shownto lead to P -values that are monotonic functions of Bayesian posterior probabilities withspeci�c classes of alternatives, thus explaining the historical success of these tests (see, e.g.,Zellner and Siow 1980; Bernardo 1980). Of course, the Bayesian counterparts to thesetests are superior to the originals because they reveal the assumed alternatives explicitly,showing how the test can be generalized; and because they produce a probability for thehypothesis being assessed, a more direct measure of the plausibility of the the hypothesisthan the P -value. 112



5. Bayesian and Frequentist Gaussian InferenceWe will now apply BPT to a common and useful statistical problem: infering the am-plitude of a signal in the presence of gaussian noise of known standard deviation �, giventhe values xi of N independent measurements. We will solve this problem with both fre-quentist and Bayesian methods. The Bayesian result is mathematically identical to thefamiliar frequentist result, but it is derived very di�erently and has a di�erent interpreta-tion. Bayesian and frequentist results will not be identical in general; our study will tell usabout the conditions when identity may be expected.5.1 THE STATUS OF THE GAUSSIAN DISTRIBUTIONWe begin by �rst discussing the model: in what situations is a \gaussian noise" modelappropriate?In frequentist theory, the noise model should be the frequency distribution of the noisein an in�nitely large number of repetitions of the experiment. But there is seldom evena moderate �nite number of repetitions available to provide us with frequency data, sosome other justi�cation for the gaussian distribution must be o�ered. Sometimes it is usedsimply because it has convenient analytical properties. Often it is justi�ed by appealing tothe central limit theorem (CLT), which states that if the noise in a single sample is the theresult of a number of independent random e�ects, the gaussian distribution will be a goodapproximation to the actual frequency distribution of the noise in many trials regardless ofthe distributions for each of the e�ects, if the number of independent e�ects is large. Butin general noise is not the result of a large number of independent e�ects; and even when itis, there is no way to be sure that the gaussian distribution is an adequate approximationfor a �nite number of e�ects without knowing the distributions describing each e�ect.Bayesians interpret a noise distribution as an expression of our state of knowledge aboutthe size of the noise contribution in the single data set actually being considered. Of course,if frequency data from many independent repetitions of an experiment are available, theywill be relevant for assigning a noise distribution. But such data is typically not available,and the methods for assigning direct probabilities described in Section 3 must be used to�nd the quantitative expression of our state of knowledge about the noise.Usually by noise we mean e�ects from unknown causes that we expect would \averageout": positive and negative values are equally likely. Thus we expect the mean of the noisedistribution to be zero. Additionally, we usually expect there to be a \typical scale" to thenoise; we do not expect very large noise contributions to be as probable as smaller ones.Thus we expect the noise distribution to have some �nite standard deviation, though wemay not have a good idea what its value should be.The information that a distribution have zero mean and standard deviation � is testable:given any distribution, we can see if its mean vanishes and if its second moment is �2.Thus we can use MAXENT to assign the noise distribution, using the zero mean and �as constraints. The resulting distribution is the gaussian distribution! Thus in BPT thegaussian distribution is appropriate whenever we know or consider it reasonable to assumethat the noise has zero mean and �nite standard deviation, but we do not have furtherdetails about it (Jaynes 1985c, 1987; Bretthorst 1988b, 1990). Additionally, we often neednot specify the actual value of � if it is not known. We can consider it a parameter of ourmodel, and estimate it from the data or marginalize it away.113



The status of the gaussian distribution in BPT is thus very di�erent from its status infrequentist theory. In BPT it simply represents the most conservative distribution consistentwith minimal information about the noise phenomena, and it will be appropriate wheneversuch information is all we know about the noise, regardless of whether or not the CLTapplies. This accounts for the great practical success of models assuming gaussian noise.The reasoning used in BPT to assign the gaussian distribution can be easily generalizedto other situations. For example, there is no single distribution for directional data ona circle or on a sphere that has all of the properties of the gaussian distribution on aline, and so there is some controversy over what distributions are the counterparts of thegaussian distribution for directional data (Mardia 1972). But if our knowledge is restrictedto speci�cation of a mean direction and an expected angular scale for deviations, thenMAXENT identi�es the correct distributions as the von Mises distribution for circular dataand the Fisher distribution for spherical data (these distributions are discussed in Mardia1972).Having justi�ed our model, we now describe the development of frequentist and Bayesianprocedures for estimating the amplitude � of a signal for which there are N measurementsxi contaminated with noise with standard deviation �.5.2 ESTIMATING THE SIGNAL5.2.1. The Frequentist Approach. In frequentist theory, since the signal strength � is nota random variable taking on values according to a distribution, we are forbidden to speakof a probability distribution for �. But the xi are considered random variables, and theirdistribution is just gaussian,p(xi) = 1�p2� exp ��12 xi � �� �2 : (25)To estimate �, the frequentist must choose a statistic|a function of the random variablesxi|and calculate its distribution, connecting it with �. A few of the many possible statisticsfor estimating � include x3 (the value of the third sample); (x1 + xN )=2 (the mean of the�rst and last samples); the median of the observations; or their mean, �x =Pi xi=N .To choose from among these or other statistics, some criteria de�ning a \best" statisticmust be invoked. For example, it is often required that a statistic be unbiased, that is, thatthe average value of the statistic in many repeated measurements converges to the true valueof �. But the distributions for all of the above mentioned statistics can be calculated andreveal them all to be unbiased, so additional criteria must be speci�ed. Unfortunately, allsuch criteria have a certain arbitrariness to them. For example, the criterion of unbiasednessfocuses on the long-term mean value of the statistic. But the long-term median or mostprobable value would also re
ect the intuitive notion behind the idea of bias, and in generalwould lead to a di�erent choice of \best" statistic.Of course, intuition suggests that to estimate the mean of a distribution, one shouldtake the mean of the sample.* Various criteria of frequentist theory are chosen with this inmind, and eventually identify the mean, �x, as the \best" estimate of �.Now we would like to know how certain we are that �x is near the unknown true value of�. Interestingly, frequentist theory treats this problem as logically distinct from estimating* Such intuitive reasoning does not always lead to good statistics; see Section 8.2.114



best values, and in general completely di�erent statistics and procedures can be used forthese problems. In this simple gaussian problem, intuition again compels us to focus ourattention on �x, and a con�dence region for � is found from �x as follows.Suppose � were known. Then the distribution for �x can be calculated from equation(25); a somewhat tedious calculation givesp(�x j �) = � N2��2�1=2 exp �� N2�2 (�x� �)2� : (26)This distribution is a gaussian about � with standard deviation �=pN . With � known,we can calculate the probability that �x is in any interval [a; b] by integrating (26) over thisregion with respect to �x. But when � is unknown, this is not possible. However, sincep(�x j �) is a function only of the di�erence between �x and �, we can always calculate theprobability � that �x lies in some interval relative to the unknown mean, such as the interval[�+ c; �+ d], and the result will be independent of �. Using equation (26), we �nd� � p(�+ c < �x < �+ d) = 12 �erf � d�p2=N� � erf � c�p2=N �� : (27)For a given � of interest, there are many choices of c and d that satisfy (27). For example,for the \1�" value � = 68%, we may choose any of [c; d] = [�1; x], [��=pN; �=pN ], or[�x;1]. A priori, there is no reason to prefer any one of these to the others in frequentisttheory, and again some criterion must be invoked to select one as \best" (Lampton, Margon,and Bowyer 1976). Popular criteria are to choose the smallest interval satisfying (27), orthe symmetric one. For this problem, both criteria lead to the choice [��=pN; �=pN ]In summary, the frequentist inference about � might be stated by estimating � with �x,and giving a \1�" con�dence interval of �x� �=pN , the familiar \root N" rule.5.2.2. The Bayesian Approach. The Bayesian solution to this problem is to simply calculatethe posterior distribution for � using BT. We begin by specifying the background informa-tion I . I will contain the information leading to the MAXENT assignment of a gaussiandistribution for a single datum, equation (25). I will also specify the hypothesis space, arange of possible values for �. We will assume we know � to be in the range [�min; �max];we discuss this assumption further below.With this I , we must assign the prior and the likelihood. A simple consistency argument(Jaynes 1968) shows that the LIP assignment for � is the uniform density,p(� j I) = 1�max � �min : (28)The likelihood follows from (25) using the product rule: the joint probability of the Nindependent observations is the product of their individual probabilities,p(fxig j �I) = 1�N(2�)N=2 exp"� 12�2 Xi (xi � �)2#= 1�N(2�)N=2 exp ��Ns22�2 � exp �� N2�2 (�x� �)2� ; (29)115



where we have separated out the dependence on � by expanding the argument of theexponential and completing the square. Here s2 is the sample variance, s2 =Pi(xi��x)2=N .Together, the prior and the likelihood determine the marginal likelihood to bep(fxig j I) = 1pN (�p2�)1�N exp ��Ns22�2 � erf � �x��max�p2=N � � erf � �x��min�p2=N �2(�max � �min) ; (30)where the error functions arise from integrating (29) with respect to � over the interval[�min; �max]. Equation (30) is constant with respect to �.With these probabilities, BT gives our complete inference regarding � asp(� j fxigI) = 24erf � �x��max�p2=N �� erf � �x��min�p2=N �2 35� N2��2�1=2 exp �� N2�2 (�x� �)2� : (31)This is just a gaussian about �x with standard deviation �=pN , truncated at �min and �max.The factor in brackets is the part of the normalization constant due to the truncation.As a best �t value, we might take the mode of the distribution, � = �x (assuming that �xis in the allowed range for �). Alternatively, we might take the mean. The mean value, andthe limits of any HPD region, will depend on our prior range for �. But as long as the priorrange is large compared to �=pN , the e�ect of the prior range will be negligible. In fact, ifwe are initially completely ignorant of �, we can consider the limit [�min; �max]! [�1;1],for which the term in brackets becomes equal to 1. The mean is then the same as the mode,and the \1�" HPD region is �x� �=pN , the same as in the frequentist case.5.2.3. Comparison of Approaches. Despite the mathematical identity of the Bayesian andfrequentist solutions to this simple problem, the meaning of the results and their methodsof derivation could hardly be more di�erent.First, the interpretations of the results are drastically di�erent. To a Bayesian, �x is themost plausible value of � given the one set of data at hand, and there is a plausibility of 0.68that � is in the range �x � �=pN . In contrast, the frequentist interpretation of the resultis a statement about the long term performance of adopting the procedure of estimating� with �x and stating that the true value of � is in the interval �x � �=pN . Speci�cally,if one adopts this procedure, the average of the � estimates after many observations willconverge to the true value of �, and the statement about the interval containing � will betrue 68% of the time. Note that this is not a statement about the plausibility of the singlevalue of �x or the single con�dence region actually calculated. Frequency theory can onlymake statements about the long-term performance of the adopted procedure, not about thecon�dence one can place in the results of the procedure for the one available data set.Mathematically, these conceptual di�erences are re
ected in the choice of the interestingvariable in the �nal gaussian distributions, equations (26) and (31). The frequentist ap-proach estimates � and �nds the probability content of a con�dence region by integratingover possible values of �x, thus taking into consideration hypothetical data sets with di�er-ent sample means than that observed. The Bayesian calculation �nds the estimate and theprobability content of an HPD region by integrating over �, that is, by considering di�erenthypotheses about the unknown true value of �. The symbolic expression of frequentist andBayesian interval probabilities expresses this di�erence precisely: The frequentist calculatesp(� � �=pN < �x < � + �=pN), the fraction of the time that the sample mean will be116



within �=pN of � in many repetitions of the experiment. In contrast, the Bayesian calcu-lates p(�x� �=pN < � < �x + �=pN j DI), the probability that � is within �=pN of thesample mean of the one data set at hand.The second important di�erence between the frequentist and Bayesian calculations is theuniqueness and directness of the Bayesian approach. Frequentist theory could only producea unique procedure by appealing to ad hoc criteria such as unbiasedness and shortest con-�dence intervals. Yet such criteria are not generally valid (Jaynes 1976; Zellner 1986). Forexample, there is a growing literature on biased estimators, because prior information orevidence in the sample can identify a procedure that is appropriate for the case in consid-eration, but that would not have optimal long term behavior (Efron 1975; Zellner 1986).In contrast, BPT provides a unique solution to any well posed problem, and this solutionis guaranteed by our desiderata to be the best one possible given the information actuallyavailable, by rather inescapable criteria of rationality and consistency.As a third important di�erence, we note that the frequentist calculation of the \coveringprobability" of the con�dence region depended on special properties of the distribution forthe statistic that was chosen. First, the statistic|the sample mean, �x|is what is called a\su�cient statistic." This means that the � dependence of the probability of the data (i.e.,the likelihood, equation [29]) depends on the data only through the value of the single num-ber �x, and not on any further information in the sample; a single number summarizes all ofthe information in the sample, regardless of the size of N . Second, the sampling probabilityof �x, equation (26), depends on � and �x only through their di�erence. These propertiespermitted the calculation of the coverage probability without requiring knowledge of thetrue value of �. Unfortunately, not all distributions have su�cient statistics, and of thosethat do, few depend on the the su�cient statistics and the parameters only through theirdi�erences (Lindley 1958). In general, then, a frequentist con�dence region can only be de-�ned approximately. In contrast, a Bayesian can always calculate an HPD region exactly,regardless of the existence of su�cient statistics and without special requirements on theform of the sampling distribution.As a �nal, fourth di�erence, we note that the Bayesian result that is identical to thefrequentist result used a least informative prior. As soon as there is any cogent prior infor-mation about unknown parameter values, the Bayesian result will di�er from frequentistresults, since the latter have no natural means for incorporation of prior information.In summary, Bayesian and frequentist results will only be mathematically identical if(1) there is only least informative prior information, (2) there are su�cient statistics, and(3) the sampling distribution depends on the su�cient statistic and the parameters onlythrough their di�erences. Bayesian/frequentist equivalence is thus seen to be something ofa coincidence (Je�reys 1937). When these conditions are not met, Bayesian and frequentistresults will generally di�er (if a frequentist result exists!), and the Bayesian result will bedemonstrably superior, incorporating prior information and evidence in the sample that isignored in frequentist theory (Jaynes 1976).5.2.4. Improper Priors. The Bayesian posterior becomes precisely identical to the fre-quentist sampling distribution when [�min; �max] ! [�1;1]. Interestingly, in this limitboth the prior (28) and the marginal likelihood (30) vanish, but they do so in such a waythat the ratio p(� j I)=p(D j I) is nonzero. In fact, in this in�nite limit, we can set theprior equal to any constant, say p(� j I) = 1, and we will get the same result. Such aprior is not normalized, and is therefore called improper. It is frequently true in estima-tion problems that use of improper priors gives the result that would be found by using a117



proper (normalizable) prior and taking the limit. Improper priors then become convenientexpressions of prior ignorance of the range of a parameter. It is usually Bayesian resultsbased on improper priors that are mathematically equivalent to frequentist results.In some estimation problems, and more frequently in model comparison problems, allow-ing parameter ranges in least informative priors to become in�nite leads to unnormalizableor vanishing posterior probabilities. This is a signal that prior information about the al-lowed ranges of parameters is important in the result. In principle, we will demand that allprobabilities be proper. This is never a serious restriction, for we always know somethingabout the allowed parameter range. For example, in measuring the length of an object inthe laboratory with a caliper, we know it can't be larger than the earth, nor smaller thanan atom. We can put these limits in our prior, and we will almost always �nd that theposterior is independent of them to many, many signi�cant �gures; the data \overwhelms"the information in the prior range. In these cases we might as well use an improper prioras a kind of shorthand. On the other hand, if the result depends sensitively on the priorrange, BPT is telling us that the information in the data is not su�cient to \overwhelm"our prior information, and so we had better think carefully about just what we know aboutthe prior range. Or alternatively, we could try to get better data!5.2.5. The Robustness of Estimation. Not only does the information in the data usuallyoverwhelm the prior range; it also often overwhelms the actual shape of the prior, evenwhen it is informative. This is best illustrated by example.Suppose in our gaussian problem that our prior information indicated that � was likely tobe within some scale � about some value �0. This state of knowledge could be representedby a gaussian prior with mean �0 and standard deviation �,p(� j I) = 1�p2� exp ��(�� �0)22�2 � : (32)Repeating the posterior calculation above with this prior, we �nd that the posterior mean�̂ and variance �2� are now �̂ = �x+ �0 �N1 + �N ; (33)and �2� = �2N + �; (34)where � = �=�. Therefore, unless �<��=N (so that �>�N), the posterior will not be signi�-cantly di�erent from that calculated with a least informative prior.This is an interesting result of some practical importance. The gaussian prior is clearlymuch more informative than the uniform prior, but unless the prior probability is veryconcentrated, with s � �=N , it will have little a�ect on the posterior. This is not a verydeep result; it is just what we should expect. It merely tells us that unless our priorinformation is as informative as the data, it will have little e�ect on our inferences. Ofcourse, it is seldom the case that we have such prior information when we analyze anexperiment; our lack of such information is why we perform experiments in the �rst place!The practical import of this result is that if it is not clear exactly what prior probabilityassignment expresses our prior information, we might as well go ahead and use some simple\di�use" prior that qualitatively respects any prior information we have (it should vanish118



outside the allowed parameter range!) and see if the result depends much on the prior.Usually it will not. This phenomenon has been variously referred to as the \stability"(Edwards et al. 1963) or \robustness" (Berger 1984, 1985) of estimation. Berger (1984,1985) has extensively studied the robustness of many Bayesian calculations.This is a special case of a more general practical rule: if a problem is not well posed, in thesense of there not being obvious ways of converting information to probability assignments,just do a calculation using some approximation (a di�use prior, a simple likelihood, a simplehypothesis space) that does not do too much violence to the information at hand. Suchsimpli�ed problems are often of great use by themselves (see Section 8.3 for an example),and their solution may provide the insight one needs to put enough structure on the originalproblem to make it well posed.5.2.6. Reference Priors. A number of investigators have developed procedures for con-structing di�use priors for estimation problems in which we are in a least informative stateof knowledge about parameter values, but do not know how to �nd the corresponding priordistribution. The robustness of estimation implies that the detailed shape of the prior isunimportant as long as it is di�use compared to the likelihood function, so these proceduresuse properties of the likelihood function to \automatically" create a di�use prior. Such aprior is often generically referred to as a \reference prior" (Box and Tiao 1973; Zellner1977; Bernardo 1979): it is an \o�-the-shelf" di�use prior that many consider to be auseful objective starting point for analysis.All such priors are based on the idea that one can think of the least informative stateof knowledge pragmatically as the state of having little information relative to what theexperiment is expected to provide (Rosenkrantz 1977). Unfortunately, several di�erent pro-cedures can been created to express this qualitative notion. Fortunately, many of themlead to the same reference prior for many common statistical problems, and these priorsare often identical to least informative priors, when the latter are known.Though several of the proposed reference priors are often identical to least informativepriors in speci�c problems, this will not be true in general. In particular, since the form of areference prior depends on the likelihood function, if we are estimating the same parameterin two di�erent experiments, the reference prior will in general be di�erent for the twoexperiments. This emphasizes that a reference prior does not describe an absolute stateof ignorance about a parameter, but rather speci�es a state of ignorance with respect tothe experiment. To the extent that we choose experiments based on our prior informationabout the quantity we wish to measure, we expect the prior to depend on some propertiesof the likelihood function. After all, the I that appears in the prior is the same I thatappears in the likelihood; the role the parameter plays in the likelihood is an importantpart of our prior information about the parameter (Jaynes 1968, 1980a). But the form ofthe likelihood can be determined in part by information that is irrelevant to the parametervalue, information that would have no in
uence on a least informative prior, but that coulda�ect a reference prior.Despite these problems, reference priors can play a useful role in Bayesian parameterestimation because they produce di�use priors that qualitatively express ignorance aboutparameters, and estimation is often robust with respect to the detailed form of a di�useprior. Some of the reference priors that have been advocated include the invariant priors ofJe�reys and Huzurbazar (Je�reys 1939); the indi�erent conjugate priors of Novick and Hall(1965); the maximal data informative priors of Zellner (1971, 1977); the data translatedlikelihood priors of Box and Tiao (1973); and the reference priors of Bernardo (1979, 1980).119



The multiparameter marginalization priors of Jaynes (1980a), where the priors for each ofthe parameters in a multiparameter model are chosen to ensure that they are uninformativeabout the other parameters, may also be considered to be reference priors, in that they aredi�use priors determined by the form of the likelihood.5.3 MODEL COMPARISONWe can use this signal measurement example to illustrate some key features of Bayesianmodel comparison. Suppose there is some model, M1, that gives a precise prediction ofthe signal: �true = �1. Suppose further that an alternative model, M2, speci�es only that�true is in some interval, [�min; �max]. Model M2 has a single parameter, and model M1 isa simple hypothesis, with no parameters.Now suppose that we obtain some data, D, with a sample mean of �x. Which model ismore plausible in light of this data? We can answer this with Bayes' Theorem, in the formof equation (20), or in the form of posterior odds, equation (22). To use it, we need themarginal likelihoods for M1 and M2. Since M1 has no parameters, the marginal likelihoodis just the likelihood itself;p(D j I1) = 1�N(2�)N=2 exp ��Pi(xi � �1)22�2 � : (35)Model M2 is the model assumed for the estimation problem we solved above; its marginallikelihood is given by equation (30). Together, these give the Bayes factor in favor of modelM1, B12 = p(D j I1)p(D j I2)� �max � �min�=pN 1p2� exp �� N2�2 (�1 � �x)2� ; (36)where we have assumed that �max and �min are large compared to �=pN , and are far enoughaway from �x that the last factor in equation (30) is very nearly equal to 1=(�max � �min).This assumption amounts to saying that the experiment has measured � more accuratelythan M2 predicted it.This result is very interesting. If �x happens to equal �1, B12 will be large, favoring modelM1 which predicts that the true mean is �1. But B12 will continue to favorM1 even when�x is somewhat di�erent from �1, despite the fact that model M2 with best-�t � = �x �tsthe data slightly better than M1. In e�ect, M2 is being penalized for having a parameterand therefore being more complicated than M1.We can see this better if we note that the ratio of the best-�t likelihoods of the models,from equations (35) and (29), isR12 = exp �� N2�2 (�1 � �x)2� : (37)Thus the Bayes factor can be writtenB12 = 1p2� �max � �min�=pN R12� S12R12: (38)120



The best-�t likelihood ratio, R12, can never favor model M1; the more complicated modelalmost always �ts the data better than a simpler model. But the factor S12 favors thesimpler model; it is called the \simplicity factor" or the \Ockham factor", and is a quanti�-cation of the rule known as \Ockham's Razor": Prefer the simpler model unless the morecomplicated model gives a signi�cantly better �t (Je�reys 1939; Jaynes 1980b; Gull 1988;Bretthorst 1990).We can understand how the penalty for complication arises by recalling that the Bayes'factor is the ratio of the prior predictive probabilities of the models. Thus BT comparesmodels by comparing how well each predicted the observed data. Crudely speaking, a com-plicated model can explain anything; thus, its prior predictive probability for any particularoutcome is small, because the predictive probability is spread out more or less evenly amongthe many possible outcomes. But a simpler model is more constrained and limited in itsability to explain or �t data. As a result, its predictive distribution is concentrated on asubset of the possible outcomes. If the observed outcome is among those expected by thesimpler model, BT favors the simpler model because it has better predicted the data.In this sense, BT is the proper quantitative expression of the notion behind P -values:Assess an hypothesis by how well it predicts the data. To do so, BT uses only the prob-ability of the actually observed data; additionally, it takes into account all of the possibleparameter values through marginalization. This is in stark contrast to frequentist GOFtests, which consider the probabilities of hypothetical data, and assume the truth of thebest-�t parameter values.Equation (36) has a sensitive dependence on the prior range of the additional parameterthat at �rst seems disconcerting. But a little thought reveals it to be an asset of the theory,something we might have expected and wanted. For example, suppose the alternative tomodelM2 was some modelM3 which was just likeM2, but had a smaller allowed range for�. If the sample mean, �x, fell in a region of overlap between the models, the likelihood ratioR32 would be 1, but S32 would lead BT to favor M3. If the value of �x fell outside of therange for � speci�ed by M3, BT might still favor M3, depending on how far �x is from theprediction of M3. In this way, BT \knows" that M3 is simpler or more constrained thanM2, even though both models are very similar, and in particular have the same number ofparameters. Such behavior could not result if the Bayes factor somehow ignored the priorranges of model parameters. A consequence of this dependence on the prior range is thatmodel comparison problems are not as robust as estimation problems with regard to theprior range.Here and in other problems we can deal with sensitivity to the prior by \turning Bayes'Theorem around" and asking how di�erent kinds of prior information would a�ect theconclusions. For example, if we report the likelihood ratio, R12, and the posterior variancefor �, �� = �=pN , then we know that the prior range for � in model M2 would have tohave been smaller than ��(2�)1=2=R12 for us to just favor the more complicated model.This kind of analysis can give us some insight into the common practice of accepting anew parameter if its value is signi�cant at the \2�" level. Taking j �x � �1 j= 2��, thenR12 = e�2, and the prior range that would make the Bayes factor indi�erent between themodels (giving B12 = 1) has a size of ��(2�)1=2=R12 = 18:5��. Thus the common practiceof accepting a parameter signi�cant at about the 2� level corresponds to an initial stateof uncertainty regarding the parameter value that is about one to two orders of magnitudegreater than the uncertainty after the experiment.The simple example we have worked here is more sensitive to the prior range than most re-121



alistic model comparison problems. Good examples of realistic model comparison problemsin the physical sciences are discussed by Bretthorst (1988b, 1989a,b,c,d). Many additionalmodel comparison problems have been worked in the Bayesian literature under the name,\signi�cance testing". Important references include Je�reys (1939), Zellner (1980), andBernardo (1980).6. Case Study: Measuring a Weak Counting SignalWe need only generalize the gaussian measurement problem slightly to obtain a problemthat is both astrophysically interesting and resistant to frequentist analysis. We willconsider in this section the measurement of a signal in the presence of a background ratethat has been independently measured. We will consider signals that are measured bycounting particles (photons, neutrinos, cosmic rays), so that the Poisson distribution is theappropriate sampling distribution.The usual approach to this problem is to obtain an estimate of the background rate, b̂,and its and standard deviation, �b, by observing an empty part of the sky, and an estimateof the signal plus background rate, r̂, and its standard deviation, �r, by observing the regionwhere a signal is expected. The signal rate is then estimated by ŝ = r̂ � b̂, with variance�2s = �2r + �2b . This procedure is the correct one for analyzing data regarding a signalwhich can be either positive or negative, when the gaussian distribution is appropriate.Thus it works well when the background and signal rates are both large so that the Poissondistribution is well-approximated by a gaussian. But when the rates are small, the procedurefails. It can lead to negative estimates of the signal rate, and even when it produces apositive estimate, both the value of the estimate and the size of the con�dence region arecorrupted because the method can include negative values of the signal in a con�denceregion.These problems are particularly acute in gamma-ray and ultra-high energy astrophysics,where it is the rule rather than the exception that few particles are counted, but where onewould nevertheless like to know what these sparse data indicate about a possible source.Given the weaknesses of the usual method, it is hardly surprising that more sophisticatedstatistical analyses of reported detections conclude that \not all the sources which havebeen mentioned can be con�dently considered to be present" (O'Mongain 1973) and that\extreme caution must be exercised in drawing astrophysical conclusions from reports ofthe detection of cosmic 
-ray lines" (Cherry et al. 1980).Three frequentist alternatives to the above procedure have been proposed by gamma-ray astronomers (Hearn 1969; O'Mongain 1973; Cherry et al. 1980). They improve on theusual method by using the Poisson distribution rather than the gaussian distribution todescribe the data. But they have further weaknesses. First, all three procedures interpreta likelihood ratio as the covering probability of a con�dence region, and thus are not evenaccurate frequentist procedures. Second, none of the procedures correctly accounts for theuncertainty in the background rate. Hearn (1969) uses the best-�t estimate of the back-ground in his calculation, correcting the result afterward by using the gaussian propagationof error rule. O'Mongain (1973) tries to �nd `conservative' results by using as a backgroundestimate the best-�t value plus one standard deviation. Cherry et al. (1980) try to morecarefully account for the background uncertainty by a method similar to marginalization;but strangely they only include integral values of the product of the background rate and122



the observing time in their analysis.There are several reasons for the di�culty in �nding a unique, optimal frequentist solutionto this problem. First, there is important prior information in this problem: neither thesignal nor the background can be negative. Second, there is a nuisance parameter: we wantto estimate the signal, but to do so we must also consider possible values of the background.Third, the appropriate distribution is not the gaussian distribution, and cannot be writtenas a function of the di�erence between su�cient statistics and the relevant parameters; thusfrequentist methods for �nding con�dence regions and dealing with nuisance parameters inthe gaussian case do not apply.Bayesian probability theory can deal with all these complications straightforwardly. TheBayesian solution to this problem is as follows.First, the background rate, b, is measured by counting nb events in a time T from an\empty" part of the sky. If we were interested in the value of b, we could estimate it fromthese data by taking prior information Ib specifying the connection between b, nb, and T ;Ib will identify the Poisson distribution as the likelihood function (see Jaynes 1990a for aninstructive Bayesian derivation of the Poisson distribution). The likelihood function is thusp(nb j bIb) = (bT )nbe�bTnb! : (38)The least informative prior for the rate of a Poisson distribution can be derived from a simplegroup invariance argument, noting that 1=b plays the role of a scale for measurement oftime (Jaynes 1968). The result is p(b j Ib) = 1b : (39)This is called the \Je�reys prior", since it was �rst introduced in similar problems byJe�reys (1939). It corresponds to a prior that is uniform in log b, and expresses completeignorance regarding the scale of the background rate. As written here, it is improper. Wecan bound b to make the prior proper, and take limits after calculating the posterior for b,but as long as nb is not zero, the limit will exist and be the same as if we just used equation(39) throughout the calculation. Of course, the prior probability for negative values of bwill be taken to be zero.Given these probability distributions, the marginal likelihood isp(nb j Ib) = Tnbnb! Z 10 db bnb�1e�bT= 1nb : (40)The posterior density for b is then,p(b j nbIb) = T (bT )nb�1e�bT(nb � 1)! : (41)If we are interested in the background, we might summarize this posterior by noting itsmean, hbi = nb=T , and its standard deviation, n1=2b =T , the usual \root N" result expectedfrom a Poisson signal. With a prior that is di�erent from equation (39), these values wouldbe di�erent, but not substantially so if nb is reasonably large. For example, a uniform priorwould give a mean value of (nb + 1)=T and a standard deviation of pnb + 1=T .123



Now we count n events in a time t from a part of the sky where there is a suspectedsource. This measurement provides us with information about both b and the source rates. From BT, the joint posterior density for s and b is,p(sb j nI) = p(sb j I)p(n j sbI)p(n j I)= p(s j bI)p(b j I)p(n j sbI)p(n j I) : (42)Of course, the information I includes the information from the background measurement, aswell as additional information Is specifying the possible presence of a signal. Symbolically,I = nbIbIs.The likelihood is the Poisson distribution for a source with strength s + b:p(n j sbI) = tn(s + b)ne�(s+b)tn! : (43)The prior for s, p(s j bI), is the least informative prior for a Poisson rate (s+ b), with thevalue of b given, p(s j bI) = 1s+ b: (44)Again, we take the prior probability to be zero for negative values of s. The prior for b inthis problem is informative, since we have the background data available. In fact, since Is isirrelevant to b, the prior for b in this problem is just the posterior for b from the backgroundestimation problem, and is given by equation (41). Ignoring the normalization for now, BTgives the dependence of the posterior on the parameters asp(sb j nI) / (s+ b)n�1bnb�1e�ste�b(t+T ): (45)Usually, we are only interested in the source strength. To �nd the posterior density forthe source strength, independent of the background, we just marginalize with respect to b,calculating p(s j nI) = R db p(sb j nI). After expanding the binomial, (s + b)n�1, theintegral can be easily calculated. The resulting normalized posterior is,p(s j nI) = nXi=1 Ci t(st)i�1e�st(i� 1)! ; (46)with Ci � (1 + Tt )i (n+nb�i�1)!(n�i)!Pnj=1(1 + Tt )j (n+nb�j�1)!(n�j)! : (47)Note thatPni=1 Ci = 1.This result is very appealing. Comparing it with equation (41), we see that BT estimatess by taking a weighted average of the posteriors one would obtain attributing 1, 2,: : :, nevents to the signal. The weights depend on n, t, nb, and T so that the emphasis is placedon a weak signal or a strong signal, depending on how n=t compares with nb=T . Furtherdevelopment of this result, including application to real data, will appear elsewhere.124



7. Case Study: Neutrinos from SN 1987AThe simple example of the previous section shows how straightforwardly Bayes' Theoremprovides a solution to a well-posed problem that, despite its simplicity, has so far evadedstraightforward frequentist analysis. Now we will discuss another problem that at �rstappears to be much more complicated, but which we will see is no more complicated inprinciple than the gaussian estimation problem discussed in Section 5.In February of 1987, a supernova was observed in the Large Magellanic Cloud. Thissupernova, dubbed SN 1987A, was the closest one observed in the history of modern as-tronomy. Setting it apart from all other supernovae ever observed|indeed, from all otherastrophysical sources ever observed, except for the Sun|is the fact that it was detected,not only in electromagnetic radiation, but also in neutrinos. Roughly two dozen neutrinoswere detected from the supernova by the Japanese Kamiokande II (KII), Irvine-Michigan-Brookhaven (IMB), and Soviet Baksan detectors.Neutrinos are believed to carry away about ninety-nine percent of the energy released by asupernova; the KII, IMB, and Baksan detections thus represent the �rst direct measurementof the energy of a supernova. In addition, neutrinos interact with matter so weakly that oncethey leave the collapsing stellar core, they pass unimpeded through the massive envelope ofthe supernova. Thus the detected neutrinos provide astrophysicists with their �rst glimpseof a collapsing stellar core. The analysis of the observations is therefore of great signi�cancefor testing supernova theory.In addition, important information about intrinsic properties of the neutrino, such as itsrest mass and electric charge, is contained in the data. This is because the 50 kpc pathlength between the Large Magellanic Cloud and Earth is vastly larger than that accessiblein terrestrial laboratories.Unfortunately, the weakness of neutrino interactions responsible for their usefulness asprobes of stellar core dynamics also makes them extremely di�cult to detect once they reachEarth. Of the approximately 1016 supernova neutrinos that passed through the detectors,only about two dozen were actually detected. Even these few events were not detecteddirectly, but only by detecting tertiary photons they produced in the detectors. The smallsize of the data set, and the complicated relationship between properties of the incidentneutrino signal and properties of the detected tertiary particles, demand careful, rigorousanalysis of the implications of these data.7.1 A BEWILDERING VARIETY OF FREQUENTIST ANALYSESWithin days after the landmark detection, the �rst contributions to what would soon be-come a vast literature analyzing the detected neutrinos appeared. Today, the two dozensupernova neutrinos are probably the most analyzed data set in the history of astrophysics,the number of published analyses far outnumbering the number of data. Unfortunately,nearly all of these analyses have ad hoc methodological elements, due to their frequentistinspiration.With the exception of several qualitative moment analyses, most investigators analyzedthe data by comparing them with parametrized models for the neutrino signal. With sofew data, only the simplest signal models can be justi�ed. But despite the simplicity of themodels, the complexity of the detection process greatly complicates any frequentist analysisof the data, because the sampling distribution is extremely complex even for simple models.125



No obvious su�cient statistics exist, and it would be di�cult, if not impossible, to analyzethe frequency behavior of statistics to identify unbiased, e�cient estimators. A consequenceof the lack of su�cient statistics is that frequentist con�dence regions for parameters canonly be found approximately.All the usual frequentist criteria therefore founder on this problem, and investigatorshave been forced to rely on their intuitions and their Monte Carlo codes to create and cal-ibrate statistics for their analyses. It is no wonder, therefore, that a bewildering variety ofstatistics and statistical methodologies has been applied to these data, yielding a similarlybewildering variety of results (see Loredo and Lamb 1989 for a review). Though many inves-tigators used the maximum likelihood method to �nd best-�t parameters|a method with aBayesian justi�cation| several employed Pearson's method of moments, or invented theirown statistics. A wide variety of methods were invented to calculate \con�dence regions"for parameters, most of them confusing GOF P -values with covering probabilities. The ma-jority of these methods relied on one-dimensional or two-dimensional Kolmogorov-Smirnov(KS) statistics, or similar goodness-of-�t statistics based on the cumulative distribution forthe events, rather than the likelihood, even when the likelihood was used to �nd best-�t pa-rameter values. Finally, very few studies considered more than one model for the neutrinoemission. Usually, the adequacy of a single model was assumed without question; in somecases, adequacy was justi�ed with an \alternative-free" goodness of �t test. A few studiesexplored several models, attempting to compare them with maximum likelihood ratios, butmore complicated models always had larger likelihoods.Testimony to the robustness of this problem, the results of many of these studies agree,if not precisely, at least qualitatively. But there is still troubling variety in the conclusionsreached. For example, some investigators conclude that the observations are in con
ictwith soft equations of state for neutron star matter, though most conclude that the dataare consistent with all reasonable equations of state, soft or hard. Some investigators claimthe data indicate a small, nonzero electron antineutrino mass of a few eV, while mostclaim that the data only indicate an upper limit on the mass in the 15 to 20 eV range.The wide variety of statistical methods used in these investigations, and the variety in themodels assumed for the neutrino emission and detection processes, make the literature onthe supernova neutrinos appear muddled and confused. In the context of frequentist theory,there is no compelling criterion for making a judgement about the relative soundness of oneanalysis compared to another. Some scientists, in an attempt to summarize the analyses,have been forced to do \statistical statistics", averaging the results of di�erent studies.The majority of these studies were not even good frequentist analyses. In particular,many investigators identi�ed \95% con�dence regions" with the range of parameter valuesthat had goodness-of-�t P -values of greater than 5%, based on a 
awed de�nition of acon�dence region. These investigators did not notice that their best-�t P -values of � 0:80implied that \con�dence regions" with probability smaller than about 20% could not even bede�ned with their methods. But this is almost beside the point. The emphasis of frequentiststatistics on averages over hypothetical random experiments, and the lack of a clear rationalefor the choice of statistics, has led to a \Monte Carlo Mystique" in astronomical statisticswhereby almost any calculation relying on a su�cient number of simulated data sets isdeemed a \rigorous" statistical analysis.Alone among these analyses is the work of Kolb, Stebbins, and Turner (KST, 1987).They focus on one interesting parameter|the mass of the electron antineutrino,m��e|andsetting aside all of the fancy statistics and Monte Carlo codes, ask instead what careful126



intuitive reasoning about the data can reveal about m��e . They conclude that at best, thedata can put an upper limit on m��e of the order of 25 to 30 eV, not signi�cantly betterthan current laboratory limits. Later detailed statistical studies found \95% con�dence"limits ranging from 5 eV to 19 eV. Signi�cantly, some recent reviews of the observationsdownplay these later studies and emphasize the qualitative KST limit, testimony to thelack of con�dence scientists have in the statistical methods of astrophysicists.7.2 THE BAYESIAN ANALYSISThe Bayesian analysis of the neutrino data has been presented by Loredo and Lamb (1989;1990a,b). They estimate parameters for simple neutrino emission models using Bayes'Theorem with uniform priors. This calculation is as straightforward in principle as thegaussian calculation of Section 5; the only complications are computational, arising fromthe complexity of the detector response and the dimensionality of the parameter spaces.The data produced by the detectors are the detected energies, �deti , and arrival times,tdeti , of the detected neutrinos. To analyze these data, Loredo and Lamb consider a varietyof parametrized models for the neutrino emission, and use Bayes' Theorem to estimatethe model parameters and to compare alternative models. Given a model for the neutrinoemission rate, a predicted detection rate per unit time and unit energy, d2Ndet=d�detdtdet,can be calculated using the response function of the experiment. From this detection rate,the likelihood function needed in Bayes' Theorem can be constructed as follows.The expected number of neutrinos detected in a small time interval, �t, and a smallenergy interval, ��, is just the detection rate times �t��. From the Poisson distribution,the probability that no neutrinos will be detected within these intervals about a speci�edenergy and time is P0(�det; tdet) = exp ��d2Ndet(�det; tdet)d�detdtdet ���t� : (48)Similarly, the probability that a single neutrino will be detected in the interval isP1(�det; tdet) = d2Ndet(�det; tdet)d�detdtdet ���t exp ��d2Ndet(�det; tdet)d�detdtdet ���t� : (49)The intervals are chosen small enough that the probability of detecting more than oneneutrino is negligible compared to P0 and P1.The likelihood of a particular observation is the product of the probabilities of detectionof each of the Nobs observed neutrinos, times the product over all intervals not containinga neutrino of the probability of no detection. That is,L = "NobsYi=1 P1(�deti ; tdeti )#Yj P0(�detj ; tdetj ); (50)where j runs over all intervals not containing an event. It is more convenient to work withthe log likelihood, L = ln(L). From the de�nitions of P0 and P1 it follows thatL = NobsXi=1 ln�d2Ndet(�deti ; tdeti )d�detdtdet ���t��Xj d2Ndet(�detj ; tdetj )d�detdtdet ���t; (51)127



where j now runs over all intervals. In the limit of small�� and �t, the second term becomesthe integral of the rate function over all time and all energy. Thus the log likelihood isL = NobsXi=1 ln�d2Ndet(�deti ; tdeti )d�detdtdet �� Z tdur0 dt Z 10 d�det d2Ndet(�det; tdet)d�detdtdet= NobsXi=1 ln�d2Ndet(�deti ; tdeti )d�detdtdet ��Ndet; (52)where tdur is the duration of the time interval under study, and Ndet is the total number ofevents expected to be detected in that interval. In this equation, the intervals �� and �thave been omitted because they are constants that do not a�ect the functional dependenceof L on the detected rate function.Equation (52) is the �nal form for the likelihood function. Combined with prior probabil-ity densities for the parameters (Loredo and Lamb [1989] assume uniform priors), it yieldsa posterior distribution for the model parameters. The calculation, though straightforwardin principle, is complicated in practice because the response functions of the detectors arecomplicated. This is because the neutrinos are not detected directly; rather, tertiary pho-tons produced in the detectors by the neutrinos are detected, leading to a complicatedrelationship between detected photon energy and the energy of the incident neutrino. Asa result, calculation and study of the posterior distribution requires the resources of asupercomputer. Details are presented in Loredo and Lamb (1989, 1990a,b).These calculations show that the observations are in spectacular agreement with thesalient features of the theory of stellar collapse and neutron star formation which haddeveloped over several decades in the absence of direct observational data. In particular,the inferred radius and binding energy of the neutron star formed by the supernova are inexcellent agreement with model calculations based on a wide range of equations of state,despite earlier indications to the contrary.These calculations also show that the upper limit on the mass of the electron antineutrinoimplied by the observations is 25 eV at the 95% con�dence level, 1.5 to 5 times higher thanfound previously, and not signi�cantly better than current laboratory limits.This work demonstrates the value of using correct and rigorous Bayesian methods forthe analysis of astrophysical data, and shows that such an analysis is not only possible, butstraightforward, even when the data are related to the physical quantities of interest in avery complicated manner.8. Where to Go from HereBayesian probability theory, as described here, is impressive in its simplicity and its scope.Desiderata of appealing simplicity lead to its rules for assignment and manipulation ofprobabilities, which are themselves extremely simple. Its identi�cation of probability withplausibility makes it a theory of drastically broader scope than traditional frequentist statis-tics. This broad scope adds to the simplicity and unity of the theory, for whenever we wishto make a judgement of the truth or falsity of any proposition, A, the correct procedure isto calculate the probability, p(A j E), that A is true, conditional on all the evidence, E,available, regardless of whether A refers to what would traditionally be called a random128



variable or a more general hypothesis (Jaynes 1990b). In most cases, this calculation willinvolve the use of Bayes' Theorem.Because of its broad scope, BPT is more than merely a theory of statistics. It is a theoryof inference, a generalization of deductive inference to cases where the truth of a propositionis uncertain because the available information is incomplete. As such, it deserves to be afamiliar element of every scientist's collection of general methods and tools.Of course, the theory is ideally suited for application to problems traditionally classi�edas \statistical". There, it promises to simplify and unify statistical practice. Indeed, itis already doing so in the �elds of mathematical statistics, econometrics, and medicine.Astrophysicists have been slow to reap the bene�ts of the theory, but several applicationsrelevant to astrophysics have been worked out. We will describe some here, as an entranceto the expanding literature on Bayesian methods.8.1 ASTROPHYSICAL ESTIMATION AND MODEL COMPARISON PROBLEMSBecause of the prevalence of the gaussian distribution in statistical problems, many fre-quentist parameter estimation calculations will be equivalent to their Bayesian counterparts,provided that there are no nuisance parameters and that there is no important prior infor-mation about parameter values. But when there are nuisance parameters, or when there isimportant prior information, Bayesian methods should prove superior to frequentist meth-ods, if the latter even exist for such problems. Also, if the relevant distributions aremore complicated than gaussian, lacking obvious su�cient statistics, Bayesian methodswill almost certainly prove superior to frequentist methods, and will be easier to derive.Problems for which Bayesian methods will provide demonstrable advantages are onlybeginning to be be identi�ed and studied. All such problems are approached in a uni�edmanner using Bayes' Theorem, eliminating any nuisance parameters through marginal-ization. The signal measurement and supernova neutrino problems mentioned above areexamples.Another example is the analysis of \blurred" images of point sources in an attempt toresolve closely spaced objects (Jaynes 1988; Bretthorst and Smith 1989). In this problem,some of the parameters specifying the locations of objects are nuisance parameters, since itis their relative positions that are of interest. Further, the noise level is not always known; inthe Bayesian calculation it, too, can be a nuisance parameter to be eliminated by marginal-ization, e�ectively letting Bayes' Theorem estimate the noise from the data. Finally, thebrightnesses of the two or more possible objects can be marginalized away, leaving a proba-bility density that is a function only of relative position between objects, and which answersthe question, \Is there evidence in the data for an object at this position relative to anotherobject?" In analyzing an image for the presence of two objects, the Bayesian procedure canthus reduce the dimensionality of the problem from seven (two two-dimensional positions,two brightnesses, and the noise level) to one (the relative separation of the objects). Ofcourse, once the relative separation posterior is studied and found to reveal the presence ofclosely spaced objects, their intensities and positions can be calculated, using knowledge oftheir relative separation to simplify analysis of the full posterior.Analytical work (Jaynes 1988) and numerical work analyzing simulated data (Bretthorstand Smith 1989) indicate that the Bayesian algorithm can easily resolve objects at sepa-rations of less than one pixel, depending on the signal-to-noise ratio of the data. Further,model comparison methods can be used to determine the number of point sources for which129



there is signi�cant evidence in the data. Signi�cantly, the calculation also reveals that theusual practice of apodizing an optical system to smooth out the sidelobes of the pointspread function destroys signi�cant information that the Bayesian calculation can use toresolve objects (Jaynes 1988). Apodizing leads to a smoother image that is less confusingto the eye, but it destroys much of the information in the sidelobes that probability theorycan use to improve resolution. This work awaits application to real data, and extension toother similar problems, such as the analysis of data from optical interferometers.8.2 BAYESIAN SPECTRUM ANALYSISOne class of statistical problems is of such great importance in astrophysics that it deservesspecial consideration: the analysis of astrophysical time series data for evidence of periodicsignals. This problem is usually referred to as spectrum analysis. In the past three years,new Bayesian spectrum analysis methods have been developed that o�er order-of-magnitudegreater frequency resolution than current methods based on the discrete Fourier transform(DFT). Additionally, they can be used to detect periodicity in amplitude modulated signalsor more complicated signals with much greater sensitivity than DFT methods, withoutrequiring the data to be evenly spaced in time.Current frequentist methods seek information about the spectrum of the signal by calcu-lating the spectrum of the data via the discrete Fourier transform (DFT). But the presenceof noise and the �nite length of the data sample make the data spectrum a poor estimateof the signal spectrum. As a result, ad hoc methods are used to \correct" the data spec-trum, involving various degrees of smoothing (to eliminate spurious peaks). The statisticalproperties of the result are analyzed assuming the signal is just noise, to try to �nd the\false alarm" probability of an apparent spectral feature being due to noise. (Good reviewsof these methods are in Press, et al. 1986, and van der Klis 1989.)In contrast, Bayesian methods (Jaynes 1987; Bretthorst 1989, 1990) assess the signi�-cance of a possible signal by directly calculating the probabilities that the data are due toa periodic signal or to noise, and comparing them. To estimate the frequency of a signal,these methods simply calculate the probability of a signal as a function of its frequency,marginalizing away the phase and amplitude of the signal.Using these methods, Jaynes (1987) derived the DFT as the appropriate statistic to usewhen analyzing a signal with a single sinusoid present. His work shows how to manipulatethe DFT without smoothing to get an optimal frequency estimate that can have orders-of-magnitude greater resolution than current methods. Bretthorst (1989, 1990) has extendedJaynes' work, showing analytically and with simulated and actual data that the DFT isnot appropriate for the analysis of signals with more complicated structure than a singlesinusoid, and that Bayesian methods give much more reliable and informative results. Inparticular, Bayesian methods can easily resolve two frequencies that are so close togetherthat there is only a single peak in the DFT of the data, simply by considering a modelwith more than one sinusoid present. As was the case in the analysis of blurred imagesjust discussed, probability theory uses information in the sidelobes to improve resolution,information that is thrown away by the standard Blackman-Tukey smoothing methods.Model comparison calculations can be used to identify how many sinusoids there is evidencefor in the data. Bretthorst (1988a,b) has applied these methods to Wolf's sunspot data,comparing the results of the Bayesian analysis with conventional DFT results.For signals that are not stationary, such as chirped or damped signals, the DFT spreads130



the signal power over a range of frequencies. However, if the general form of the signal isknown, Bayesian generalizations of the DFT can be constructed that take into account thepossibility that the signal has some unknown chirp or decay rate, e�ectively concentratingall of the signal power into a single frequency, thereby greatly improving detection sensi-tivity for such signals. These methods should prove to be of immense value for the studyof nonstationary astrophysical time series, such as those observed from the \quasi-periodicoscillator" x-ray sources, or those expected from sources of gravitational radiation. In par-ticular, the gravitational radiation signal expected from coalescing binaries is chirped, sothe \chirpogram" introduced by Jaynes (1987) and further studied by Bretthorst (1988a,b)should play an important role in the analysis of gravitational wave signals. An integratedcircuit is currently being developed to facilitate rapid calculation of the chirpogram (Erick-son, Neudorfer, and Smith 1989).8.3 INVERSE PROBLEMSProblems that are mathematically ill-posed in the sense of being underdetermined arisefrequently in astrophysics; they are usually called inverse problems. Examples includecalculating the interior structure of the sun from helioseismology data, calculating radioimages from interferometric data, \deblurring" optical or x-ray images, or estimating aspectrum from proportional counter or scintillator data. Abstractly, all of these problemshave the following form. Some unknown signal, s, produces data, d, according tod = Rs+ e; (53)where R is a complicated operator we will call the response function of the experiment, ande represents an error or noise term. Given d, R, and some incomplete information about e,we wish to estimate s. Such problems can be ill-posed in three senses.First, the response operator is usually singular in the sense that a unique inverse operator,R�1, does not exist. Put another way, there exists a class, A, of signals such that Rs = 0 forany s in A. Thus d contains no information about such signals, so that even the noiseless\pure inverse problem" of solving d = Rs for s does not have a unique solution: anyelement of A can be added to any solution to give another solution. The set A is called theannihilator of R. It exists because the \blurring" action of R destroys information about�nely structured signals.Second, the presence of noise e�ectively enlarges the annihilator of R, since signals ssuch that Rs = �, with � small compared to the expected noise level, can be added toany possible solution to obtain another acceptable solution. In practice, this is revealedby instability in any attempt to directly invert equation (48), small changes in the dataresulting in large changes in the estimated signal.Finally, the data, d, are usually discrete and �nite in number, and the signal, s = s(x), isusually continuous. Thus, even if R were not singular and there were no noise, estimatings(x) from d would still be severely underdetermined.One approach to such ill-posed problems is to make them well-posed by studying simpleparameterized models for the signal. The resulting estimation problem can be addressedstraightforwardly with Bayes' Theorem. But often, one would like \model-independent"information about the signal, s(x).Frequentist approaches to this problem fall into two classes. Regularization methodsestimate the signal by invoking criteria to select one member of the set of all possible signals131



that are consistent with the data as being \best" in some sense. Resolution methods tryto determine what features all the feasible signals have in common by estimating resolvableaverages of them. All such methods have obvious ad hoc elements|the choice of regularizer,or the choice of a measure of resolution|and there are usually many methods available forsolving a particular problem. In recent years, the importance of using prior informationto guide development of an inverse method has been greatly emphasized (Frieden 1975;Narayan and Nityanada 1986). Unfortunately, it is not clear how to optimally use eventhe simplest prior information, such as the positivity of the signal, to develop a frequentistinverse method.The Bayesian approach to inverse problems is to always address them as estimationproblems via Bayes' Theorem. They di�er from other more common estimation problemsonly in the character of the model assumed. In particular, the model will usually havemore parameters than there are data. Prior information, taken into account through priorprobabilities, is what makes such problems well-posed despite the discrepancy between thenumber of data and the number of parameters.Bayesian solutions to inverse problems are only beginning to be developed and under-stood. Only the simplest kinds of models and prior information have yet been explored.Surprisingly, the resulting methods are usually as good as any existing frequentist methods,and are sometimes signi�cantly better. These methods are the Maximum Entropy Methodsprominent in these Proceedings, though the \entropy" which plays such an important rolein these methods is not the entropy described in Section 3, above.Bayesian inversion methods, including the popular maximum entropy methods, can bedeveloped as follows (Jaynes 1984a,b). Consider estimating a one-dimensional signal, s(x).Begin by discretizing the problem, seeking to estimate the �nite number of values sj � s(xj),j = 1 to M ; M may be much larger than the number of data. The \parameters" of ourmodel are thus just the M values of the discrete signal. Using Bayes' theorem, we cancalculate the posterior probability of a signal, given the data, the response function, andinformation about the noise:p(fsjg j DI) = p(fsjg j I)p(D j fsjgI)p(D j I) : (54)The likelihood function will be determined by our information about the noise; if theinformation leads to a gaussian noise distribution, the log likelihood will just be proportionalto �2. The critical element of the problem is the assignment of prior probabilities to the sj .Uniform priors clearly will not do, for then all of the possible signals that �t the data will beequally likely, and the problem will remain underdetermined. Intuitively, we reject many ofthe possible signals|for example, wildly oscillating signals|because our prior informationabout the nature of the true signal makes it extremely unlikely that it could have been oneof the many unappealing but possible signals. We must �nd a way to encode some of thisinformation numerically in a prior probability assignment over the sj .The natural way to proceed is to specify precisely the available information, I , and usethe principles discussed in Section 3.3 to assign the prior, p(fsjg j I). The information willprobably be of the form of a speci�cation of the nature of the alternatives, I0, and someadditional testable information, E. The information I0 will lead to a least informativedistribution, p(fsjg j I0). For example, if the signal s(x) must by nature be positive, theLIP distribution for fsjg might be a product of Je�reys priors, p(fsjg j I0) = Q 1=sj. Thetestable information,E, could include, for example, information about the expected scale of132



detail in the signal, in the form of prior covariances among the sj . This information wouldbe used to identify the appropriate informative prior for the signal by MAXENT. Theentropy of the distribution p(fsjg) needed to use MAXENT is calculated by integratingover the values of the sj variables,H [p(fsjg)] = � Z ds1 : : :Z dsM p(fsjg) log� p(fsjg)m(fsjg)� ; (55)where m(fsjg) is the LIP assignment for fsjg. The informative distribution is the one withhighest entropy, H [p(fsjg)], among all those that satisfy the constraints imposed by E, andcould be found (at least in principle) by the method of Lagrange multipliers.For historical reasons, this is not the approach that has been taken in assigning a priorfor the signal, though it is a promising direction for future research. Instead, a prior hasbeen constructed by choosing an alternative space of hypotheses than the sj , from whichthe sj values can be derived, but whose nature permits an unambiguous and appealingprior probability assignment.The well-known maximum entropy inversion methods arise from a particularly simple al-ternative hypothesis space created as follows (Gull and Daniel 1978; Jaynes 1982, 1984a,b;Skilling 1986). First, discretize the M signal values into some large number, N , of inde-pendent \signal elements" of size �s.* Then build a signal by taking the N signal elementsone at a time and putting them in one of the M signal bins. A signal is built once eachof the N elements have been placed into a bin; we will call such a signal a \microsignal".The new hypothesis space is the set of the MN possible resulting microsignals, and as aleast informative assignment, we will consider each of them to be equally probable, withprobability M�N . If we label each of the signal elements with an index, �si, then we candescribe each microsignal by a set of M lists of the indices corresponding to the elementsin each of the M bins. For example, for a two bin signal built from �ve signal elements, aparticular microsignal could be described by the set f(2; 3); (1; 4; 5)g.Of course, the model leading to the microsignal hypothesis space is not the only modelone could imagine for constructing a signal; further, it is not clear exactly what informationabout the signal is being assumed by this model. Nevertheless, the resulting prior for fsjghas some intuitively pleasing properties, and leads to inversion methods that have provedextremely useful for the analysis of complicated data.The least informative distribution for microsignals implies a prior probability distributionfor the \macrosignals" speci�ed by the M numbers, sj , as follows. In terms of the basicsignal element, we can write s1 = n1�s, s2 = n2�s, and so on, with Pj sj = N�s. Anelement of the original hypothesis space can thus be speci�ed by a set of integers, nj . Nowthe key is to note that, in general, each of the possible macrosignals|each of the possibleset of nj values|will correspond tomany possible microsignals. For example, a macrosignalwith n1 = 2 signal elements in bin 1 is equally well described by microsignals with signalelements (1, 2) in bin 1, or (1, 3) in bin 1, or (1437, 3275) in bin 1.Denote the number of microsignals that correspond to a given macrosignal by the multi-plicityW (fnjg) of the macrosignal. The prior probability we will assign to each macrosignalis just its multiplicity times the probability, M�N , of each of its constituent microsignals;* These elements are not to be identi�ed with any physical \quantum" in the problem; forexample, they should not be identi�ed with photons detected by an experiment. They should re
ectour prior information about the interesting scale of variation in the signal, not the data.133



p(fnjg j I) = W (fnjg)M�N . The multiplicity of a macrosignal is given by the multinomialcoe�cient, W (fnjg) = N !n1!n2! : : :nM ! : (56)Using Stirling's formula, the log of the multiplicity is well approximated bylogW (fnjg) � N logN � MXj=1 nj lognj= N 24� MXj=1 njN log njN 35= NH(fnjg); (57)where we have de�ned the combinatorial entropy of the signal, H(fnjg), asH(fnjg) � � MXj=1 njN log njN : (58)In terms of the entropy, the prior probability of a macrosignal can now be written,p(fnjg j I) =M�NeNH(fnjg): (59)This prior has some intuitively appealing properties. In particular, it favors smoothlyvarying signals in the following sense. A priori, the most probable signal using this particularsignal model is the signal with maximum combinatorial entropy; a simple calculation showsthat the completely uniform signal, with all nj equal, has maximum entropy. Similarly, asignal with all N signal elements in one bin|the \least uniform" signal|is a priori theleast probable; it has a multiplicity of one. When combined with a likelihood function, thisprior assignment will thus tend to favor the most uniform of all those signals consistentwith the data.To use the entropic prior (59), the values of M and N must be speci�ed. Their valuesshould express prior information we have about the signal and the experiment's ability tomeasure it. M will be related to the resolution we expect is achievable from our data. Nmight be related to how well the data can resolve di�erences in the signal level; it thereforeseems reasonable that the choice of N should be tied to the noise level. Finding ways toconvert prior information into choices forM and N is a current research problem (see, e.g.,Jaynes 1985b, 1986b; Gull 1989). Fortunately, the results of inversion with entropic priorsdo not depend sensitively on these numbers.Despite the simplicity of the information leading to entropic inversion, it has provedenormously successful for analyzing a wide variety of astrophysical data. Some impressiverecent examples include the calculation of radio images from interferometric data (Skillingand Gull 1985); imaging accretion discs from emission line pro�les (Marsh and Horne 1989);estimating distances to clusters of galaxies from angular positions and apparent diametersof galaxies (Lahav and Gull 1989); and deconvolution of x-ray images of the Galactic centerregion (Kawai et al. 1988). An extensive bibliography of earlier applications of entropicinversion in astronomy is available in Narayan and Nityanada (1986), and in the physicalsciences in general in Smith, Inguva, and Morgan (1984).134



Entropic inverses like that described here were �rst introduced in astrophysics by Gull andDaniel (1978), based on earlier work by Frieden (1972) and Ables (1974). In these works,entropic inverses are presented as regularization methods, that is, as methods for producinga single \best" estimate of the signal from the data. Most later work has emphasized thisregularization interpretation of the combinatorial entropy of an image (see Narayan andNityanada 1986 for a review). In this context, entropic inverses are referred to as \maximumentropy methods", since they focus attention on what we would here identify as the mostprobable (maximum entropy) signal. Only recently has the Bayesian interpretation of thesemethods been clari�ed (Jaynes 1984b, 1985b, 1986b; Gull 1989; Skilling 1986, 1989, 1990).As valuable as the regularization interpretation may be, the Bayesian interpretation shouldprove even more valuable, for the following reasons.First, as a regularization method, it is not clear why maximum entropy methods shouldbe preferred to other regularization methods. Many have argued that entropy should bepreferred as a regularizer by making analogies between the combinatorial entropy of asignal and the entropy of a probability distribution. As we have shown above, a probabilitydistribution with maximumentropy consistent with the available information is the uniquelycorrect distribution to choose to represent that information. The mathematical similarityof equations (12) and (58) has led some to claim the same status for a signal with maximumcombinatorial entropy. But since a signal is not a probability distribution, the argumentsidentifying the entropy of a distribution as the uniquely correct measure of its informationcontent do not apply to signals. (See Skilling 1989 for a di�erent viewpoint.)Second, when entropy is viewed as a regularizer and not a prior probability, the mannerin which it should be used to address an inverse problem is not clear. It should be com-bined with some statistical measure of the goodness-of-�t of a signal to the data, but thechoice of statistic and the relative weighting of the entropy factor and the goodness-of-�t isarbitrary in frequentist regularization theory. Thus entropy has been combined, not onlywith the likelihood of the signal, as dictated in the Bayesian approach, but also with othergoodness-of-�t statistics, such as the Kolmogorov-Smirnov statistic, adding a new elementof arbitrariness and subjectivity to the results. Further, the connection of the parameterN with prior information is lost the regularization approach, where it plays the role ofa relative weighting between entropy and goodness-of-�t. No compelling criteria for thespeci�cation of the value of such a \regularization parameter" have yet been introduced inregularization theory.Third, as a regularization method, entropic inverses can provide only a single \best"signal. When viewed as Bayesian methods, however, they can not only produce a \best"(most probable) signal, but can also provide measures of the statistical signi�cance offeatures in the inverted signal. This aspect of Bayesian entropic inverses is an importantelement of the \Quanti�ed Maximum Entropy" approach described by Skilling (1990) andSibisi (1990) in these proceedings.Finally, the Bayesian interpretation of entropic inverses reveals their dependence on priorinformation and a speci�c model for the signal, indicating ways they may be improved forspeci�c problems. For example, though maximum entropy methods impressively recon-struct signals with point sources against a weak background, it is well known that theyoften poorly reconstruct signals that have a strong smoothly varying component, produc-ing spurious features (Narayan and Nityanada 1986). To deal with such situations, severalad hoc modi�cations have been advanced (see, e.g., Frieden and Wells 1978; Narayan andNityanada 1986; Burrows and Koornneef 1989). Yet from a Bayesian perspective, it is ap-135



parent that such poor behavior is simply the result of the minimal amount of informationassumed in calculating entropic inverses. The microsignal model assumes little more thanthe positivity of a signal; in particular, it ignores possible correlations between values ofthe signal in adjacent bins. Incorporation of such information should improve restorations;initial studies by Gull (1989a) reveal the promise of such an approach.Entropic inverses are only one particularly simple example of a Bayesian inverse method.Others can be created, either by incorporating additional information into the prior (59)through MAXENT, by considering some hypothesis space other than that of the microsignalmodel that leads to the entropic inverse (Jaynes 1984b, 1986b), or especially by usingMAXENT to �nd the prior for the sj directly (using the entropy of the distribution, equation[55], not that of the signal). Further research into Bayesian inversion should yield methodssuperior to entropic inversion in particular problems, though the simplicity of the entropicinverse will no doubt recommend it as a useful \jackknife" method, useful in the preliminaryanalysis of a wide variety of problems.8.4 JAYNESIAN PROBABILITY THEORYBayesian methods are playing an increasingly important role in many areas of sciencewhere statistical inference is important. They have had a particularly powerful impactin mathematical statistics and econometrics, and there is much a physical scientist canlearn from the statistical and econometric Bayesian literature. Particularly rich sourcesof information are the books by Tribus (1969), Zellner (1971), Box and Tiao (1973), andBerger (1985), and the in
uential review article of Edwards et al. (1963). Many importantreferences to the literature are available in the reviews of Lindley (1972), Zellner (1989),and Press (1989).But with the exception of the much neglected work of Je�reys (1939), Bayesian methodshave had little impact in the physical sciences until very recently. This has been due inlarge part to the lack of compelling rationale for the assignment of prior probabilities. Themajority of the Bayesian literature (including most of the references just mentioned) regardsprior probabilities as purely subjective expressions of a person's opinions about hypotheses,allowing individuals in possession of the same information to assign di�erent probabilitiesto propositions. With this subjective element, Bayesian probability theory was viewed asbeing of little value to physical science.Virtually alone among statisticians, Jaynes has emphasized that an objective probabilitytheory can be developed by requiring that probability assignments satisfy the desideratumthat we have here called Jaynes Consistency: Equivalent states of knowledge should be rep-resented by equivalent probability assignments. This principle is the key to �nding objectivesolutions to the problem of assigning direct probabilities|both prior probabilities and sam-pling probabilities|which is fully half of probability theory. The resulting theory remainssubjective in the sense that probabilities represent states of knowledge, and not propertiesof nature. But the theory is objective in the sense of being completely independent ofpersonalities or opinions. It is this objective aspect that makes the Jaynesian ProbabilityTheory outlined here the appropriate tool for dealing with uncertainty in astrophysics, andindeed in all sciences. 136
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ERRATA1. In the two paragraphs following equation (34) on page 118, make the following correc-tions:� Replace � = �=� with � = �2=�2.� Replace �<��=N with �<��=pN .� Replace s � �=N with s � �=pN .2. Jaynes (1980b) appeared in 1979, not 1980; the remainder of the reference is correct. Themissing reference to Jaynes (1985d) is: Jaynes, E.T. (1985d) `Macroscopic Prediction',in H. Haken (ed.), Complex Systems { Operational Approaches, Springer-Verlag, Berlin,p. 254.3. Bretthorst (1989b, c, d) have since appeared in 1990 in J. Mag. Res., 88, on pages 533,552, and 571, respectively.


