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Traditional views of visual processing suggest that early visual neurons in areas V1 and V2 are static spa-
tiotemporal filters that extract local features from a visual scene. The extracted information is then chan-
neled through a feedforward chain of modules in successively higher visual areas for further analysis. Recent
electrophysiological recordings from early visual neurons in awake behaving monkeys reveal that there are
many levels of complexity in the information processing of the early visual cortex, as seen in the long-latency
responses of its neurons. These new findings suggest that activity in the early visual cortex is tightly coupled
and highly interactive with the rest of the visual system. They lead us to propose a new theoretical setting
based on the mathematical framework of hierarchical Bayesian inference for reasoning about the visual sys-
tem. In this framework, the recurrent feedforward/feedback loops in the cortex serve to integrate top-down
contextual priors and bottom-up observations so as to implement concurrent probabilistic inference along the
visual hierarchy. We suggest that the algorithms of particle filtering and Bayesian-belief propagation might
model these interactive cortical computations. We review some recent neurophysiological evidences that sup-
port the plausibility of these ideas. © 2003 Optical Society of America

OCIS codes: 330.4060.
1. INTRODUCTION
In this paper we propose a Bayesian theory of hierarchi-
cal cortical computation based both on (a) the mathemati-
cal and computational ideas of computer vision and pat-
tern theory and on (b) recent neurophysiological
experimental evidence. We1,2 have proposed that
Grenander’s pattern theory3 could potentially model the
brain as a generative model in such a way that feedback
serves to disambiguate and ‘‘explain away’’ the earlier
representation. The Helmholtz machine4,5 was an excel-
lent step toward approximating this proposal, with
feedback-implementing priors. Its development, how-
ever, was rather limited, dealing only with binary images.
Moreover, its feedback mechanisms were engaged only
during the learning of the feedforward connections but
not during perceptual inference. However, it has been
suggested that the Gibbs sampling process for inference
could be interpreted as exerting a disambiguating feed-
back effect in a causal Bayesian belief network.6 Rao
and Ballard’s predictive coding/Kalman filter model7 did
integrate generative feedback in the perceptual inference
process, but it was primarily a linear model and thus se-
verely limited in practical utility. The data-driven Mar-
kov chain Monte Carlo approach of Zhu and colleagues8,9

might be the most successful recent application of this
proposal in solving real and difficult computer vision
problems by using generative models, though its connec-
tion to the visual cortex has not been explored. Here we
bring in a powerful and widely applicable paradigm from
artificial intelligence and computer vision to propose some
1084-7529/2003/071434-15$15.00 ©
new ideas about the algorithms of visual cortical process-
ing and the nature of representations in the visual cortex.
We will review some of our and others’ neurophysiological
experimental data to lend support to these ideas.

A prevalent view in the biological community on the
role of feedback among cortical areas is that of selective
attention modeled by biased competition.10–12 Vision is
still considered to be accomplished by a feedforward chain
of computations.13,14 Although these models give an ap-
parently complete explanation of some experimental data,
they use the sophisticated machinery of feedback
pathways15 in a rather impoverished way (as we shall il-
lustrate), and they persist in viewing the computations in
each visual area as predominantly independent pro-
cesses. However, some of our recent neurophysiological
evidence cannot be fully accounted for by biased competi-
tion models. Instead, we believe that they reflect under-
lying cortical processes that are indicative of a generative
model. We will link these data to the proposed frame-
work and explain how ideas of resonance16,17 and predic-
tive coding2,4,5,7 can potentially be reconciled and accom-
modated in a single framework.

We have not offered a simulation to accompany our pro-
posal, partly because many details remain to be worked
out and partly because the choice of model is still quite
unconstrained and any specific simulation provides only
weak support for a high-level hypothesis like ours. For
us, the strongest argument for this theory is the compu-
tational one: Work on robust computer vision systems
has shown how hard it is to interpret images with simpler
2003 Optical Society of America
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algorithms and has led to some key unifying principles for
overcoming the exponential explosion stemming from
combining conflicting interpretations of the many parts or
aspects of an image. Bayesian belief propagation18–20

and particle filtering21,22 are the most successful com-
puter vision algorithms to date. The latter has been used
for tracking moving objects in the presence of clutter and
irregular motion (situations in which all other techniques
have failed).23,24 Its use is also developing rapidly in the
robotics community, for example, for solving mapping and
localization problems in mobile robots in a real-world
scenario.25 We see some very attractive features in both
of these algorithms that might be implemented naturally
by cortical neural networks. We believe that this theory
provides a plausible and much more tightly coupled
model of the processing in visual areas and especially in
V1 and V2.

The hierarchical Bayesian framework provides an al-
ternative perspective for understanding many recent neu-
rophysiological findings, and the particle-filtering mecha-
nisms point to a potentially new aspect of cortical
processing. In writing this paper, we hope (1) to intro-
duce to computer scientists a plausible brain model by us-
ing a hierarchical Bayesian framework and particle-
filtering mechanisms, (2) to draw the attention of the
neural modeling community to the possibility of a cortical
algorithm based on particle filtering, and (3) to expose to
neuroscientists these powerful paradigms in computer vi-
sion and artificial intelligence. In particular, we empha-
size that inference is more general than competition and
that feedback should not be conceived merely in terms of
attentional selection or biased competition but could be
more profitably conceived as mechanisms for biasing in-
ference and computations along the visual hierarchy. At-
tentional selection corresponds to only a small subset of
such priors. We will first sketch the general theoretical
framework and then in subsequent sections review the
experimental evidence that points in the direction of this
theory.

2. BAYESIAN PERSPECTIVE ON CORTICAL
COMPUTATION
A. Hierarchical Bayesian Inference
Bayesian inference and related theories have been pro-
posed as a more appropriate theoretical framework for
reasoning about top-down visual processing in the
brain.1,2,4,6,26,27 This idea can be traced back to the ‘‘un-
conscious inference’’ theory of perception by Helmholtz28

and has recently been connected to the evolution of the
perceptual systems.29

Recall that Bayes’s rule proposes that with observa-
tions x0 , hidden variables x1 to be inferred, and contex-
tual variables xh , a probabilistic description of their ef-
fects on one another is given in the form

P~x0 ,x1uxh! 5 P~x0ux1 , xh!P~x1uxh!,

where P(aub) stands for the conditional probability of a,
given b. The first term on the right, P(x0ux1 , xh), is
called the imaging model, and it describes the probability
of the observations, given all the other variables. One of-
ten assumes that it does not depend on xh , i.e., that x1
contains all the facts needed to predict the observations.
The second term P(x1uxh) is called the ‘‘prior’’ probability
on x1 , i.e., its probability before the current observations.
Then the second identity,

P~x1ux0 , xh!P~x0uxh! 5 P~x0 , x1uxh!,

may be used to arrive at

P~x1ux0 , xh! 5
P~x0ux1 , xh!P~x1uxh!

P~x0uxh!
.

The denominator P(x0uxh) is the probability of the obser-
vations given xh and is independent of x1 . Hence it can
simply be viewed as the normalizing factor Z1 needed so
that the ‘‘posterior’’ probability P(x1ux0 , xh) is a probabil-
ity distribution, i.e., equals 1 when summed over all val-
ues of x1 .

In the example of early vision, we let x0 stand for the
current visual input, i.e., the output of the lateral genicu-
late nucleus (LGN); x1 stands for the values of the fea-
tures being computed by V1; and xh stands for all higher
level information—contextual information about the situ-
ation and more-abstract scene reconstructions. Thus V1
arrives at the most probable values x1 of its features by
finding the a posteriori estimate x1 that maximizes
P(x1ux0 , xh). If we make the simplifying Markov as-
sumption that P(x0ux1 , xh) does not depend on xh , we
can then interpret the formula above as saying that V1
computes its features by multiplying the probability of
the sensory evidence P(x0ux1) by the feedback biasing
probabilities P(x1uxh) and maximizing the result by com-
petition. Note that P(x1uxh) is similar to the attentional
bias factor used in the traditional model, but here it has a
richer interpretation and carries much more information,
namely, the degree of compatibility of every possible set of
features x1 with the high-level data xh . In short, this
factor now includes all possible ways in which higher-
level information about the scene may affect the V1 fea-
tures x1 , i.e., the beliefs at V1. Figure 1 illustrates this
idea in two ways. First, the data under high level of il-
lumination make probable the low-level fact that certain

Fig. 1. V1 is reciprocally connected to all the expert visual mod-
ules either directly or indirectly. It therefore can serve as a
high-resolution buffer to integrate various information together
into a coherent percept. In this example of the high-resolution
buffer, the bottom-up cues from the illuminated part of the face
cause a face hypothesis to respond, which provides the contex-
tual priors of the face to reexamine the data at the high-
resolution buffer, locating the faint edge in the shadow as a part
of the face.
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areas of the image are in shadow. Second, the high-level
knowledge of the identity of an individual suggests that a
face should have certain proportions, as measured from
the low-level data in V1. Both sets of information would
go into the full explanation of the image.

This basic formulation can also capture the interaction
among multiple cortical areas, such as V1, V2, V4, and
the inferotemporal cortex (IT). Note that although feed-
back goes all the way back to the LGN and it is simple to
include the LGN in the scheme, the computational role of
the thalamic nuclei could potentially be quite different.30

Hence we decide not to consider the various thalamic ar-
eas, the LGN, and the nuclei of the pulvinar, in this pic-
ture at present. The formalism that we introduce applies
to any set of cortical areas with arbitrary connections be-
tween them. But for simplicity of exposition, we assume
that our areas are connected like a chain. That is, we as-
sume that each area computes a set of features or beliefs,
which we now call xv1 , xv2 , xv4 , and xIT , and we make
the simplifying assumption that if, in the sequence of
variables (x0 , xv1 , xv2 , xv4 , xIT), any variable is fixed,
then the variables before and after it are conditionally in-
dependent. This means that we can factor the probabil-
ity model for these variables and the evidence x0 as

P~x0 , xv1 , xv2 , xv4 , xIT!

5 P~x0uxv1!P~xv1uxv2!P~xv2uxv4!P~xv4uxIT!P~xIT!

and make our model an (undirected) graphical model or
Markov random field based on the chain of variables:

x0 ↔ xv1 ↔ xv2 ↔ xv4 ↔ xIT .

From this it follows that

P~xv1ux0 , xv2 , xv4 , xIT! 5 P~x0uxv1!P~xv1uxv2!/Z1 ,

P~xv2ux0 , xv1 , xv4 , xIT! 5 P~xv1uxv2!P~xv2uxv4!/Z2 ,

P~xv4ux0 , xv1 , xv2 , xIT! 5 P~xv2uxv4!P~xv4uxIT!/Z4 .

More generally, in a graphical model one needs only po-
tentials f(xi , xj) indicating the preferred pairs of values
of directly linked variables xi and xj , and we have

P~xv1ux0 , xv2 , xv4 , xIT!

5 f~x0 , xv1!f~xv1 , xv2!/Z~x0 , xv2! ,

P~xv2ux0 , xv1 , xv4 , xIT!

5 f~xv1 , xv2!f~xv2 , xv4!/Z~vv1 , xv4!,

P~xv4ux0 , xv1 , xv2 , xIT!

5 f~xv2 , xv4!f~xv4 , xIT!/Z~xv2 , xIT!,

where Z(xi , xj) is a constant needed to normalize the
function to a probability distribution. The potentials
must be learned from experience with the world and con-
stitute the guts of the model. This is a very active area
in machine learning research.4,6,8,19,20

In this framework each cortical area is an expert for in-
ferring certain aspects of the visual scene, but its infer-
ence is constrained by both the bottom-up data coming in
on the feedforward pathway (the first factor in the right-
hand side of each of the above equations) and the top-
down data feeding back (the second factor) [see Fig. 2(a)].
Each cortical area seeks to maximize by competition the
probability of its computed features (or beliefs) xi by com-
bining the top-down and bottom-up data with use of the
above formulas (the Z’s can be ignored). The system as a
whole moves, game theoretically, toward an equilibrium
in which each xi has an optimum value given all the other
x’s. In particular, at each point in time, a distribution of
beliefs exist at each level. Feedback from all higher ar-
eas can ripple back to V1 and cause a shift in the pre-
ferred beliefs computed in V1, which in turn can sharpen
and collapse the belief distribution in the higher areas.
Thus long-latency responses in V1 will tend to reflect in-
creasingly more global feedback from abstract higher-
level features, such as illumination and the segmentation
of the image into major objects. For instance, a faint
edge could turn out to be an important object boundary
after the whole image is interpreted, although the edge
was suppressed as a bit of texture during the first
bottom-up pass. The long-latency responses in IT, on the
other hand, will tend to reflect fine details and more-
precise information about a specific object.

The feedforward input drives the generation of the hy-
potheses, and the feedback from higher inference areas

Fig. 2. (a) Schematic of the proposed hierarchical Bayesian in-
ference framework in the cortex: The different visual areas
(boxes) are linked together as a Markov chain. The activity in
V1, x1 , is influenced by the bottom-up feedforward data x0 and
the probabilistic priors P(x1ux2) fed back from V2. The concept
of a Markov chain is important computationally because each
area is influenced mainly by its direct neighbors. (b) An alter-
native way of implementing hierarchical Bayesian inference by
using particle filtering and belief propagation: B1 and B2 are
bottom-up and top-down beliefs, respectively. They are sets of
numbers that reflect the conditional probabilities of the particles
conditioned on the context that has been incorporated by the be-
lief propagation so far. The top-down beliefs are the responses
of the deep layer pyramidal cells that project backward, and the
bottom-up beliefs are the activities of the responses of the super-
ficial layer pyramidal cells that project to the higher areas. The
potentials f are the synaptic weights at the terminals of the pro-
jecting axons. A hypothesis particle may link a set of particles
spanning several cortical areas, and the probability of this hy-
pothesis particle could be signified by its binding strength via ei-
ther synchrony or rapid synaptic weight changes.
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provides the priors to shape the inference at the earlier
levels. Neither the feedforward messages nor the feed-
back messages are static: As the interpretation of an im-
age proceeds, new high-level interpretations emerge that
feed back new priors, and as low-level interpretations are
refined, the feedforward message is modified. Such hier-
archical Bayesian inference can proceed concurrently
across multiple areas, so that each piece of information
does not need to flow all the way forward to IT, return to
V1 and then back to IT, etc. Such a large loop would take
too much time per iteration and is infeasible for real-time
inference. Rather, successive cortical areas in the visual
hierarchy could constrain one another’s inference in small
loops rapidly and continuously as the interpretation
evolved. One might hope that such a system, as a whole,
would converge rapidly to a consistent interpretation of
the visual scene incorporating all low-level and high-level
sources of information; but there are problems, which we
address next.

B. Particle Filtering and Bayesian Belief Propagation
A major complication in this approach is that unless the
image is simple and clear, each area cannot be completely
sure of its inference until the whole image is understood.
More precisely, if the computation proceeds in a ‘‘greedy’’
fashion with each cortical area settling on one seemingly
best value for its features xi in terms of the other areas
signals, it may settle into an incorrect local maximum of
the joint probability. Even allowing an iteration in which
each xi is updated when one of its neighbors updates its
features, one might well find a situation in which chang-
ing one xi decreases the joint probability but still a radical
change of all xi might find a still more probable interpre-
tation. In computer vision experiments, this occurs fre-
quently.

A simple example of the problem would be a situation
in which there are two competing interpretations of an
image, A and B. Interpretation A incorporates values A1
for the features in area 1 and values A2 for the features in
the higher area 2. Likewise, B gives the features values
B1 and B2 . Then A1 and A2 support each other through
high values of p(A1uA2) and p(A2uA1) and together give a
local maximum of the joint probability. B1 and B2 do the
same. To decide between them, you must compare the
joint probability p(A1 , A2) with p(B1 , B2) and choose
the larger (which is usually much larger). This example
shows how statistical inference involves much more than
competition among neurons in an area—it is competition,
but a global competition involving all aspects, low and
high, of each interpretation. Such competition is ubiqui-
tous in real images, although we are usually unaware of it
as we make these inferences unconsciously in 100 ms or
so. Some of the most striking examples are in the work
of Adelson and collaborators,31,32 where scenes are con-
structed involving tilted surfaces, shadows, and corners
that have multiple interpretations but only one that opti-
mally integrates the low-level data with our high-level
knowledge of lighting and geometry.

The only remedy that has been found in the computa-
tional literature is not to jump to conclusions but to allow
multiple high-probability values for the features or hy-
potheses to stay alive until longer feedback loops have
had a chance to exert an influence. This approach is
called particle filtering, and its use has been developing
rapidly in the computer vision and artificial intelligence
communities.21 The essential idea is to compute, for
each area, not one guess for the true value of its set of fea-
tures xi but a moderate number of guesses (e.g., there
could be n sets of values for the features in visual area i
$xi

(1) ,xi
(2) ,...,xi

(n)%). In addition, these are assigned
weights wi,1 ,wi,2 ,...,wi,n in such a way that the weighted
sum of these guesses is a discrete approximation to the
full posterior probability distribution on xi . In the
broadest terms, particle filtering is simply replacing a full
probability table by a weighted set of samples. When the
number of values of a random variable becomes astro-
nomical (as happens in perception), this is quite possibly
the best way to deal with distributions on it, known to
probabilists as using a ‘‘weak approximation.’’ This idea
would seem on the surface to be related to the ideas of
Zemel33 and Eliasmith and Anderson34 on population cod-
ing and decoding. These authors also seek to represent
probability distributions on perceptual variables by the
joint activity of populations of neurons. But their main
aim is to overcome or use the coarse and/or nonlinear tun-
ing of single neurons, whereas our aim is to deal with the
huge dimensional space of the joint distribution on all
perceptual variables represented in a given area. Here
we are ignoring the issues posed by this coarse tuning. It
is important to note that particle filtering is not an issue
of using any specific kind of probability model (e.g., a mix-
ture model) but rather of what kind of algorithm is used
for statistical learning and inference with the model.

The particle-filtering technique has produced the most
successful computer vision programs to date for tracking
moving objects in the presence of clutter and irregular
motion.23,24 It has also found widespread application in
solving mapping and localization in mobile robots.25 In
the low-level/high-level vision context, the algorithm is
similar but not identical. In tracking or robot localiza-
tion, the algorithm proceeds forward in time, and infor-
mation from many observations is integrated into the cur-
rent set of particles and their weights. One can also go
backward in time and reconstruct from later data the
most likely place where the robot was located at some
point in the past, using future data to clear up ambigu-
ities. This is exactly the way the forward/backward algo-
rithm works in speech recognition except that using par-
ticles allows one to overcome explosions in the number of
states of the system. In the vision situation, information
flow progresses both along the time axis and along the vi-
sual hierarchy, starting with local elementary image fea-
tures and progressing to more-global and more-abstract
features in the higher areas. The recurrent interaction
across the hierarchy helps to collapse the hypothesis
space over time. The algorithm should work at all levels
simultaneously, communicating by what is called message
passing or belief propagation in each cycle of
computation.19 More formally, one has a set of particles
$xi

(1) ,...,xi
(n)% at each level i, bottom-up messages

B1(xi
( j)), and top-down messages B2(xi

( j)), and one alter-
nates between propagating the messages up and down
through
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B1~xi
~ j !! 5 max

k
@B1~xi21

~k ! !f~xi21
~k ! , xi

~ j !!#,

B2~xi
~ j !! 5 max

k
@B2~xi11

~k ! !f~xi
~ j ! , xi11

~k ! !#,

and updating the particles by resampling and perturbing
by using the weights:

wi, j 5 B1~xi
~ j !!B2~xi

~ j !!/~normalizing factor Zi!.

A schematic of this forward/backward algorithm is shown
in Fig. 2(b). Note the B1 and B2 are beliefs. They are
not particles but are sets of numbers that represent the
conditional probabilities of the particles, conditional on
whatever part of the data or context has been incorpo-
rated by the belief propagation so far. Algorithms of this
type, although with separate sets of particles for
bottom-up and top-down messages, are under active in-
vestigation in the computer vision community19,20,22 and
constitute one of the most promising techniques for sta-
tistical inference in such large, multilayered domains.

In such an algorithm neurally plausible? Here we give
some ideas but no details, which we hope to work out
more fully in a subsequent paper. For the belief propa-
gation algorithm to work, the bottom-up and top-down
terms need to be represented separately, allowing their
strengths to be conveyed to further areas. We hypoth-
esize that the bottom-up and top-down messages are rep-
resented by the activity of superficial (layers 2 and 3) and
deep (layer 5) pyramidal cells, respectively, as they
project to higher and lower areas. More specifically, the
variables B1(xn) would correspond to the activity of su-
perficial pyramidal cells and B2(xn) to the activity of deep
pyramidal cells. If the factors f were equal to the
weights of synapses of these pyramidal cells on their tar-
gets in remote areas, then the displayed updating rule for
B1 and B2 (or a soft version of it in which the ‘‘max’’ is
replaced by some weighted average) could be given by in-
tegration of inputs in the remote neurons. The recent
work of Arathorn35 on the use of feedback synthesis to
rapidly weigh and collapse the space of feedfoward hy-
potheses has a similar flavor, even though probabilistic
formulations are not used explicitly in his map-seeking
circuits.

The particle itself might need to be represented by the
concerted activity of an ensemble of neurons, which could
be bound by timing (e.g., synchrony)36–38 or by synaptic
weights after short-term facilitation.39 Note that the
top-down messages can utilize the same recurrent excita-
tory mechanism that has been proposed for implementing
biased competition for attentional selection.10–12 In fact,
visual attention itself could be considered a special case in
this framework. The recurrent excitatory connections
across the multiple modules in the visual hierarchy allow
the neurons in different areas to link together to form a
larger hypothesis particle by firing concurrently and/or
synchronously. Since its implementation requires that
groupings of mutually reinforcing alternative values of
features in different areas be formed, this algorithm
might be linked to the solution of the binding problem.

C. V1 As the High-Resolution Buffer
What is the distinctive role of V1 in such a hierarchical
model? In terms of the probability model on which the
theory rests, xv1 are the only variables directly connected
to the observations x0 furnished by the retina and the
LGN. In reality, the LGN is more directly connected to
the retina and is the lowest level of the hierarchy which
receives feedback. The LGN could serve as a high-
resolution pointillistic buffer and V1 as a high-resolution
geometric buffer. Neurally, this is reflected by the fact
that V1 is the recipient of the vast majority of the projec-
tions of the retina (via the LGN). Thus V1’s activity
should first reflect the best guesses of xv1 depending only
on the local visual stimulus and then subsequently the
progressive modification of these values based on feed-
back as higher-level aspects of the stimulus are recog-
nized or guessed at. If any visual computation affects
the local interpretation of the image, it will change the
posterior on xv1 and hence be reflected in the firing of V1
neurons. This led us to propose that, instead of being the
first stage in a feedforward pipeline,13 V1 is better de-
scribed as the unique high-resolution buffer in the visual
system for geometric calculations.40,41

Representations in the early visual areas (LGN, V1,
and V2) are precise in both space and feature domains be-
cause of their small receptive fields arranged in retino-
topic coordinates.42 The size of the receptive fields of
neurons increases dramatically as one traverses succes-
sive visual areas along the two visual streams (dorsal
‘‘where’’ and ventral ‘‘what’’ streams). For example, the
receptive fields in V4 or MT are at least four times larger
in diameter than those in V1 at the corresponding
eccentricities,43 and the receptive fields in IT tend to
cover a large portion of the visual field.44 This dramatic
increase in receptive-field size leads to a successive con-
vergence of visual information necessary for extracting
invariance and abstraction (e.g., translation and scaling),
but it also results in the loss of spatial resolution and fine
details in the higher visual areas.

In the hierarchical inference framework, the recurrent
feedback connections among the areas would allow the ar-
eas to constrain one another’s computation. This per-
spective dictates that the early visual areas do not merely
perform simple filtering45 or feature extraction
operations.42 Rather, they continue to participate in all
levels of perceptual computations, if such computations
require the support of their intrinsic machinery. In this
framework, image segmentation, surface inference,
figure–ground segregation, and object recognition do not
progress in a bottom-up serial fashion but likely occur
concurrently and interactively in constant feedforward
and feedback loops that involve the entire hierarchical
circuit in the visual system at the same time. The idea
that various levels in cognitive and sensory systems have
to work together interactively and concurrently has been
proposed in the neural modeling community1,4,7,16,17 pri-
marily on the basis of psychological literature. However,
it has not been until recently that solid neurophysiologi-
cal evidence has started to emerge to champion this idea.
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3. EXPERIMENTAL EVIDENCE
When the high-resolution-buffer hypothesis was first
proposed,40,41 it was primarily conjectural and based on
data that are open to multiple interpretations.41,46,47

However, recent findings from various laboratories on
contextual modulation of neural activities in V148–54 lend
support to the high-resolution-buffer hypothesis and,
more generally, to the hierarchical-inference framework.

A. Timing
First, the timing studies of Thorpe’s laboratory14 clearly
show that high-level visual judgments (e.g., whether an
image contains an animal or not) could be computed
within 150 ms. Thorpe’s work involves EEG recordings
on humans, and he finds significant changes in frontal
lobe activity between two conditions, in which the subject
responds by pressing a button or not, starting at 150 ms
poststimulus. Thus a rather complete analysis including
very-high-level abstract judgments seems to be formed in
150 ms. On the other hand, transcranial magnetic
stimulation (TMS) studies from Shimojo’s laboratory50

show that TMS over V1 alone can produce visual scotomas
in the subjective experience of human subjects at up to
170-ms latency. Thus V1 activity, during a period that
overlaps with activity expressing high-level knowledge of
scene properties, is essential for conscious visual percep-
tion. Taken together, these two pieces of evidence sug-
gest that concurrent activation of V1 and the prefrontal
cortex might be necessary for computing and representing
a global coherent percept. Intact activities in V1 might
be critical for the integrity of perception.

Although data from Thorpe’s laboratory14 and also from
Schall’s laboratory55 indicate that perceptual decision sig-
nals appear in the prefrontal cortex at ;150 ms post-
stimulus onset, this does not necessarily mean that object
recognition is done on a feedforward and one-pass basis.
In hierarchical Bayesian inference, the coupling could be
continuous between adjacent cortical areas. There is
therefore plenty of time within the 150-ms period for the
different cortical areas to interact concurrently. Several
recent neurophysiological experiments suggest that rel-
evant perceptual and decision signals emerge in the early
visual cortex and the prefrontal cortex almost simulta-
neously. Schall and colleagues55 showed that when a
monkey has to choose a target among multiple distractors
in a conjunctive search task, the neural signal at the tar-
get location starts to differentiate from the signals at dis-
tractor locations at approximately 120–150-ms post-
stimulus onset. In a similar experiment, we49 found the
differentiation between target and distractors appear
within the same time frame in early visual areas (V1 and
V2), at approximately 100–120-ms poststimulus onset,
suggesting that computation in the cortex is rather con-
current. It is thus conceivable that through the continu-
ous dynamics of the cortical interaction, the whole hierar-
chy could converge to a single hypothesis with 60–80 ms
of interaction.

B. Scale of Analysis
Lamme46 found that a V1 neuron (receptive field size
,0.8 deg) fires more rigorously when its receptive field is
inside a 4-deg-diameter figure than when it is in the back-
ground, as if the neuron is sensitive to an abstract con-
struct of figure–ground. The initial response of the neu-
ron is sensitive mainly to local features, and only 40 ms
later does it become sensitive to the figure–ground
context.41,47 Thus the early visual neurons’ computation
seems to progress in a local-to-global (fine-to-coarse) man-
ner. On the other hand, recordings in IT have shown
that higher-level neurons behave in the opposite way.56

In response to images of human faces, the initial re-
sponses of the neurons contain information on a coarser
scale (such as gender of the face), and the later responses
contain finer details, such as the specific information
about an individual, suggesting that IT’s computations
progress in a coarse-to-fine manner. These observations
are consistent with the idea that the higher-level area
and the lower-level area interact continuously to con-
strain each other’s computation: The early areas first
process local information, whereas the higher-level areas
first become sensitive to the global context. As the com-
putation evolves under recurrent interaction, the early
areas become sensitive to global context, while the higher
areas become sensitive to the relevant precise and de-
tailed information. One may imagine that the higher-
level areas in the case illustrated in Fig. 1 can instantly
‘‘recognize’’ the face image on the basis of the bottom-up
cues (B1 path) present in the illuminated subparts of the
face, but feedback (B2 path) from the face recognition
area is critical for us to detect the faint edge and conclude
that this is indeed the boundary of the face. This conclu-
sion is mandatory, for if that boundary of the face could
not be detected under the same illumination condition, we
would be alarmed and might form a different interpreta-
tion about what we actually saw.

Not every computation has to work its way all the way
back to V1. Kosslyn et al.57 showed that in fMRI studies
a subject’s V1 lights up differentially only when he or she
is asked to imagine things or perform tasks that involve
information of fine details. Scale of analysis is therefore
a key factor. Given that feedback does consume energy,
V1 would be consulted only when a scene is ambiguous
without some high-resolution details. For computations
that involve only detecting large objects, discriminating
coarse features, or recognizing the gist of the scene, feed-
forward computation might be sufficient. All the experi-
ments that managed to demonstrate a high-level or atten-
tional effect in V1 seemed to require the monkeys to
utilize information about fine details in their tasks. In
Roelfsema and colleagues’ experiment,53 for example, the
monkey was asked to trace one of the two curves dis-
played on the screen. They found that a neuron responds
more strongly when its receptive field lies on the curve be-
ing traced than when its receptive field lies on the curve
not being traced, as if there is a top-down attentional
beam that traces and highlights the curve.

Attention effect in V1 usually becomes evident only
when the scene is ambiguous. Motter58 found that it is
very difficult to demonstrate ‘‘attentional modulation’’
(i.e., top-down effect) when there is only a single object on
the screen but that attentional modulation could be re-
vealed when multiple objects are present. Apparently,
when multiple objects are presented on the screen they
engage in competition. Asking the monkey to pay atten-
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tion to a particular location often results in the removal of
the inhibition imposed by the surround on that location.
Gilbert and colleagues54 demonstrated an attentional ef-
fect in V1 only after the monkeys were trained to perform
a vernier acuity test—aligning two small vertical lines.
All these findings suggest that when the monkeys per-
form tasks that require the discrimination of fine fea-
tures, feedback can penetrate back to V1. Interestingly,
Kamitani and Shimojo50 found that when different
spatial-frequency gratings were used as stimuli in their
TMS experiment, the optimal range of TMS delay was
systematically increased as the spatial frequency in-
creased, indicating that a finer-resolution analysis might
indeed require earlier visual areas. Ideas similar to this
have also been proposed recently by Hochstein and
Ahissar in their reverse hierarchy theory59; they argue,
on the basis of their psychophysical observations, that vi-
sion at a glance can be accomplished by feedforward com-
putation but vision with scrutiny involves coupling to
early visual areas.

C. Interactive Hierarchy
Although the above experiments demonstrate the emer-
gence of attentional effect in early visual areas during
high-resolution analysis, it is unclear to what degree feed-
back is involved in normal perceptual processing. In a
hierarchical-inference framework, feedback should be
quite automatic. We41,48,49 have conducted a series of ex-
periments to investigate the role of V1 and V2 in complex
perceptual processes that likely involve interaction
among multiple cortical areas. Here we will focus on the
experiments on contour completion and shape from shad-
ing.

Since the time of Hubel and Wiesel,42 it has been hy-
pothesized that V1 is involved in edge detection. We41

demonstrated earlier that while the initial responses of
V1 neurons are characterized by the filtering of the local
texture elements, the later part of their responses are cor-
related with more-abstract global boundaries. Studies
from Gilbert’s laboratory60 found that an additional bar
along the longitudinal direction outside the receptive field
could exert a facilitatory effect on a V1 neuron. Such
findings have inspired a set of models based on V1 circuit-
ries for contour continuation.29,61–64 In addition, a num-
ber of experiments (e.g., Ref. 65) found that additional
bars on the two sides of the neuron’s longitudinal axis
tend to suppress the response of a neuron, reminiscent of
the nonmaximum suppression in edge detection. Never-
theless, there is no direct evidence for contour completion
in V1. Neural correlates of illusory contour from the
Kanizsa triangle type have been observed only in V2 but
not in V1; this finding has been used to argue for a feed-
forward scheme of computation.66

The high-resolution-buffer hypothesis suggests that V1
has the ideal machinery for computing geometrical curvi-
linear structures, as illustrated in Roelfsema and col-
leagues’ curve-tracing experiment.53 In light of these
considerations, we48 reexamined the issue of neural re-
sponses to illusory contours in area V1 and V2, using a
Fig. 3. Selected stimuli in the subjective contour experiment. (a) Example of a stimulus presentation sequence in a single trial. (b)
Kanizsa square with illusory contour. Receptive field of the tested neuron was ‘‘placed’’ at ten different positions across the illusory
contour, one per trial. (c) Amodal contour stimulus; the subjective contour was interrupted by intersecting lines. (d) One of the several
rotated partial disk controls. The surround stimulus was roughly the same, but there was no illusory contour. (e) One of the several
types of real squares defined by luminance contrast. (f) Square defined by lines, used as control to assess the neuron’s sensitivity to the
spatial location of the real contour as well as to comparing the temporal responses between real and illusory contours. See Lee and
Nguyen48 for details.
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Fig. 4. (a) Spatial profile of a V1 neuron’s response to the contours of both real and illusory squares, in a temporal window 100–150 ms
after stimulus onset. The real or illusory square was placed at different spatial locations relative to the receptive field of the cell. This
cell responded to the illusory contour when it was at precisely the same location where a real contour evoked the maximal response from
the neuron. It also responded significantly better to the illusory contour than to the amodal contour (t test, p , 0.003) and did not
respond much when the partial disks were rotated. (b) Temporal evolution of the cell’s response to the illusory contour compared with
its response to the real contours of a line square or a white square, as well as to the amodal contour. The onset of the response to the
real contours was at 45 ms, ;55 ms ahead the illusory contour response. (c) Population-averaged temporal response of 49 V1 neurons
in the superficial layer to the illusory contours and controls. (d) Population-averaged temporal response of 39 V2 neurons in the su-
perficial layer to the illusory contours and controls. The results show that V2 responds to illusory contour earlier than V1. See Lee and
Nguyen48 for details.
static display paradigm that allowed us to monitor the
temporal evolution of responses to specific stimulus loca-
tions. We found that neurons in V1 do indeed respond to
illusory contours, e.g., completing the contour induced by
the partial disks shown in Fig. 3, although at a latency
greater than that in V2.

In this experiment, the monkey was asked to fixate at a
spot on the screen, while the Kanizsa square was pre-
sented at different locations on the computer monitor in
different trials. Over successive trials, the responses of
the neurons to the different locations relative to the illu-
sory contour was recorded (Fig. 3). At the beginning of
the experiment, consistent with Von der Heydt’s earlier
report,66 we found that V1 neurons in fact do not respond
to the illusory contours. We then realized that because
the partial disks (pac men) were shown in the periphery,
the monkey might simply be seeing the on and off flashing
of partial disks on the screen without perceiving the illu-
sory square. We took several measures to enhance the
monkey’s attention to the illusory square. First, we
placed the fixation spot inside the illusory square, so that
the monkey was looking at the illusory square. Second,
we presented the stimuli in a sequence: Four black cir-
cular disks appeared first for 400 ms and then turned into
the partial disks, creating an illusion that a white square
had abruptly appeared in front of the circular disks, oc-
cluding them. The sudden onset of the illusory square
also served to capture the attention of the monkey to the
square. Third, we introduced in our presentation a se-
ries of ‘‘teaching’’ stimuli, i.e., real squares that are de-
fined by line or contrast to help the monkey ‘‘see’’ the il-
lusion. Remarkably, in the third session after this shift
in paradigm, we started to find V1 neurons responding to
the illusory contour in the stimulus (Fig. 4).

The neural correlate of the illusory contour signal
emerged in V1 neurons at precisely the same location
where a line or luminance contrast elicited the maximum
response from the cell [Fig. 4(a)]. The response to the il-
lusory contour was delayed relative to the response to the
real contours by 55 ms [Fig. 4(b)], emerging ;100 ms af-
ter stimulus onset. The response to the illusory contour
was significantly greater than the response to the con-
trols, including the amodal contour or when the partial
disks were rotated. At the population level, we found
that sensitivity to illusory contours emerged at 65 ms in
V2, 35 ms ahead of V1 [Fig. 4(c) and 4(d)]. A possible ex-
planation is that V2 detects the existence of an illusory
contour by integrating information from a spatially more
global context and then generates a prior P(xv1uxv2) to
constrain the contour inference in V1. The resulting con-
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tour supports the hypothesis particle that maximizes
P(x0 , xv1 , xv2 , xv4 , xIT) which is the product of a cas-
cade of feedback priors and bottom-up hypotheses.

Contour completion is an excellent example of particle
filtering. In toy examples, there is one and only one
completion of the local edges into global contours. In
natural scenes, however, there are thousands of edge
fragments that may potentially be part of very salient glo-
bal contours. The strongest extended contours can
emerge as a result of the competition between partial hy-
potheses, each of which has linked up some of the edge
fragments and seeks confirming evidence either by link-
ing onto longer contours or by binding to emerging ob-
jects, missing pieces being explained by occlusion, shad-
ows, etc. The actual implementation of this contour
completion process in V1 might be similar to Williams
and Jacobs’s62 stochastic random-walk model for contour
continuation, except that it also contains many hierarchi-
cal layers of computations involving higher-level informa-
tion such as emerging objects and their occlusion as well.

The illusory contour result supports the idea of a gen-
erative model, but the generative process in this case
could be mediated by horizontal connections and not nec-
essarily by feedback. To firmly demonstrate that higher-
order perceptual constructs could exert an influence in
the early visual areas, we studied a set of shape-from-
shading (SFS) stimuli that likely involve the interaction
between high-level three-dimensional (3D) inference and
low-level parallel processing. When viewing the display
shown in Fig. 5(a), we perceive a set of convex shapes au-
tomatically segregating from a set of concave shapes.
These interpretations of 3D shapes emerge purely from
the shading information, assuming lighting comes from
above. If our assumption is changed to lighting from be-
low, perceptually the convex shapes can be seen as con-
cave while the concave shapes can be seen as convex.
These two interpretations can alternate in perceptual ri-
valry as in the Necker cube illusion. Ramachandran67

points out that this fast segregation suggests that 3D
shape interpretation can influence the parallel process of
perceptual organization. A case in point is that a similar
image with black-and-white (BW) contrast elements, but
without a 3D interpretation, does not readily segregate
into groups [Fig. 5(b)]. These pairs of stimuli are there-

Fig. 5. Ramachandran67 showed that SFS stimuli produced in-
stantaneous segregation, whereas BW contrast stimuli did not.
Given the main distinction between the two types of stimuli is
that only the SFS stimulus elements in (a) but not those in (b)
afford 3D interpretation; 3D information must directly influence
the early parallel processes of perceptual grouping.
fore ideal for probing the interaction between high-level
interpretation (3D inference) and low-level parallel pro-
cesses.

To study the neural basis of higher-order pop-out, we
used a paradigm developed originally by Knierim and Van
Essen,68 who had demonstrated that V1 is sensitive to
pop-out that is defined by an oriented bar. Here we49

studied how V1 and V2 neurons respond to SFS stimuli
and the neural correlates of their pop-out saliency due to
3D interpretation. We tested the responses of V1 and V2
neurons when the center of a stimulus element was
placed on top of their receptive fields. Typically, the re-
ceptive field is less than 0.7 deg, while the diameter of the
stimulus element is 1 deg visual angle. When comparing
the neuronal responses to the BW stimulus with the re-
sponses to the SFS stimulus (Fig. 6), we found that V1
neurons are very sensitive to contrast and respond better
to the BW stimulus than to the SFS stimulus, which has
a weaker contrast. A significant number of V2 neurons,
however, responded better to the SFS elements than to
the BW elements, particularly in the later part of their re-
sponses [Figs. 7(a) and 7(b)]. This shows that the V2
neurons might be more interested in a representation of
3D surface that is more abstract than the bottom-up lu-
minance contrast. Furthermore, we found that whereas
both V1 and V2 neurons did not exhibit pop-out responses
for the BW stimulus, V2 but not V1 neurons did exhibit
the pop-out response for the SFS stimulus in a passive
fixation task from the very beginning. The pop-out re-
sponse is defined by the ratio of the response of the neu-
ron to the oddball condition over its response to the uni-
form condition. In these two conditions, the stimulus on
the receptive field is the same, but the surrounding con-
texts are different [Figs. 7(a) and 7(b)]. The fact that V2
exhibits a preattentive pop-out response to shape from
shading further argues for the possibility that V2 neurons
might be representing 3D shape primitives, allowing par-
allel pop-out computation in V2 through lateral inhibi-
tion. Recently, Von der Heydt’s laboratory69 found that
V2 neurons are indeed sensitive to convex shapes defined
by both shape from shading and random-dot stereogram,
providing more direct evidence in support of this idea.

Interestingly, although V1 neurons were not sensitive
to the SFS pop-outs at the beginning, they became sensi-
tive to them after the monkeys utilized them in a task
that required them to detect the location of the pop-out
target. On the other hand, even though the monkeys
could detect the oddball in the BW stimulus, albeit at
much slower speed, their V1 and V2 neurons exhibited
the pop-out effect for the SFS stimulus but not for the BW
stimulus. As a population, the SFS pop-out emerged in
V2 at ;95-ms poststimulus onset and in V1 at 100 ms
(Fig. 7). The strength of these pop-out signals were
found to be inversely correlated with the reaction time
and positively correlated with the accuracy of the mon-
keys’ performance in detecting the oddball.50

What is the purpose of these higher-order pop-out sa-
liency signals to penetrate back to V1? One possible clue
is our observation that the pop-out signal was spatially
precise in V1—that it could be observed only on the target
but not on the distractor elements right next to it. We
take this to mean that when the monkeys have to detect
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Fig. 6. Higher-order perceptual pop-out. (a) A typical stimulus display was composed of ten 3 10 stimulus elements. Each element
was 1° visual angle in diameter. The diameter of the classical receptive field of a typical cell at the eccentricities tested ranged from 0.4°
to 0.8° visual angle. Displayed is an example of a lighting from above (LA) oddball condition, with the LA oddball placed on top of the
cell’s receptive field, indicated by the open circle. The solid dot indicates the fixation spot. (b) There are six sets of stimuli. The SFS
stimulus elements include LA and Lambertian sphere with lighting from above, below, left and right (LB, LL, and LR, respectively).
The BW stimulus elements include white above (WA) and white below (WB). Each stimulus set had four conditions: singleton, oddball,
uniform, and hole. Displayed are the iconic diagrams of all the conditions for the LA set and the LB set and the oddball conditions for
the other four sets. The center element in the iconic diagram covers the receptive field of the neuron in the experiment. The surround
stimulus elements were placed outside the receptive field of the neuron. The key comparison was made between the oddball condition
and the uniform condition, while the singleton and the hole conditions were controls. See Lee et al.49 for details.

Fig. 7. Temporal evolution of the average population response of 22 V2 units and 30 V1 units from a monkey to the LA set and the WA
set in a stage after the monkey had utilized the stimuli in its behavior. Each unit’s response was first smoothed by a running average
within a 15-ms window and then averaged across the population. A significant difference (pop-out response) was observed between the
population average response to the oddball condition and that to the uniform condition in the LA set for both V2 and V1 [(a), (c)] neurons,
starting at 100-ms poststimulus onset. No pop-out response was observed in the WA set [(b), (d)]. See Lee et al.49 for details.
the location of a small target, a spatially precise signal
needs to be established with the aid of the high-resolution
buffer. In addition, the fine interpretation of the 3D
shape might also involve constant interaction with V1.
The pop-out signals can be attenuated when the monkeys
are required to do another attention-demanding task.
However, the signals could not simply be attributed to at-
tention alone, because we can observe them in the mon-
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keys even after they have not performed the oddball de-
tection task for over a year. It seems that this coupling
between V2 and V1 had increased in strength with prac-
tice and become more or less automatic.

We suspect that the enhancement signal observed here
is very similar to Lamme’s46 figure–ground enhancement
effect observed in the texture figures. In that experi-
ment, V1 neurons’ responses to different parts of the tex-
ture stimuli along a horizontal line across the center of
the stimuli were studied. The stimuli include 4-deg-wide
textured squares in a background defined by orthogonal
textures [Figs. 8(a) and 8(b)]. When the responses to the
two complementary stimuli were summed at the corre-
sponding locations, the response inside the figure was
found to be stronger than the response outside the figure.
When this experiment was repeated, we41 found that
there was a general uniform enhancement within the fig-
ure, which abruptly terminated at its boundary [as shown
in Figs. 8(d) and 8(e)], even though the magnitude of the
effect was ;15%—significantly weaker than observed
earlier.46,47 [Note that when preferred orientation of the
cells was parallel to that of the texture boundary, a very
strong boundary effect was found to be superimposed on
the interior enhancement effect, as shown in Fig. 8(d)].
The enhancement effect within an object’s surface is remi-
niscent of the ‘‘coloring’’ operation in Ullman’s70 visual
routines. Coloring an object precisely within the bound-
ary of a surface requires the spatial precision provided by
the high-resolution buffer.

The beliefs on 3D shape from V2 might provide the nec-
essary priors to modulate the parallel pop-out computa-
tion and the precise localization of the pop-out target in
V1. The data suggest that these priors contain not only
3D information but also the information on saliency and
behavioral relevance.49 When we changed the top-down
priors, for example, by manipulating the presentation fre-
quency of the different oddball stimuli, the monkey’s re-
action time and behavioral accuracy improved for the
more-frequent stimuli. The change in the behavioral
performance of the monkeys was often accompanied by a
parallel change in the relative pop-out strength in the
neural signals. These interactions among statistics of
stimuli, behavioral experience, and neural processing are
characteristic of a hierarchical Bayesian-inference frame-
work.

Hierarchical inference is most evident when stimuli are
ambiguous and the correct interpretation requires inte-
gration of multiple contextual factors for disambiguation.
In the case of Kanizsa square, there are several possible
hypotheses for explaining the bottom-up data. The brain
seems to choose the simplest explanation: that a white
square is occluding four black circular disks, even at the
extra expense of hallucinating a subjective contour at lo-
cations where there is really no visual evidence for it. It
Fig. 8. (a)–(c) Three examples of the texture stimuli used in the experiment. Different parts of the stimuli, along a horizontal line
across the middle of the square or across the strip, were placed on the receptive field of the recorded neuron over successive trials. The
width of the square or the strip is 4°. (d), (e). Spatiotemporal evolution of the summed response of a population of V1 neurons to the
texture squares. The summed response was obtained by adding the response to stimulus (a) and the response to stimulus (b) at the
corresponding locations. This addition eliminates the effect due to orientation tuning and reveals a signal that enhances the figure’s
interior relative to the background. The spatial offset is the distance in degrees of visual angle from the center of the square or the strip;
hence 22° and 2° offsets represent the boundary locations. When the neurons’ preferred orientation was parallel to the texture bound-
aries, a very strong boundary signal was superimposed on the interior enhancement (coloring) signal [(d)]. When the neurons’ preferred
orientation was orthogonal to the vertical texture boundaries, the enhancement was relatively uniform within the figure [(e)]. (f).
Population-averaged response of a set of vertical neurons to stimulus (c). The initial response was characterized by a burst, whose
magnitude was correlated with sensitivity to local feature orientation, followed by a more sustained response at a lower level. The
response at the boundary is significantly higher than the response at the interior. These phenomena underscore the interplay among
resonance, competition and ‘‘explaining away.’’ See Lee et al.41 for details.



T. S. Lee and D. Mumford Vol. 20, No. 7 /July 2003 /J. Opt. Soc. Am. A 1445
is only in this ambiguous situation that one can see a
feedback effect in V1. In the SFS experiment, it is the
need to finely localize the pop-out stimulus that drives the
processing back to V1. An experiment by Bullier’s
laboratory51 showed that the effect of feedback was most
evident in V1 only when the stimuli were of low visibility,
low saliency, and high ambiguity, suggesting that higher-
order feedback becomes evident when it is needed to dis-
ambiguate lower-level representations.

D. Multiple Hypotheses
Is there any neurophysiological evidence that is sugges-
tive of particle filtering in the cortex? A hallmark of par-
ticle filtering is that multiple hypotheses are kept alive
during the computation so that the system does not need
to jump to conclusions and is capable of entertaining
other possibilities simultaneously. In general, demon-
strating particle filtering in cortex requires ambiguous vi-
sual images in which competing structures are present
and simultaneous recording of activity of assemblies of
neurons in the same and different areas. Such data are
not available at present.

One line of evidence that potentially supports such an
idea is the binocular-rivalry experiment from Logothetis’s
laboratory.71 When two different images are presented
to the two eyes, we often only see one image at a time, and
the two images fluctuate over time. This has been
known as binocular rivalry. It turns out that this is a ri-
valry between two perceptual hypotheses represented in
the brain rather than the rivalry between information
from the two eyes.71 A curious fact is that almost all the
relevant IT neurons (i.e., neurons that can distinguish the
two images when monocularly presented based on fea-
tures within their receptive fields) respond consistently
with perception, whereas only 10% of the relevant V1 neu-
rons and 20% of the V2 neurons responded in accordance
with the percept. This gradual increase in the percent-
age of neurons whose responses are correlated with cur-
rent state of perception along the visual hierarchy has
also been observed in both our illusory contour and SFS
experiments.48,49 The gradual increase in the neural cor-
relate of perception along the visual hierarchy has been
taken to mean that V1 is less ‘‘conscious’’ than IT. From
the point of view of particle filtering, this could imply less
than 10% of each type of neuron in V1 are involved in rep-
resenting a particular hypothesis or perceptual state,
whereas the other 90% are involved in the representation
of the alternative hypotheses. On the other hand, neu-
rons in IT are more hypothesis specific in that most of
them do not care about a particular hypothesis, but for
those who do, they respond consistently with the current
perceptual state. When IT or prefrontal cortex is tired of
or satisfied with one hypothesis, the remaining hypoth-
eses that have been kept alive lower in the visual hierar-
chy will emerge to offer alternative explanations to the
data.

E. Resonance and Predictive Coding
Although we have been thinking primarily of top-down in-
fluences as enhancing activity in lower areas by reinforc-
ing belief with high-level context, there have been strik-
ing experiments recently that show relative suppression
of low-level activity when an integrated simple high-level
percept can explain the low-level data. Murray and
colleagues72 using fMRI on human subjects showed that
when similar sets of stimuli were presented—one rela-
tively complex two-dimensional (2D) pattern and one with
a simple 3D interpretation—V1 activity was less for the
3D pattern. This was true also for the case of a bistable
stimulus, which alternates between a simple 3D percept
with occlusion and a more complex 2D percept. They
found a correlation between the times in which the sub-
ject reported seeing the 3D percept and the times in
which V1 activity decreased. Furthermore, Roe and her
colleagues73 also found that in their optical imaging and
single-unit experiments, V1 neurons’ responses were sup-
pressed but V2 neurons’ activities were enhanced when
an illusory contour defined by abutted sine-wave gratings
was presented. These experiments support our earlier
proposal1 and related ideas7,16,74 that top-down genera-
tive signals could explain away the earlier evidence based
on efficient coding consideration. In that proposal, cer-
tain bottom-up pathways carried error signals indicating
when there was a mismatch between data and their re-
construction or prediction with contextual priors and that
when there was no error, the lower area would be rela-
tively inactive.

However, we would like to propose a completely differ-
ent interpretation of Murray et al.’s72 results here, which
uses the theory of multiple hypotheses or particles. In a
situation in which complex data are present for which no
coherent or simple high-level interpretation has been
found, one would expect that many particles are needed to
approximate the relatively spread-out and multimodel
posterior on the low-level features. In psychophysical
terms, many bits and pieces of the stimulus are trying to
assemble into larger groupings, but none are very suc-
cessful. However, when one high-level interpretation
emerges, this set of particles collapses and only one set of
confirmed groupings remains, now enhanced by feedback
from higher areas. This single enhanced grouping con-
tains, in total, less neural activity than the multitude of
competing but nonenhanced groupings.

This key insight might help to reconcile the concepts of
the resonance and the explaining-away phenomena in
generative models. Higher-order description not only ex-
plains away the data that are consistent with it but more
violently suppresses the low-level data that are noise or
are supporting alternative hypotheses. Note that the
feedback never completely eliminates the low-level re-
sponses, as there are features and cues in the earlier rep-
resentation that are not captured by the higher ones.
This perspective recasts the findings in the texture ex-
periment (Fig. 8) in a different light. Figure 8(f) shows
the spatiotemporal response of V1 vertical neurons to a
texture-strip stimulus [Figure 8(c)]. Several observa-
tions are particularly interesting. First, the initial neu-
ronal response (35–70-ms poststimulus onset) was char-
acterized by the response to local features, i.e., sensitivity
to orientation of the line elements, but the later responses
(80 ms onward) emphasized the responses at the texture
boundary. The suppression of the interior response rela-
tive to the boundary might mean that the redundant in-
formation in the interior of the figure is being explained
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away by the surround. The maintained enhanced re-
sponse at the the boundary response might arise from
resonance with the global boundary representation in
higher areas. Second, there is a general adaptation pro-
cess that results in lower and sustained activities across
the whole image in the later phase of the response (even
at the boundary location). Such adaptation is also evi-
dent in V1 and V2 neuronal activities in the later stage of
their responses in many other different scenarios (Figs. 4
and 7). Traditionally, such adaptation is attributed to
the nonlinear neural dynamics, lateral inhibition, or syn-
aptic depression mechanisms, but certain adaptation phe-
nomena potentially can be interpreted as the explaining
away of the earlier representation by higher-order repre-
sentations as a result of feedback. The idea that feed-
back collapses the particle distribution means that it ex-
plains away inconsistent evidence more severely than the
consistent evidence at the lower level, and the net out-
come is relative resonance.

4. CONCLUSION
Recent neurophysiological experiments have provided a
variety of evidence suggesting that feedback from higher-
order areas can modulate the processing of the early vi-
sual cortex. The popular theory in the biological commu-
nity to account for feedback is based on attention
modulation and biased competition. From that perspec-
tive, visual processing is still primarily a series of feedfor-
ward computations, except that the computation and in-
formation flow are regulated by selective attention.10 On
the other hand, within the neural modeling community,
there have been a number of models or theories1,4,6,7,16,17

with increasing sophistication, emphasizing that the feed-
back from higher-order areas might directly or indirectly
serve as contextual priors for influencing lower-level in-
ference. Here we suggest that these ideas could be for-
mulated in the form of a hierarchical Bayesian system
and that ideas from Bayesian belief propagation19 and
particle filtering21,23,25 are relevant to understanding
these interactive computations in the visual cortex.
From this perspective, attention should not be conceptu-
alized merely in terms of biased competition but may be
more appropriately viewed in terms of biased inference.
The top-down priors can reshape the probabilistic poste-
rior distribution of the various hypotheses at each level by
recurrent feedback.

We reviewed a number of recent neurophysiological
findings that are highly suggestive of such a hierarchical
inference system and, in particular, suggestive of the
unique role of the primary visual cortex as a high-
resolution buffer in this hierarchy. The effect of feedback
is often subtle and often becomes evident only when high-
resolution details are required in certain computations or
when the visual stimuli are ambiguous. In order to keep
multiple hypotheses alive, the early visual areas have to
continue to maintain evidence that is not necessarily con-
sistent with the current dominant hypothesis. As a re-
sult, only a smaller percentage of early visual neurons in
each class are correlated with the particle that supports
the current perceptual state.
Central to our framework is the forward/backward
mechanism that is embodied conceptually in many exist-
ing neural models.1,4,7,16,17 Here we attempt to reconcile
a subtle, but important, difference between two compet-
ing schools of thought. In the adaptive resonance16 or in-
teractive activation models,17 an active global concept will
feed back to enhance the neural activities in the early ar-
eas that are consistent with the global percept. These
ideas are supported by numerous neurophysiological ex-
periments that show that higher-order information can
enhance early visual responses.46,48,49 On the other
hand, the efficient-coding1 and the predictive-coding
models7 emphasize that feedback serves to suppress the
activities in the early areas as a way of ‘‘explaining away’’
the evidence in the earlier areas. This idea is supported
particularly by some recent imaging experiments.7,72 In
the latter class of models, only error residues are pro-
jected forward to the higher areas. In our current pro-
posal, the computation of beliefs is based on both
bottom-up and top-down messages. A particle is then an
ensemble of both deep and superficial cells whose
strength as an ensemble (the binding strength via syn-
chrony or rapid synaptic weight changes) is something
like the weight of the particle. The two schools of
thought can be reconciled by simply understanding that
both inconsistent evidence and consistent evidence in ear-
lier areas are being explained away, but the effect is more
severe on the inconsistent data, resulting in a relative en-
hancement of the consistent data as a result of resonance.
Therefore resonance, competition, and predictive coding
are all key components in this framework. During per-
ceptual inference, beliefs are propagated up and down to
collapse the hypothesis space. When an interpretation is
reached, the residues, the parts not explained, will start
to attract attention to initiate further processing.

Recent Bayesian belief propagation and particle-
filtering models keep particles for the forward and back-
ward streams separate and noninteracting until the last
step for mathematical reasons,20 but it might be benefi-
cial to combine top-down and bottom-up information as
soon as possible to form particles that reflect both
bottom-up and top-down information, as we have sug-
gested here. Although the precise computational and
neural implementation of many aspects of Bayesian-belief
propagation and particle filtering is not entirely clear, we
think that the parallel between recent artificial intelli-
gence work on Bayesian-belief propagation and particle-
filtering and recent neurophysiological findings in the vi-
sual cortex are striking and should not be ignored. This
paper summarizes our thoughts on their likely connec-
tions and aims at stimulating more-precise experimental
research along this line. We expect that these ideas will
grow exponentially in the next few years in the computa-
tional vision and biological vision communities and might
revolutionarize how we think about neural and computa-
tional processes underlying vision.
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