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1 Recipes and tricks

1.1 Natural gradient

The natural gradient is

∇̃θJ (θ) = G−1 (θ)∇θJ (θ) (1)

where J (θ) is an objective function to be minimized with parameters θ, and
G (θ) is a metric on the parameter space. Learning should be performed with
an update rule

θt+1 = θt + ∆̃θt (2)

∆̃θ ∝ −∇̃θJ (θ) (3)

with steps taken in the direction given by the natural gradient.

1.2 Metric G (θ)

If the objective function J (θ) is the negative log likelihood of a probabilistic
model q (x; θ) under an observed data distribution p (x)

J (θ) = −〈log q (x; θ)〉p(x) (4)

then the Fisher information matrix

Gij (θ) =

〈
∂ log q (x; θ)

∂θi

∂ log q (x; θ)

∂θj

〉
q(x;θ)

(5)

is a good metric to use.
If the objective function is not of of the form given in Equation 4, and cannot

be transformed into that form, then greater creativity is required. See Section
1.8 for some basic hints.

Remember, as discussed in Section 1.10, even if the metric you choose is
approximate, it is still likely to speed learning!
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1.3 Fisher information over data distribution

The Fisher information matrix (Equation 5) requires averaging over the model
distribution q (x; θ). For some models this is very difficult to do. If that is the
case, instead taking the average over the empirical data distribution p (x)

Gij (θ) =

〈
∂ log q (x; θ)

∂θi

∂ log q (x; θ)

∂θj

〉
p(x)

(6)

provides an effective alternative natural gradient.

1.4 Energy approximation

Learning in a probabilistic model of the form

q(x) =
e−E(x;θ)

Z (θ)
(7)

is in general very difficult, since it requires working with the frequently in-
tractable partition function integral Z(θ) =

∫
e−E(x;θ)dx. There are a number

of techniques which can provide approximate learning gradients (eg contrastive
divergence, score matching, mean field theory, variational bayes, minimum prob-
ability flow). Turning those gradients into natural gradients is difficult though,
as the Fisher information depends on the gradient of logZ (θ). Practically,
simply ignoring the logZ (θ) terms entirely and using a metric

Gij (θ) =

〈
∂E (x; θ)

∂θi

∂E (x; θ)

∂θj

〉
p(x)

(8)

averaged over the data distribution works surprisingly well, and frequently
greatly accelerates learning.

1.5 Diagonal approximation

G (θ) is a square matrix of sizeNxN , whereN is the number of parameters in the
vector θ. For problems with large N , G−1 (θ) can be impractically expensive to
compute, or even apply. For almost all problems however, the natural gradient
still improves convergence even when off diagonal elements of G (θ) are neglected

Gij (θ) = δij

〈(
∂ log q (x; θ)

∂θi

)2
〉
q(x;θ)

(9)

making inversion and application cost O (N) to perform.
If the parameters can be divided up into several distinct classes (for instance

the covariance matrix and means of a gaussian distribution), various block di-
agonal forms may also be worth considering.
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1.6 Regularization

Even if evaluating the full G is easy for your problem, you may still find that
G−1 explodes1. Dealing with this - solving a set of linear equations sub-
ject to some regularization, rather than using the exact matrix inverse - is
an entire field of study in computer science. Here we give one simple plug
and play technique, called stochastic robust approximation [section 6.4.1 in
http://www.stanford.edu/ boyd/cvxbook/], for regularizing the matrix inverse.
If G−1 is replaced with

G−1reg =
(
GTG+ εI

)−1
GT (10)

where ε is some small constant (say 0.01), the matrix inverse will be much better
behaved.

Alternatively, techniques such as ridge regression can be used to solve the
linear equation

G (θ) ∇̃θJ (θ) = ∇θJ (θ) (11)

for ∇̃θJ (θ).

1.7 Combining the natural gradient with other techniques
using the natural parameter space φ

It can useful to combine the natural gradient with other gradient descent tech-
niques. Blindly replacing all gradients with natural gradients frequently causes
problems (line search implementations, for instance, depend on the gradients
they are passed being the true gradients of the function they are descending).
For a fixed value of G though there is a natural parameter space.

φ = G
1
2 (θfixed) θ (12)

in which the steepest gradient is the same as the natural gradient.
In order to easily combine the natural gradient with other gradient descent

techniques, fix θfixed to the initial value of θ and perform gradient descent over
φ using any preferred algorithm. After a significant number of update steps
convert back to θ, update θfixed to the new value of θ, and continue gradient
descent in the new φ space.

1.8 Natural gradient of non-probabilistic models

The techniques presented here are not unique to probabilistic models. The nat-
ural gradient can be used in any context where a suitable metric can be written

1This is a general problem when taking matrix inverses. A matrix A with random elements
- or with noisy elements - will tend to have a few very very small eigenvalues. The eigenvalues
of A−1 are the inverses of the eigenvalues of A. A−1 will thus tend to have a few very very
large eigenvalues, which will tend to make the elements of A−1 very very large. Even worse,
the eigenvalues and eigenvectors which most dominate A−1 are those which were smallest,
noisiest and least trustworthy in A.
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for the parameters. There are several approaches to writing an appropriate
metric.

1. If the objective function is of a form

J (θ) = 〈l (x; θ)〉p(x) (13)

where 〈·〉p(x) indicates averaging over some data distribution p(x), then it
is sensible to choose a metric based on

Gij (θ) =

〈
∂l (x; θ)

∂θi

∂l (x; θ)

∂θj

〉
p(x)

(14)

2. Similarly, imagine that the given penalty function is the log likelihood of
a probabilistic model, and rewrite the problem as if it were probabilistic.
Then use the Fisher information metric on its probabilistic interpretation.

For example, the task of trying to minimize an L2 penalty function ||y − f (x; θ)||2
over observed pairs of data p (x, y) can be made probabilistic. Imagine
that the L2 penalty instead represents a conditional gaussian q (y|x; θ) ∝
exp

(
− ||y − f (x; θ)||2

)
over y, and use the observed marginal p (x) over

x to build a joint distribution q (x, y; θ) = q (y|x; θ) p (x).2 This generates
the metric:

Gij (θ) =

〈
∂ log [q (y|x; θ) p (x)]

∂θi

∂ log [q (y|x; θ) p (x)]

∂θj

〉
q(y|x;θ)p(x)

(15)

=

〈
∂ log q (y|x; θ)

∂θi

∂ log q (y|x; θ)

∂θj

〉
q(y|x;θ)p(x)

(16)

3. Find a set of transformations T (θ) to apply to the parameters which you
believe the distance measure |dθ| should be invariant to, and then find a
metric G (θ) such that it is. That is find G (θ) such that the following
relationship holds for any invariant transformation T (θ).

dθTG (θ) dθ = T (dθ)
T
G (T (θ))T (dθ) (17)

where T (dθ) ≡ T (θ + dθ)− T (θ).

A special case of this approach involves functions parametrized by a ma-
trix, as illustrated in the next section.

2Amari suggests using some uninformative model distribution q (x) over the inputs, such
as a gaussian distribution, rather than taking p (x) from the data []. Either works fine. Using
the data gets you closer to the desired distribution, but at the expense of extra computation
if the uninformative marginal allows a closed form solution for G (θ).
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1.9 W TW

If a function depends on a (square, non-singular) matrix W , it frequently aids
learning a great deal to take

∆Wnat ∝
∂J (W )

∂W
WTW (18)

The algebra leading to this rule is complex, but as discussed in the previous
section it falls out of a demand that the distance measure |dW | be invariant to
a set of transformations. In this case, those transformations are right multipli-
cation by any (non singular) matrix Y .

dθTG (θ) dθ = (dθY )
T
G (θY ) (dθY ) (19)

1.10 What if my approximation of ∆θnat is wrong?

For any positive definite H, movement in a direction

∆̃θ = H∆θ (20)

will descend the objective function. If the wrong H is used, gradient descent is
performed in a suboptimal way . . . which is the problem when steepest gradient
descent is used as well. Making an educated guess as to H rarely makes things
worse, and frequently helps a great deal. Don’t be scared to experiment!
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