
Supervised learning in multilayer feedforward
networks - “backpropagation”

Bruno A. Olshausen

September 9, 2010

Abstract

This handout describes the backpropagation learning rule for multilayer
feedforward networks composed of McCulloch-Pitts type neurons. These meth-
ods were originally worked out by Rumelhart, Hinton, and Williams in the mid-
1980’s. The derivation of a learning rule for multilayer networks represented a
critical breakthrough in the field, because it allows for complex input-output
relationships to be learned that could not be achieved by a single-stage network
due to the limitation of linear separability.

Let us consider a 2-stage network composed of sum-and-sigmoid neurons, as shown
in Figure 1. Both the neurons in the middle layer, yi, and in the output, zi, compute

. . .
x1 x2 x3 xn

. . .

Wij

. . .

y1 y2 yh

Vij

z1 z2 zm
output

"hidden units"

input

Figure 1: A multilayer, feedforward network composed of sum-and-sigmoid (i.e.,
McCulloch-Pitts) neurons.

their response by taking a weighted sum of the signals from the layer below, and then
passing the sum through a sigmoidal nonlinearity:

yi = σ(
∑
j

Wijxj +Wi0) (1)

zi = σ(
∑
j

Vijyj + Vi0) . (2)

1



Wij denotes the weight from the j-th input unit to the i-th hidden unit, and Vij
denotes the weight from the j-th hidden unit to the i-th output unit. The function
σ(x) is the by now familiar sigmoid function, σ(x) = 1

1+e−x . The units in the middle
layer are termed hidden units because they are not directly visible to either the input
or the output. Note that the non-linearities in the hidden layer are crucial. Without
them, the entire network could be collapsed to a single-stage linear network.

To help see where such a network architecture would be useful, let us consider a
pattern discrimination problem that is linearly inseparable, and therefore not solvable
by a single-stage network. Such a problem is shown in Figure 2. When a single neuron

1

0

Figure 2: Discrimination of ‘T’ vs. ‘S’.

is trained on this ensemble, it is unable to learn the desired input-output mapping.
One solution we might think of is to construct a two-stage network, where the first
stage consists of “feature detectors” that look for three pixels being on in any one of
the four margins (Fig. 3), and the second stage pools across these detectors in order
to signal the presence of a ‘T’. Note that the process of “detecting” is non-linear—i.e.,

Figure 3: The weights for a set of “feature detectors” used in the first stage of a
two-stage network for signaling the presence of a ‘T’.

either the feature is there or it isn’t. This process may be subserved by the sigmoid
function by simply setting the bias for each unit in Figure 3 so that a net input value
of three produces a 1 but a net input of two or less produces a 0. One way to think
of the operation of this network is that the first stage transforms the input values
into a new representation in the hidden layer that now makes the problem linearly
separable. The problem of learning, then, is to find the proper weights for both the
first and second stage that allow the problem to be solved.

As before, we may formulate the problem of learning in terms of gradient descent.
The function to be minimized is simply the square of the difference between the actual
and desired output value:

E =
∑
α

Eα (3)

2



Eα =
1

2

∑
i

[zαi − zi(xα)]2 (4)

where α denotes the training example, zαi is the desired response, and zi(x
α) is the

computed response for the i-th output unit. The learning rule for the weights in the
top-stage is similar to what we derived last time for the single-stage network:

∆Vij ∝ −∂E
α

∂Vij
(5)

= [zαi − zi(xα)]
∂zi(x

α)

∂Vij
(6)

= [zαi − zi(xα)] σ′(uzi) yj (7)

where uzi denotes the total input to zi from below, i.e.,

uzi =
∑
j

Vijyj + Vi0 . (8)

By making a slight change of notation we can re-write Equation 7 more compactly.
Let us define as the “modified error” of output zi:

δzi = [zαi − zi(xα)] σ′(uzi) . (9)

This is simply the error on output i times the derivative of the sigmoid function
evaluated at the current input level for unit i. Thus, our learning rule for Vij (Eq. 7)
then becomes

∆Vij ∝ δzi yj . (10)

This says that we change Vij proportional to the “modified error” on output i, δzi ,
times the current value of hidden unit j, yj. This is simple enough, no?

Now let us derive the learning rule for the weights in the bottom stage. Again,
using gradient descent we get:

∆Wkl ∝ − ∂E
α

∂Wkl

(11)

=
∑
i

[zαi − zi(xα)]
∂zi(x

α)

∂Wkl

. (12)

This time, zi depends indirectly on Wkl through the value of hidden unit k. So, let’s
write out the derivative on the right side of Equation 12 in two parts:

∂zi(x
α)

∂Wkl

=
∂zi(x

α)

∂yk
× ∂yk
∂Wkl

(13)

= σ′(uzi)Vik × σ′(uyk)xl . (14)

where uyk is the net input to unit yk: uk =
∑
lWkl xl + Wk0. Thus, the learning rule

for Wkl is
∆Wkl ∝

∑
i

[zαi − zi(xα)]σ′(uzi)Vik σ
′(uyk)xl . (15)

3



At first sight, this looks like a mess. But let’s compactify it a little as before. By
using the definition of δzi in Equation 9, and in addition defining the “modified error”
for hidden unit k to be

δyk = σ′(uyk)
∑
i

δziVik (16)

then our learning rule for Wkl becomes

∆Wkl ∝ δyk xl . (17)

Thus, the learning rule for Wkl is not unlike that for Vij. We simply change Wkl

proportional to the “modified error” for hidden unit k, δyk , times the value of input
l, xl. In this case, though, δyk is obtained by “backpropagating” the δzi ’s in the layer
above through the weights Vik.

The problem of devising a learning rule for multilayer networks stumped neural
network researchers for nearly a quarter century. One of the reasons for this is that
the non-linearities used by early researchers where typically “hard” threshold units
(i.e., a sigmoid with high λ) which did not allow for taking a derivative. If one simply
allows for smooth non-linearities that can be differentiated, then deriving a learning
rule is pretty straightforward.

The backpropagation algorithm is a powerful tool for learning complex input-
output mappings. In fact, with enough hidden units, any conceivable function could
be theoretically implemented by a multilayer network. However, the backpropagation
algorithm is not always guaranteed to find you the “correct” solution from a limited
set of training data. A major limitation of the backpropagation learning algorithm is
that it is prone to get stuck in local minima. This is because the technique of gradient
descent is blind to the global characteristics of the error surface; it simply moves
downhill from where it currently is. An additional problem that plagues learning with
backpropagation in multilayer networks is the problem of generalization. Usually it is
desired in supervised learning problems for the network to be able to generalize what
it has learned from the training examples so that it responds appropriately to input
patterns it has not seen before. But if there are too many hidden units, then the
network will usually end up overfitting the training data and thus give inappropriate
responses to input patterns that were not part of the training set. These two problems
of avoiding local minima and generalization are the focus of many current research
efforts.

A final problem of backpropagation, from a neurobiological standpoint, is its bi-
ological implausibility. The algorithm depends on having a “teacher” that allows
the network to compute an error for each output, and then these errors must be
percolated backward through the network to provide appropriate learning signals at
synapses deep down in the system. While this is not impossible, it is nevertheless
difficult to conceive of real neurons operating in this manner.

4


