
Linear Hebbian learning and PCA

Bruno A. Olshausen

October 7, 2012

Abstract

This handout describes linear Hebbian learning and its relation to principal
components analysis (PCA). Hebbian learning constitutes a biologically plausi-
ble form of synaptic modification because it depends only upon the correlation
between pre- and post-synaptic activity. Understanding the functions that can
be performed by networks of Hebbian neurons is thus an important step in
gaining an understanding of the effects of activity-dependent synaptic modifi-
cation in the brain. This material is also described at greater length in chapter
8 of Herz, Krogh & Palmer.

In the early 1960’s, Horace Barlow postulated his theory of redundancy reduction,
which states that a useful goal of sensory coding is to transform the input in such
manner that reduces the redundancy1 due to complex statistical dependencies among
elements of the input stream. The usefulness of redundancy reduction can be under-
stood by considering the process of image formation, which occurs by light reflecting
off of independent entities (i.e., objects) in the world and being focussed onto an array
of photoreceptors in the retina. The activities of the photoreceptors themselves do
not form a particularly useful signal to the organism because the structure present in
the world is not made explicit, but rather is embedded in the form of complex sta-
tistical dependencies, or redundancies, among photoreceptor activities. A reasonable
goal of the visual system, then, is to extract these statistical dependencies so that
images may be explained in terms of a collection of independent events. Such a repre-
sentation may then recover an explicit representation of the underlying independent
entities that gave rise to the image, which would no doubt be useful to the survival
of the organism.

In recent years, a substantial body of work has shown that the response properties
of neurons at early stages of the visual system can be accounted for in terms of a
strategy for reducing the redundancy in natural images. These successes provide
encouragement that further aspects of cortical processing may be understood using

1A confusion that often arises from the term “redundancy reduction” is that it would seem to
contradict the conventional wisdom that the brain contains redundant circuitry to deal with noise
and physical damage. It is important however to distinguish between the form of redundancy that is
present within the raw input stream (which reflects structure in the external world), and redundancy
that is introduced by the nervous system through schemes such as population coding (e.g., as in the
motor system). It is the former notion of redundancy that we refer to here.

1

this principle. Here, we shall consider the simplest form of redundancy that may
occur in an input stream—i.e., linear pairwise correlations—and we shall show that
a network of linear neurons that modifies its weights according to a Hebbian learning
rule will reduce this form of redundancy by performing principal components analysis,
or PCA.

PCA

Let us consider an input stream x that has linear pairwise correlations among its
elements. That is,

cij = 〈xi xj〉 6= 0 . (1)

The brackets 〈·〉 mean “average over many input examples.” Throughout this docu-
ment we shall assume that all variables have zero mean (〈xi〉 = 0), so cij 6= 0 implies
that there are statistical dependencies among the inputs xi. If xi and xj were statisti-
cally independent, then cij would equal zero since in this case 〈xi xj〉 = 〈xi〉 〈xj〉 = 0.
(Note however that the converse is note true—i.e., cij = 0 does not imply that xi and
xj are statistically independent. Statistical independence is a stronger condition for
which we require P (xi, xj) = P (xi)P (xj)).

The goal of principal components analysis is to transform the input x to a new
representation in which the variables are pairwise decorrelated. That is,

yi = ei · x (2)

where 〈yi yj〉 = 0 ∀i 6=j. Thus, the redundancy due to linear pairwise correlations
is eliminated. By definition, in PCA the vectors ei are orthonormal, meaning that
ei · ej = 0 ∀i 6=j and |ei| = 1 ∀i. Also, the ei are ordered according to the variance on
the yi such that 〈y21〉 > 〈y22〉 > . . . > 〈y2n〉. The process of PCA may be pictured in
geometric terms, as shown in Figure 1.

PCA is a useful tool for analyzing structure in data, but it is important to realize
its limitations. One limitation of PCA is that it takes into account only 2nd-order
statistics among input variables (i.e., correlations among pairs of inputs). In many
real-life situations, though, there will be higher-order statistical dependencies among
the variables that are also important to consider (e.g., 〈xixjxk〉), and PCA is blind to
these forms of structure. Another limitation of PCA is that the vectors ei are forced
to be orthogonal, and in many cases there is no a priori reason for thinking this is
appropriate. An example of an input distribution with higher-order, non-orthogonal
structure, and the way that PCA deals with this, is shown in Figure 1b.

Despite the limitations of PCA, it still can be of use to us in finding the effective
dimensionality of an input space (i.e., the principal axes that account for most of the
variance), as well as finding independent components when the data have Gaussian
structure. It is also a useful building block for the development of more advanced
techniques, so it is a good thing to know about in general.

2

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

x1

x2 e1
e2

a.

� � � � �
� � � � �
� � � � �

x1

x2 e1
e2

b.

� � �
� � �
� � �
� � �
� � �
� � �

Figure 1: A geometric interpretation of PCA. The vectors ei constitute the “principal
axes” of the input distribution. The first principal component, e1, captures the
most amount of variance in the input distribution, and e2 captures what is left after
subtracting out the component along e1. The distribution with respect to e1 and e2 is
decorrelated (because there is no diagonal structure in this new reference frame). Note
that an underlying assumption of PCA is that the data have Gaussian structure—
i.e., that they fall in a distribution shaped like a football, as in a. If the data are not
Gaussian distributed, as in b, then PCA is not an appropriate strategy for revealing
the structure of the input ensemble.

Linear Hebbian learning

Hebb’s rule2 states that the synaptic weight between two neurons should be increased
proportional to the correlation between the pre-synaptic and post-synaptic activities.
Thus, for a linear neuron,

y =
∑
i

wixi , (3)

each weight wi should be increased proportional to the correlation between y and xi,
or

ẇi ∝ 〈y xi〉 . (4)

Now, since y depends on all the inputs, one can see intuitively from equation 4 that
the evolution of wi will depend on the correlation between xi and all the other inputs.
Let’s write this out explicitly, substituting the expression for y in equation 3 into
equation 4:

ẇi ∝ 〈
∑
j

wjxj xi〉

=
∑
j

wj〈xj xi〉 . (5)

The last step of moving wj outside of the ensemble average may be done since the wi
are changing over a much slower time-scale than the xi. In vector notion, then, we

2Named for Donald Hebb, who first described the idea in his influential book, The Organization
of Behavior, in 1949

3

have
ẇ = Cw (6)

where C is the matrix with elements cij = 〈xi xj〉. Equation 6 states that the growth
of w depends solely on the input covariance matrix, C. In other words, the evolution
of w is governed by the linear pairwise statistics of the input ensemble. But how
exactly?

To get a better handle on how w evolves, let us examine a simple one-dimensional
system of the form

ẇ = cw . (7)

This is just a linear, first-order differential equation. The solution is

w(t) = w(0) ec t (8)

where w(0) is the initial weight state at time zero. Thus, if c is positive then w will
grow exponentially. If c is negative, then w will decay exponentially. How fast w
grows or decays is set by the constant c.

Now let us examine a slightly more complex system consisting of two weights, w1

and w2:

ẇ1 = c11w1 + c12w2

ẇ2 = c21w1 + c22w2 . (9)

This is just a two-dimensional version of equation 6, written out explicitly in terms of
the vector and matrix components. It is difficult to see a simple solution here because
the evolution of w1 depends on w2, and likewise the evolution of w2 depends on w1.
In other words, the two variables are coupled together. If we could transform the wi
to a new coordinate system in which the variables were de-coupled, then the behavior
would be simple to analyze, as in equation 7. So, let’s do that.

An aside: Eigenvectors and eigenvalues
It turns out that if C is symmetric (which it is in this case since cij = 〈xixj〉 =

〈xjxi〉 = cji), then we can re-write it in the form

C = EΛET . (10)

Here, E is an orthonormal matrix with columns ei,

E =

 | | |
e1 e2 · · · en
| | |

 , (11)

where ei⊥ej ∀i 6=j and |ei| = 1 ∀i; ET is the transpose of E, which is just E tipped on
its side ((ET)ij = (E)ji); and Λ is a diagonal matrix with non-zero terms only along
the diagonal

Λ =

λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 · · · 0 λn

 . (12)

4

In geometric terms, E is a rotation matrix, Λ is a scaling matrix, and ET is simply
another rotation matrix that rotates in the opposite direction of E. Thus, the act of
multiplying a point or vector by the matrix C can thus be thought of as first rotating
to another coordinate frame (multiplying by ET), then scaling each axis according to
λi within this new coordinate frame (multiplying by Λ), and then rotating back to the
original coordinate frame (multiplying by E). This process is pictured in Figure 2.

� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

ET Λ E

C

Figure 2: The act of multiplying a point or vector by C may be broken into three
separate geometric operations—rotation, scaling, and counter-rotation—which is il-
lustrated here for a collection of points distributed according to a hypothetical dis-
tribution. Multiplying by ET rotates counter-clockwise in this case by about 30◦.
Multiplying by Λ scales the distribution by dilating along the horizontal axis (λ1 > 1)
and contracting along the vertical axis (λ2 < 1). Multiplying by E simply applies the
opposite rotation of ET .

The vectors ei, which form the columns of E, are called the eigenvectors of the
matrix C, and the λi are termed the eigenvalues. The eigenvectors have the special
property that if you multiply the matrix C by an eigenvector, then you get the same
vector back but simply scaled by its eigenvalue:

C ei = λi ei . (13)

Thus, the term “eigen,” which in German means “self” or “characteristic.” The
eigenvectors of C also constitute the principal components because, as we shall see,
they form an orthogonal basis that diagonalizes the covariance matrix, hence zeroing
out all pairwise correlations.

Now we are in a position to understand the dynamics of our simple two-dimensional
system in equation 9. Let us transform w to a new coordinate system by multiplying
by ET . That is, we shall work with a new vector,

v =

[
v1
v2

]
= ETw , (14)

where v1 is the projection of w along the first eigenvector, e1, and v2 is the projec-
tion of w along the second eigenvector, e2. Thus, if we pre-multiply both sides of
equation 6 by ET , we get

v̇ = Λv (15)

5

Now, since Λ is diagonal, it is easy to see how v evolves:

v̇1 = λ1v1

v̇2 = λ2v2 . (16)

Thus, we have as the solution for v1 and v2:

v1(t) = v1(0) eλ1t

v2(t) = v2(0) eλ2t . (17)

Because λ1 and λ2 represent exponential growth rates, then even a slight imbalance
between the two will result in one rapidly outpacing the other. Thus, if λ1 > λ2, then
v will grow in the direction [1, 0], which in terms of our original reference frame is
just in the direction of e1 (Fig. 3). Otherwise, if λ2 > λ1, then v will grow in the
direction [0, 1], which in terms of our original reference frame is in the direction of e2.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

W1’

W
2’

v1

v2

Figure 3: The evolution of v. In this case, λ1 = 2 and λ2 = 1, so the growth of
v1 rapidly outpaces v2. Since the v1 axis is simply the same as the vector e1 in the
original coordinate system, then w will grow in the direction of e1. The dotted line
shows the expected evolution of v if v1 and v2 were to grow at equal rates.

Constraining the growth of w: Oja’s rule
So far we have shown that a linear neuron that updates its weights according to

a simple Hebbian rule, ẇi ∝ 〈y xi〉, will grow its weight vector along the direction of
the eigenvector of the input covariance matrix, C, with maximum eigenvalue (or the
first principal component). As it stands, though, w will grow without bound (i.e.,
|w| → ∞), which is not feasible for a physically realizable system. We can constrain
the growth of w using a modified form of Hebb’s rule, termed Oja’s rule3:

ẇ = 〈y (x− yw)〉 . (18)

3Named for Erkki Oja (of the Helsinki University of Technology in Espoo, Finland), who invented
the rule.

6

Let’s get a better feel for what this rule does by re-writing it in two terms:

ẇ = 〈y x〉 − 〈y2〉w . (19)

The first term on the right side is just the same as Hebb’s rule—each wi increases
proportional to the correlation between y and xi. The second term may be interpreted
essentially as providing a subtractive weight decay to prevent w from growing without
bound. The equilibrium solution for w is reached when ẇ = 0, or when the first term
equals the second. Since the first term 〈y x〉 is just equal to Cw (as we showed in the
beginning, in eq. 6), then at equilibrium we have

Cw = 〈y2〉w . (20)

Thus, by definition (eq. 13), w will be an eigenvector of C at equilibrium. Further-
more, we can show that |w| = 1, since

〈y2〉 = wTCw

= wT 〈y2〉w
= 〈y2〉|w|2. (21)

Showing that w is the eigenvector with maximum eigenvalue is a little more involved
(see Hertz, Krogh, & Palmer), but can be seen intuitively from equation 18, since ẇ
is just the negative of the gradient of 〈|x− yw|2〉 with respect to w. In other words,
w is attempting to move in a direction that captures the most amount of variance in
the input distribution, which is the property of the first principal component.

The network implementation of Oja’s rule takes the output, y, and sends it back
through the weights w to form a prediction of the input state x̂. The prediction x̂ is
subtracted from the input x, and then w is updated according to a Hebb rule between
y and the residual input signal, x− x̂.

Learning multiple eigenvectors: Sanger’s rule
It would be nice to be able to learn more than just the first principal component.

If we had a system of m neurons, we would like to properly coordinate them so as to
learn the first m principal components. For this, we can use Sanger’s rule4:

ẇi = 〈yi (x−
∑
j≤i

yjwj)〉 . (22)

Sanger’s rule may be seen as an extension of Oja’s rule. First of all, we can see
that for i = 1, Sanger’s rule is precisely equivalent to Oja’s one-unit rule, since the
summation in equation 22 is over j ≤ 1. Thus, w1 will converge to the first principal
component as before, and its evolution will not be affected by the evolution of w2

through wm. Now for w2, let’s pretend that w1 has already converged to the first
eigenvector e1. So the learning rule for w2 is

ẇ2 = 〈y2 (x1 − y2w2)〉 , (23)

4Named for Terry Sanger, who invented it while as an E.E. Master’s student at MIT.

7

where x1 is what remains of x after subtracting out its component along the direction
of e1—i.e., x1 = x− y1e1. Thus, the learning rule for w2 is simply Oja’s rule applied
to a sub-space that is orthogonal to e1. w2 will therefore converge to the eigenvector
of this subspace with maximum eigenvalue, which is e2 within the original space.
This procedure is repeated then for w3 (subtracting out the component along e1 and
e2), and so on until m components are learned. A full-fledged, formal proof of the
convergence of Sanger’s rule may be found in Hertz, Krogh, & Palmer.

The network implementation of Sanger’s rule is not unlike the network implemen-
tation of Oja’s rule, except now care must be taken to subtract out the predicted
input for each yi in a progressive manner. The output of each neuron, yi, is fed back
through its weight vector, wi, and progressively accumulated to form a prediction
x̂i =

∑
j≤i ywi. This is subtracted from the input, x, and then wi is updated ac-

cording to a Hebb rule between yi and the residual, x − x̂i. Thus, each wi learns
from a different input ensemble, with progressively more structure subtracted out as
i increases. This ordered progression is a bit cumbersome in neurobiological terms.
However, it turns out that there is an extension of Oja’s one-unit rule to multiple
units that does not require this strict ordering. Sanger’s rule is just a bit simpler to
understand in terms of why and how it works.

Non-linear Hebbian learning

We were able to make headway in analyzing Hebbian learning with a linear neuron
because we could perform the manipulation in equation 5 and thus derive a closed
form solution for w. If the neuron has an output non-linearity, though, this won’t
be so easy. Let us say that the output y is an arbitrary non-linear function of the
weighted inputs:

y = f

(∑
i

wi xi

)
. (24)

Performing Hebbian learning with such a neuron then gives us

ẇi = 〈y xi〉

=

〈
f

∑
j

wjxj

 xi

〉
. (25)

Now, it is not so easy to pull the wj outside of the summation and analyze the
evolution of w. We could, however, perform a Taylor expansion on f , in which case we
would see that the evolution of w now depends on many higher-order statistics of the
input ensemble. Which statistics are learned from, however, depends on the precise
form of f . This then begs the question, what form of non-linearity is appropriate
for learning the structure of a given input ensemble? This question is addressed
by networks that perform competitive learning (or clustering), sparse coding, and
independent components analysis (ICA), which we turn to next.

8

