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Abstract

This handout describes recurrent neural networks that exhibit so-called “at-
tractor dynamics.” The principles governing these networks were first described
by John Hopfield in the early 1980’s, who showed that recurrent neural networks
with symmetric connections could be thought of as having basins of attraction.
Such networks serve as a useful physical metaphor for associative memory, and
they form the basis of many other models from perception (Marr-Poggio stereo
algorithm) to navigation (Zhang’s “neural compass”).

Up to now we have discussed information processing and learning primarily as it
occurs in feedforward networks, where information flows directly from one layer of
neurons to the next without feedback (Figure 1a).1 In the brain, the existence of
such network connectivity (such as between the retina and LGN) is rare, and what
is by far more common are networks with feedback (Figure 1b). Given the fact that
such recurrent networks are ubiquitous in the brain, it is important to understand
something about their behavior. Here we shall examine the behavior of networks with
feedback under certain simplifying assumptions.
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Figure 1: Feedforward (a) vs. recurrent (b) networks.

The type of network we shall is examine is where the neurons are connected
pairwise to each other, as shown below for a five neuron network. We shall use Vi to
denote the activity state of neuron i in the network, and Tij to denote the strength
of the connection from neuron j to neuron i. Each neuron can take on one of two

1The exception perhaps is the back-propagation algorithm, where error signals are fed backwards
through the network. But even here, such feedback signals are used only for learning and the do not
effect the activity state of the intermediate layers.
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Figure 2: A recurrent network with 5 neurons. All connections are two-way.

states, +1 or −1, and each neuron changes its state, Vi, according to the following
rule:

Vi → 1 if
∑
j 6=i

TijVj > 0

Vi → −1 if
∑
j 6=i

TijVj < 0 (1)

Thus, each neuron takes a weighted sum of the activities of other neurons in the
network, and flips positive or negative depending upon the current summed activity
received from other neurons in the network. If a unit changes state, then it will likely
change the state of other units in the network, which may in turn cause the same
unit to change state again. For example, let us consider the dynamics of the two
neuron network in Figure 3. For this simple network, you should be able to convince
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Figure 3: .

yourself without too much trouble that it will continually oscillate if the connections
are anti-symmetric, Tij = −Tji, while it will come to rest at the state +1, +1 or
−1,−1 if the connections are symmetric, Tij = Tji. However, for a network with five
units (or 5 million), such a straightforward intuitive analysis becomes impossible. In
order to know whether a network will ever settle into a state of equilibrium, and if so
how the choice of weights Tij affects the equilibrium state, we must invoke the notion
of an energy function that governs the dynamics of the network.
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Energy function

The idea of introducing an energy function to understand the dynamics of recurrent
networks is not unlike the way physicists use energy functions to understand the
dynamics of a physical system. Each state of activity in the network, V, is assigned
a corresponding energy, just like any state of particles in a physical system can be
thought of as possessing a combination of potential and kinetic energy at any point in
time. In our case though, the dynamics will be dissipative, meaning that the energy
will decrease with time. If the energy function we use to govern the dynamics of the
network has a lower bound, then we can show that the system will eventually come
to rest.

The energy function that Hopfield (1982) introduced to govern the dynamics of
pairwise recurrently connected networks, such as in Figure 2, is of the form

E = −1

2

∑
i

∑
j 6=i

TijViVj (2)

Intuitively, one can see here that the energy will be lowest (i.e., the sum on the
right will be highest) when the product of activities of each pair of units matches
the connection between them. For example, if Tij is positive, then the energy will
be lowest when Vi and Vj have the same sign. Importantly, the energy has a lower
bound, because the Vi are always just +1 or -1 and Tij is finite. Thus, if we can show
that the dynamics as specified in equation 1 always reduces the energy (or keeps it
the same), then the system will for sure come to a stop at some state.

If the connections are symmetric, i.e., Tij = Tji, then we can show that the
dynamics in (1) reduces the energy as follows. Let us consider the change in energy
induced by making a positive change in the value of a single unit Vk (i.e., by changing
it from -1 to +1, or keeping it the same), while keeping the values of all the other
units fixed. Thus, we have

∆E = Enew − Eold (3)

= −1

2

∑
i

∑
j 6=i

TijV
new
i V new

j +
1

2

∑
i

∑
j 6=i

TijV
old
i V old

j (4)

Now since only the kth unit is changing its value, the difference between Vnew and
Vold will be zero for all components except Vk. So, we need to separate out in the
sum the terms that depend on Vk and the ones that don’t

E = Ek + Eothers (5)

Ek = −1

2

∑
i6=k

TikViVk +
∑
j 6=k

TkjVkVj

 (6)

= −
∑
i6=k

TkiVkVi (7)

Eothers = −1

2

∑
i6=k

∑
j 6=i,k

TijViVj (8)
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where (7) follows from (6) since the connections are symmetric. Now since the Eothers

term will cancel when we take the difference between Enew and Eold, we are left only
with the difference due to Ek:

∆E = Enew
k − Eold

k (9)

= −
∑
i6=k

TkiV
new
k Vi +

∑
i6=k

TkiV
old
k Vi (10)

= −
∑
i6=k

Tki(V
new
k − V old

k )Vi (11)

= −∆Vk

∑
i6=k

TkiVi . (12)

Now let us consider what the last equation says in light of the dynamics in (1). If
the sum on the right is positive,

∑
i6=k TkiVi > 0, then equation 1 says that we should

flip Vk to the positive state (or if it is already positive then keep it the same). Thus,
∆Vk will be positive or zero. If the sum is positive, and ∆Vk is positive or zero,
then ∆E must necessarily be negative or zero. Vice versa when the sum is negative.
Therefore, if we let the network simply follow the dynamics as given in equation 1,
then the energy will always decrease until it has reached bottom, at which point the
system will come to equilibrium and the units will stop changing value.

Note that the critical assumption we needed to make here is that the connections
are symmetric, Tij = Tji. Without making this assumption then it is not possible
to show the system will have fixed points. In fact, for certain asymmetric weight
settings the system will follow a trajectory or sequence - i.e., V(1) → V(2) → V(3).
Such a system may be useful in motor control, or in other situations where it would
be useful to have specific activity sequences stored. For a network with symmetric
connections though, the dynamics will converge to so-called “basins of attraction,”
or fixed points where the system comes to rest. These networks have been used as
models of associative memory, in which the basins correspond to memories. If you
start the system in some state that is near one of the memories that has been formed
(for example, by providing only partial information, or a “key” on the inputs), then
the other information associated with that state will be recalled on the other units
of the network when the system comes to equilibrium. In order to make this system
work usefully as a memory though, we need some way of storing memories, or basins,
where we want them by appropriately setting the connection strengths Tij. This we
address next.

Setting the weights

Let us say there is a certain pattern, Vα, that we wish to store as a basin of attraction
in the network. One way of doing this is through the Hebbian prescription,

Tij = V α
i V α

j (13)

That is, if V α
i and V α

j have the same sign, then we set Tij positive, and if V α
i and V α

j

have opposite signs, then we set Tij negative. We can show that this state will now
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form a fixed point in the network dynamics, since the summed input for the ith unit
in response to an initial state Vβ will be

Ui =
∑
j 6=i

TijV
β
j (14)

=
∑
j 6=i

V α
i V α

j V β
j (15)

= V α
i

∑
j 6=i

V α
j V β

j (16)

So if Vα = Vβ then the sum (
∑

j 6=i(V
α
j )2) will be positive and Ui will have the same

sign as Vi, so Vi won’t change state and the network will thus stay put.
What if we want to store multiple memories? Then we will need to form multiple

basins of attraction at the states V1,V2,V3, etc. where we wish to put the memories.
This we can do in a similar fashion to the rule above via superposition:

Tij =
∑
α

V α
i V α

j (17)

in which case the sum in (16) becomes

Ui =
∑
α

V α
i

∑
j 6=i

V α
j V β

j . (18)

If the patterns we wish to store as memories have few elements in common, then the
cross-terms

∑
j 6=i V

α
j V β

j will tend to zero for α 6= β and Ui will still have the same sign
as Vi. But as we attempt to store more patterns in the network, then the similarity
between them will necessarily increase and memories will begin to degrade - i.e., the
system will no longer have its basins of attraction at the desired locations. Thus, the
system has a certain capacity, and for a Hopfield network (like we are discussing here)
it is about 15% of the number of neurons in the network. But if the patterns stored
as memories are similar to each other, then the capacity will be somewhat less. This
you will verify through simulation.
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