
Biol. Cybern. 64, 165-170 (1990) Biological
Cybernetics
�9 Springer-Verlag 1990

Forming sparse representations by local anti-Hebbian learning
P. F61diik

Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom

Received February 14, 1990/Accepted in revised form July 25, 1990

Abstract. How does the brain form a useful representa-
tion of its environment? It is shown here that a layer of
simple Hebbian units connected by modifiable anti-
Hebbian feed-back connections can learn to code a set
of patterns in such a way that statistical dependency
between the elements of the representation is reduced,
while information is preserved. The resulting code is
sparse, which is favourable if it is to be used as input to
a subsequent supervised associative layer. The opera-
tion of the network is demonstrated on two simple
problems.

1 Introduction

The brain receives a constantly changing array of sig-
nals from millions of receptor cells, but what we experi-
ence and what we are interested in are the objects in the
environment that these signals carry information about.
How do we make sense of a particular input when the
number of possible patterns is so large that we are very
unlikely to ever experience the same pattern twice? How
do we transform these high dimensional patterns into
symbolic representations that form an important part
of our internal model of the environment? According to
Barlow (1985) objects (and also features, concepts or
anything that deserves a name) are collections of highly
correlated properties. For instance, the properties
'furry', 'shorter than a metre', 'has tail', 'moves', 'ani-
mal', 'barks', etc. are highly correlated, i.e. the combi-
nation of these properties is much more frequent than it
would be if they were independent (the probability of
the conjunction is higher than the product of individual
probabilities of the component features). It is these
non-independent, redundant features, the 'suspicious
coincidences' that define objects, features, concepts,
categories, and these are what we should be detecting.
While components of objects can be highly correlated,
objects are relatively independent of one another. Sub-
patterns that are very highly correlated, e.g. the right-
and left-hand sides of faces, are usually not considered

as separate objects. Objects could therefore be defined
as conjunctions of highly correlated sets of components
that are relatively independent from other such con-
junctions. The goal of the sensory system might be to
detect these redundant features and to form a represen-
tation in which these redundancies are reduced and the
independent features and objects are represented expli-
citly (Barlow 1961, 1972; Watanabe 1960, 1958).

2 Unsupervised learning

Learning in general is the process of the formation of a
mapping from examples. Methods of supervised learn-
ing require either a 'teacher' that provides for each
input the desired output or a reinforcer that reports
whether the output generated was appropriate or not.
These methods usually require a very large number of
labelled examples. This is in sharp contrast with the
ability of animals and people to learn from single or a
relatively small number of examples, which can be a
great advantage as the number of labelled examples are
often severely restricted. An animal learning about a
poisonous food or a predator may have few learning
opportunities.

In many cases the complexity of the mapping to be
learnt is largely due to the complexity of the input. This
is especially true in problems involving perception; it is
much easier to learn a mapping from a suitable sym-
bolic representation of 'tiger' to 'run' than to map an
array of pixels to the symbolic representation. Unsuper-
vised methods can exploit the statistical regularities of
the input by using the large amount of readily available
unlabelled examples to learn a mapping from the raw
input to a more meaningful internal representation
(Barlow 1989).

3 The Hebb unit as suspicious coincidence detector

One of the simplest models of a cell is that of a unit
which takes a sum of its inputs (xj) weighted by the

166

connection strengths (qj), and gives a positive output
(y) when this sum exceeds a given value, its threshold
(t):

y = l if Eqjxj>t,
y = 0 otherwise.

Such a unit performs a simple kind of pattern
matching. If you think of the weights and the inputs as
binary patterns then the weighted sum is maximal when
the pattern matches the weight vector precisely. De-
pending on the value of the threshold, the unit will also
respond to patterns that differ from the weight vector
only in a small number of bits, so this unit can be said
to generalize up to a limiting Hamming distance.

This elementary pattern matcher can be made into a
suspicious coincidence detector by allowing the connec-
tions to change depending on its activity and that of
other units to which it is connected. According to a
modification rule proposed by Hebb (1949), a connec-
tion should become stronger if the two units that it
connects are active simultaneously (Aqj = xy). If on the
presentation of a pattern the unit fires, the weights from
the active inputs will be strengthened, so the unit will
respond to that pattern even better in the future. In this
way, the frequently occurring patterns or pattern com-
ponents are able to tune the weight vector closer to
themselves than the infrequent ones. To use several of
these units, a mechanism is needed to prevent them
from detecting the same feature. One method suggested
for the solution of this problem is competitive learning.

4 Competitive learning

Competitive learning (Malsburg 1973; Grossberg 1976)
in its simplest version (Rumelhart and Zipser 1985)
activates only the unit that fits the input pattern best by
selecting the one with the largest weighted sum and
suppressing the output of all other units. This can be
implemented by strong constant inhibitory connections
between the competing units. In this way, the units
divide the input space among themselves into disjoint
regions, giving a selectively finer discrimination in the
regions of space that are densely populated by pattern
vectors. The resulting local, 'grandmother-cell' repre-
sentation can be used by a subsequent supervised layer
to associate outputs in a single trial by simply turning
on the connections from the winner unit to the active
output units. This kind of storage, however, is very
limited in the number of discriminable input states that
it can code, as well as in its ability to generalize. An
output associated to a particular competitive unit gets
activated only when the input pattern is within a certain
Hamming distance from the weight vector of the unit.

5 Sparse coding

It would be much more desirable to code each input
state by a set of active units, each unit representing one

component, property or facet of the pattern. Since the
combinatorial use of units results in a significant in-
crease in the number of discriminable states, the repre-
sentational capacity of such a distributed code is high.
Distributed representations also give rise to desirable
effects like generalisation between overlapping patterns,
noise and damage resistance.

On the other hand, when a large number of units
are active for each input pattern, the mapping to be
implemented by a subsequent layer becomes more com-
plicated and harder to implement by simple neuron-like
units. The capacity of an associative memory network,
i.e. the number of input-output pairs that can be stored
using a highly distributed representation is significantly
lower than optimal (Willshaw et al. 1969; Palm 1980).
Even more importantly, learning may become ex-
tremely slow, and the rules for adjusting connections
become complicated and hard to implement (e.g.
Rumelhart et al. 1986).

The advantages of both local and distributed repre-
sentations can be combined by sparse coding, which is
a compromise between local and completely distributed
representations. In a sparse code, the input patterns are
represented by the activity in a small proportion of the
available units. By choosing this proportion, one can
control the trade-off between representational capacity
and memory capacity, as well as that between the
amount of generalization and the complexity of the
subsequent output function.

As competitive learning is an unsupervised method
of forming a local representation, the following mecha-
nism may be considered for coding inputs into a sparse
representation.

6 Decorrelation

The mechanism proposed here is one which is aimed at
finding a representation in terms of features of compo-
nents that satisfy the aims stated in Sect. 1. In this
model, units within a layer are connected by modifiable
inhibitory weights. The development of these feedback
weights are governed by an 'anti-Hebbian' modification
rule: whenever two units in the layer are active simulta-
neously, the connection between them becomes more
inhibitory, so that joint activity is discouraged in the
future and their correlation is decreased (Kohonen
1984; Barlow and Frldifik 1989). Training can go on
until correlations between the units are completely re-
moved or decreased below a fixed level. In contrast with
the 'winner-take-all' mechanism implemented by the
strong and fixed inhibitory connections in competitive
learning, these modifiable connections allow more than
one unit to be active for each pattern, representing it by
statistically uncorrelated or not highly correlated set of
features.

In a hypothetical problem of coding cars of differ-
ent colour, the competitive learning scheme would re-
quire a separate unit to code each combination of car
type and colour (e.g. 'yellow Volkswagen detector'
(Harris 1980)), while if car types and colours are not

significantly correlated, the above scheme could learn to
code colour and type on separate sets of units, and to
represent a particular car as a combination of activity in
those units (a 'yellow' and a 'Volkswagen' unit). Gener-
alization may then occur specifically along one feature or
aspect of the input. An output correlated only with
'Volkswagen' would get connected to the unit in the
'type' group, and it could generalise to other colours
even when it has a large Hamming distance from the
original.

7 Combination of Hebbian and anti-Hebbian
mechanisms

In the following network, the detection of suspicious
coincidences is performed by conventional Hebbian
feed-forward weights, but units are connected by anti-
Hebbian inhibitory feedback connections (Fig. 1). For
linear units, this arrangement has been shown to per-
form principal component analysis by projecting into the
subspace of the eigenvectors corresponding to the n
largest eigenvalues of the covariance matrix of the input
(Frldifik 1989).' The model discussed here has similar
architecture, but units here are nonlinear, so it can learn
not only about the second-order statistics, i.e. pairwise
correlations between input elements, but also about
higher-order dependencies and features of the input.

In order to achieve sparse coding, an additional
mechanism is assumed: each unit tries to keep its prob-
ability of firing close to a fixed value by adjusting its
own threshold. A unit that has been inactive for a long
time gradually lowers its threshold (i.e~ decreases its
selectivity), while a frequently active unit gradually
becomes more selective by raising its threshold.

The network has m inputs: xy,j = 1 . . . m, and n
representation units: Yi, i = 1 . . . n. Because of the feed-
back and the nonlinearity of the units, the output
cannot be calculated in a single step as in the case of
one unit, because the final output here is influenced by
the feedback from the other units. Provided that the
feedback is symmetric (wij = wji), the network is guar-
anteed to settle into a stable state after an initial
transient (Hopfield 1982). This transient was simulated
by numerically solving the following differential equa-
tion for each input pattern:

dY*dt = f ~ i qiyxj+ j=~l w~y* - t i) - y*

where q,j is the weight of the connection from xy to
y~, w U is the connection between units y, and yj and the
nonlinearity of the units is represented by the function
f(u) = 1/(1 +exp(-Au)) . The outputs are then calcu-
lated by rounding the values of y* in the stable state to
0 or 1 (Yi = 1 if y* > .5, y~ = 0 otherwise). The feedfor-
ward weights are initially random, 2 and the feedback
weights are 0.

' A similar but asymmetrically connected network has also been
proposed for this purpose by Rubner and Sehulten (1990)
2 Selected from a uniform distribution on [0, 1] and normalised to
unit length (Y-jq~ = 1)

167

x 1

x 2

x m

Yl

Y2

Yn

Fig. 1. The architecture of the proposed network. Empty circles
are Hebbian excitatory, flied circles are anti-Hebbian inhibitory
connections

On each learning trial, after the output has been
calculated, the connections and thresholds are modified
according to the following rules:

anti-Hebbian rule-

Aw iy = - ot(yiyj - p2)

(if i = j or w;j > 0 then w # : = 0)

Hebbian rule-

Aq# = flYi (xj - qij)

threshold modification-

Ati = Y(Yi - P) .

Here ct, fl and T are small positive constants and p is
the specified bit probability. The Hebbian rule contains
a weight decay term in order to keep the feed-forward
weight vectors bounded. The anti-Hebbian rule is inher-
ently stable so no such normalizing term is necessary.
Note that these rules only contain terms related to the
units that the weight connect, so all the information
necessary for the modification is available locally at the
site of the connection.

In the next two sections some aspects of the model
will be demonstrated on two simple, artificially gener-
ated distributions.

8 Example 1: learning fines

Patterns consisting of random horizontal and vertical
lines were presented to the network. This example was
chosen for comparison with that given by Rumelhart
and Zipser (1985) to demonstrate competitive learning.

momon m mo
Fig. 2. A random sample of the patterns presented to the network in
Example 1

168

i l m m j l m m m m m a D m m B / 0

/ | | m m m m / u m m N m l | | , 0 0

uunlmm mmmlmmmlmm nnmummmim . o o / l i m P -
l nl l l ail m l l I I m Hi I i [I l I i m 12oo "[l I L
Fig. 3. The feedforward connections o f the 16 output units as a function o f learning trials in Example 1. a = 0.1, fl = y = 0.02, 2 = 10, p = 1/8.
Thresholds were allowed to reach stable values by running the network with ct = fl = 0, 7 = 0.1 for 100 cycles before training

The important difference is that the patterns here con-
sist of combinations of lines. On an 8 x 8 grid, each of
the 16 possible lines are drawn with a fixed probability
(1/8) independently from all the others (Fig. 2). Pixels
that are part of a drawn line have the value 1, all others
are 0. The network has 16 representation units.

The feedforward connections developed so that the
units became detectors of the most common, highly
correlated components, the suspicious coincidences of
the set: lines (Fig. 3). Patterns consisting of combina-
tions of lines were coded by a combination of activity in
the units. The code generated in this example is optimal
in the sense that it preserves all the information in the
input, and all the redundancy is removed by the net-
work as the outputs are statistically independent. Of
course this is only the case because of the simplicity of
the artificial distribution and the fact that the network
size was well matched to the number of components
(line positions) in the input.

Example 2: learning the alphabet

A slightly more realistic example is considered in this
section where the statistical structure of the input is
more complicated. This example was chosen for com-
parison with that presented by Barlow et al. (1989)
where methods were considered for uniquely assigning
binary strings of a fixed length to a set of probabilities
so as to minimise the higher order redundancy of the
strings. I f ,4:. is the probability of string j, b# denotes the
ith bit of the code for the j t h string and the probability
of the ith bit being 1 is p;, then higher order redun-
dancy can be defined as (Barlow et al. 1989):

R = [e(A, b) --E(A)]/E(A),

where

e(A, b) -- - ~ [p, log Pi + (I - Pl)log(I - p,.)]
i

is the sum of the individual entropies of the bits of the
string, and

Era) = -y. aj log Aj
J

is the entropy of the set of strings. The sum of the bit
entropies is never smaller than the entropy of the

Table 1. The code generated by the network
after the presentation o f 8000 letters. The
rows indicate the output o f the 16 units for
the input patterns indicated on the right-
hand side (~, =0.01, /~=0.001, y = 0 . 0 1 ,
2 = 10, p = 0 . I)

network input
output patterns

OCOOCO000~O00~ (space)
0000010010000(0 e
1 ~ t
0 0 0 0 1 ~ i
0 1 0 0 0 1 ~ o
0000000010000000 a
0001000000000001 n
~ 1 0 s
ooOOOlOO~OOOOOO r(- " x
0001000000000000 h m
00001 l ~ 1 T [
0000000000 I00000 c
0001000000001000 u
0001011000000000 d
1000010000100000 f
0100010000010000 b
01100000000000~ p
0001010010000000 g
00000001000001 O0 y
0011010000000100 w
0000000000001000 v
0000000000~1100
0010000000001000 �9 1 C G
0001010000000000 N H
0000010000010000 k B R F
0010010000001000 I 4 l
0000001101000000 x
0001000010001000 q
0010011000000000) W
0000011100000000 V
0000001100010000 P
0000011000001000 S 8
0 0 1 ~ A : <
0000000000000100 ;
0010001000001000 2
0000011000011000 O 0 Q U 9
00100100000000~ j / ' = > %
0010010000010000 E K
0000010000011000 D 6
0011010000000000 M
0010000000011000 L
0010000001000000 z
000001 I000000000 3 5
0000010000000100 + [
oooooolooooooooo ?
0010011100000000 #
0010000100000000 7
0010011000001000 J

| | | | | g | l | R | | D | l | 0

g | H | H i H R H R | | H H B | , 0 0 0

g | | | g | l i l | | H | l l i l | | ooo

H | H R H R B I B H R R R R H |
Fig. 4. The receptive fields of the units as
to settle as in Example 1

169

16000

a function of the number of letters presented to the network in Example 2. Thresholds were allowed

Table 2. Some properties of the code in Example 2

input output

number of units 120 (8 x 15) 16
entropy (E) 4.34 bits 4.22 bits

(97% of input)
sum of bit entropies (e) 24.14 bits 5.86 bits
redundancy (R) 456% 39%
bit probabilities high low
type of representation distributed sparse

strings, and they are equal only when the bits are
independent.

The input patterns in this example consist of images
of letters presented in a fixed position on an 8 x 15
raster. During training, letters were presented in ran-
dom order with the same probabilities as they appeared
in a piece of English text)

Due to the prescribed bit probability (p), the result-
ing output patterns contain only a small number of l's
(Table 1). Frequent letters tend to have fewer active
bits than infrequent ones, as otherwise the correlations
introduced by the frequent simultaneous firing of a
large number of cells would force the decorrelating
connections to increase inhibition between the active
units. Another feature of the code, which is not due to
an explicit constraint, is that no two frequent letters are
assigned the same output, so that while the code is not
completely reversible, it preserved a large proportion
(97%) of the information present in the input (Table
2). This is significantly better than the amount of
information retained by an untrained random network,
which in this example is less than 50%.

A property of the code, which is important from the
point of view of generalization, is its smoothness, i.e.
that similar input patterns tend to get mapped to
similar output patterns (as in the case of letter e and o
and even in the confusion of O, 0, Q, U and 9 in Table
1).

The receptive fields of the units reflect the properties
of the code. Some of the units detect one of the most

3 Input vectors were constructed from the standard system font of a
Sun-3 workstation and vectors were normalized to unit length. The
same letter frequencies were used as in Barlow et al. (1989)

frequent letters and become highly selective, while
many other units are less selective and their receptive
fields consist of different combinations of features in the
input patterns (Fig. 4).

10 Discussion

In both examples the network implemented a smooth,
information preserving, redundancy reducing transfor-
mation of the distributed input patterns into an approx-
imately uncorrelated, sparse activity of units.

What implications does such a code have for gener-
alization in a subsequent supervised layer? It can be
observed in both examples that frequent patterns tend
to get coded into the activity of a smaller number of
units then the infrequent ones. Generalisation therefore
works best for infrequent, 'unknown' patterns that are
represented as sets of more frequent, 'known' compo-
nents. For more frequent patterns, the representation
tends to be more localized, so output patterns can be
associated to them more specifically, without interfer-
ence from other associations.

Unlike in the case of a linear network, it may be
useful to consider a hierarchical arrangement of such
subnetworks, each layer extracting different forms of
redundancy present in the environment. Such a simple
model, of course, does not answer our original question
about how a meaningful representation of the world is
created in the brain, as it ignores most of the known
facts about the genetically determined properties and
anatomical constraints of the brain, but it demonstrates
one of the possible principles that may underlie the
largely unexplained function of the sensory system.

Acknowledgements. I would like to thank Prof. H. B. Baflow for his
comments on earlier versions of this paper as well as Dr. G. J.
Mitchinson and others in Cambridge for useful discussions. This
work was supported by an Overseas Research Studentship, a research
studentship from Churchill College, Cambridge and SERC grants
GR/FA3003 and GR/F34152.

References

Barlow HB (1961) Possible principles underlying the transformations
of sensory messages. In: Rosenblith WA (ed) Sensory communi-
cation, MIT Press, Cambridge (Mass) London, pp 217-234

170

Barlow HB (1972) Single units and sensation: a neuron doctrine for
perceptual psychology? Perception 1:371-394

Barlow HB (1985) Cerebral cortex as model builder. In: Rose D,
Dobson VG (eds) Models of the visual cortex. Wiley, Chichester,
pp 37-46

Barlow HB (1989) Unsupervised learning. Neural Comput 1:295-311
Barlow HB, F61di~k P (1989) Adaptation and decorrelation in the

cortex. In: Durbin RaM, MiaU C, Mitchison GJ (eds) The com-
puting neuron, chap 4, Addison-Wesley, Wokingham, pp 54-72

Barlow HB, Kaushal TP, Mitchison GJ (1989) Finding minimum
entropy codes. Neural Comput 1:412-423

Ffldi~k P (1989) Adaptive network for optimal linear feature extrac-
tion. Proceedings of the IEEE/INNS International Joint Confer-
ence on Neural Networks, Washington D.C., June 18-22, 1989,
vol. 1. IEEE Press, New York, pp 401-405

Grossberg S (1976) Adaptive pattern classification and universal
recoding. I. Parallel development and coding of neural feature
detectors. Biol Cybern 23:121-134

Harris CS (1980) Insight or out of sight?: Two examples of perceptual
plasticity in the human adult. In: Harris CS (ed) Visual coding
and adaptability. Erlbaum, HiUsdale, NJ

Hebb DO (1949) The organization of behaviour. Wiley, New York

Hopfield JJ (1982) Neural networks and physical systems with emer-
gent collective computational abilities. Proc Natl Acad Sci USA
79:2554-2558

Kohonen T (1984) Self-organization and associative memory.
Springer, Berfin Heidelberg New York

Malsburg Ch yon der (1973) Self-organization of orientation sensitive
cells in the striate cortex. Kybernetik 14:85-100

Palm G (1980) On associative memory. Biol Cybern 36:19-31
Rubner J, Schulten K (1990) Development of feature detectors by

self-organization. Biol Cybern 62:13-199
RumeLhart DE, Zipser D (1985) Feature discovery by competitive

learning. Cogn Sci 9:75-112
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal

representations by error propagation. In: Rumelhart DE, Mc-
CleUand J (eds) Parallel distributed processing, vol 1. MIT Press,
Cambridge Mass London, pp 318-362

Watanabe S (1960) Information-theoretical aspects of inductive and
deductive inference. IBM J Res Dev 4:208-231

Watanabe S (1985) Pattern recognition: human and mechanical.
Wiley, New York

Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) Non-holo-
graphic associative memory. Nature 222:960-962

