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Abstract. How does the brain form a useful representa- 
tion of its environment? It is shown here that a layer of 
simple Hebbian units connected by modifiable anti- 
Hebbian feed-back connections can learn to code a set 
of patterns in such a way that statistical dependency 
between the elements of the representation is reduced, 
while information is preserved. The resulting code is 
sparse, which is favourable if it is to be used as input to 
a subsequent supervised associative layer. The opera- 
tion of the network is demonstrated on two simple 
problems. 

1 Introduction 

The brain receives a constantly changing array of sig- 
nals from millions of receptor cells, but what we experi- 
ence and what we are interested in are the objects in the 
environment that these signals carry information about. 
How do we make sense of a particular input when the 
number of possible patterns is so large that we are very 
unlikely to ever experience the same pattern twice? How 
do we transform these high dimensional patterns into 
symbolic representations that form an important part 
of our internal model of the environment? According to 
Barlow (1985) objects (and also features, concepts or 
anything that deserves a name) are collections of highly 
correlated properties. For instance, the properties 
'furry', 'shorter than a metre', 'has tail', 'moves', 'ani- 
mal', 'barks', etc. are highly correlated, i.e. the combi- 
nation of these properties is much more frequent than it 
would be if they were independent (the probability of 
the conjunction is higher than the product of individual 
probabilities of the component features). It is these 
non-independent, redundant features, the 'suspicious 
coincidences' that define objects, features, concepts, 
categories, and these are what we should be detecting. 
While components of objects can be highly correlated, 
objects are relatively independent of one another. Sub- 
patterns that are very highly correlated, e.g. the right- 
and left-hand sides of faces, are usually not considered 

as separate objects. Objects could therefore be defined 
as conjunctions of highly correlated sets of components 
that are relatively independent from other such con- 
junctions. The goal of the sensory system might be to 
detect these redundant features and to form a represen- 
tation in which these redundancies are reduced and the 
independent features and objects are represented expli- 
citly (Barlow 1961, 1972; Watanabe 1960, 1958). 

2 Unsupervised learning 

Learning in general is the process of the formation of a 
mapping from examples. Methods of supervised learn- 
ing require either a 'teacher' that provides for each 
input the desired output or a reinforcer that reports 
whether the output generated was appropriate or not. 
These methods usually require a very large number of 
labelled examples. This is in sharp contrast with the 
ability of animals and people to learn from single or a 
relatively small number of examples, which can be a 
great advantage as the number of labelled examples are 
often severely restricted. An animal learning about a 
poisonous food or a predator may have few learning 
opportunities. 

In many cases the complexity of the mapping to be 
learnt is largely due to the complexity of the input. This 
is especially true in problems involving perception; it is 
much easier to learn a mapping from a suitable sym- 
bolic representation of 'tiger' to 'run' than to map an 
array of pixels to the symbolic representation. Unsuper- 
vised methods can exploit the statistical regularities of 
the input by using the large amount of readily available 
unlabelled examples to learn a mapping from the raw 
input to a more meaningful internal representation 
(Barlow 1989). 

3 The Hebb unit as suspicious coincidence detector 

One of the simplest models of a cell is that of a unit 
which takes a sum of its inputs (xj) weighted by the 



166 

connection strengths (qj), and gives a positive output 
(y) when this sum exceeds a given value, its threshold 
(t): 

y = l  if Eqjxj>t, 
y = 0 otherwise. 

Such a unit performs a simple kind of pattern 
matching. If you think of the weights and the inputs as 
binary patterns then the weighted sum is maximal when 
the pattern matches the weight vector precisely. De- 
pending on the value of the threshold, the unit will also 
respond to patterns that differ from the weight vector 
only in a small number of bits, so this unit can be said 
to generalize up to a limiting Hamming distance. 

This elementary pattern matcher can be made into a 
suspicious coincidence detector by allowing the connec- 
tions to change depending on its activity and that of 
other units to which it is connected. According to a 
modification rule proposed by Hebb (1949), a connec- 
tion should become stronger if the two units that it 
connects are active simultaneously (Aqj = xy). If on the 
presentation of a pattern the unit fires, the weights from 
the active inputs will be strengthened, so the unit will 
respond to that pattern even better in the future. In this 
way, the frequently occurring patterns or pattern com- 
ponents are able to tune the weight vector closer to 
themselves than the infrequent ones. To use several of 
these units, a mechanism is needed to prevent them 
from detecting the same feature. One method suggested 
for the solution of this problem is competitive learning. 

4 Competitive learning 

Competitive learning (Malsburg 1973; Grossberg 1976) 
in its simplest version (Rumelhart and Zipser 1985) 
activates only the unit that fits the input pattern best by 
selecting the one with the largest weighted sum and 
suppressing the output of all other units. This can be 
implemented by strong constant inhibitory connections 
between the competing units. In this way, the units 
divide the input space among themselves into disjoint 
regions, giving a selectively finer discrimination in the 
regions of space that are densely populated by pattern 
vectors. The resulting local, 'grandmother-cell' repre- 
sentation can be used by a subsequent supervised layer 
to associate outputs in a single trial by simply turning 
on the connections from the winner unit to the active 
output units. This kind of storage, however, is very 
limited in the number of discriminable input states that 
it can code, as well as in its ability to generalize. An 
output associated to a particular competitive unit gets 
activated only when the input pattern is within a certain 
Hamming distance from the weight vector of the unit. 

5 Sparse coding 

It would be much more desirable to code each input 
state by a set of active units, each unit representing one 

component, property or facet of the pattern. Since the 
combinatorial use of units results in a significant in- 
crease in the number of discriminable states, the repre- 
sentational capacity of such a distributed code is high. 
Distributed representations also give rise to desirable 
effects like generalisation between overlapping patterns, 
noise and damage resistance. 

On the other hand, when a large number of units 
are active for each input pattern, the mapping to be 
implemented by a subsequent layer becomes more com- 
plicated and harder to implement by simple neuron-like 
units. The capacity of an associative memory network, 
i.e. the number of input-output pairs that can be stored 
using a highly distributed representation is significantly 
lower than optimal (Willshaw et al. 1969; Palm 1980). 
Even more importantly, learning may become ex- 
tremely slow, and the rules for adjusting connections 
become complicated and hard to implement (e.g. 
Rumelhart et al. 1986). 

The advantages of both local and distributed repre- 
sentations can be combined by sparse coding, which is 
a compromise between local and completely distributed 
representations. In a sparse code, the input patterns are 
represented by the activity in a small proportion of the 
available units. By choosing this proportion, one can 
control the trade-off between representational capacity 
and memory capacity, as well as that between the 
amount of generalization and the complexity of the 
subsequent output function. 

As competitive learning is an unsupervised method 
of forming a local representation, the following mecha- 
nism may be considered for coding inputs into a sparse 
representation. 

6 Decorrelation 

The mechanism proposed here is one which is aimed at 
finding a representation in terms of features of compo- 
nents that satisfy the aims stated in Sect. 1. In this 
model, units within a layer are connected by modifiable 
inhibitory weights. The development of these feedback 
weights are governed by an 'anti-Hebbian' modification 
rule: whenever two units in the layer are active simulta- 
neously, the connection between them becomes more 
inhibitory, so that joint activity is discouraged in the 
future and their correlation is decreased (Kohonen 
1984; Barlow and Frldifik 1989). Training can go on 
until correlations between the units are completely re- 
moved or decreased below a fixed level. In contrast with 
the 'winner-take-all' mechanism implemented by the 
strong and fixed inhibitory connections in competitive 
learning, these modifiable connections allow more than 
one unit to be active for each pattern, representing it by 
statistically uncorrelated or not highly correlated set of 
features. 

In a hypothetical problem of coding cars of differ- 
ent colour, the competitive learning scheme would re- 
quire a separate unit to code each combination of car 
type and colour (e.g. 'yellow Volkswagen detector' 
(Harris 1980)), while if car types and colours are not 



significantly correlated, the above scheme could learn to 
code colour and type on separate sets of units, and to 
represent a particular car as a combination of activity in 
those units (a 'yellow' and a 'Volkswagen' unit). Gener- 
alization may then occur specifically along one feature or 
aspect of the input. An output correlated only with 
'Volkswagen' would get connected to the unit in the 
'type' group, and it could generalise to other colours 
even when it has a large Hamming distance from the 
original. 

7 Combination of  Hebbian and anti-Hebbian 
mechanisms 

In the following network, the detection of suspicious 
coincidences is performed by conventional Hebbian 
feed-forward weights, but units are connected by anti- 
Hebbian inhibitory feedback connections (Fig. 1). For 
linear units, this arrangement has been shown to per- 
form principal component analysis by projecting into the 
subspace of the eigenvectors corresponding to the n 
largest eigenvalues of the covariance matrix of the input 
(Frldifik 1989).' The model discussed here has similar 
architecture, but units here are nonlinear, so it can learn 
not only about the second-order statistics, i.e. pairwise 
correlations between input elements, but also about 
higher-order dependencies and features of the input. 

In order to achieve sparse coding, an additional 
mechanism is assumed: each unit tries to keep its prob- 
ability of firing close to a fixed value by adjusting its 
own threshold. A unit that has been inactive for a long 
time gradually lowers its threshold (i.e~ decreases its 
selectivity), while a frequently active unit gradually 
becomes more selective by raising its threshold. 

The network has m inputs: xy,j = 1 . . .  m, and n 
representation units: Yi, i = 1 . . .  n. Because of the feed- 
back and the nonlinearity of the units, the output 
cannot be calculated in a single step as in the case of 
one unit, because the final output here is influenced by 
the feedback from the other units. Provided that the 
feedback is symmetric (wij = wji), the network is guar- 
anteed to settle into a stable state after an initial 
transient (Hopfield 1982). This transient was simulated 
by numerically solving the following differential equa- 
tion for each input pattern: 

dY*dt = f ~ i  qiyxj+ j=~l w~y* - t i ) -  y* 

where q,j is the weight of the connection from xy to 
y~, w U is the connection between units y, and yj and the 
nonlinearity of the units is represented by the function 
f(u) = 1/(1 +exp(-Au)) .  The outputs are then calcu- 
lated by rounding the values of y* in the stable state to 
0 or 1 (Yi = 1 if y* > .5, y~ = 0 otherwise). The feedfor- 
ward weights are initially random, 2 and the feedback 
weights are 0. 

' A similar but asymmetrically connected network has also been 
proposed for this purpose by Rubner and Sehulten (1990) 
2 Selected from a uniform distribution on [0, 1] and normalised to 
unit length (Y-jq~ = 1) 
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Fig. 1. The architecture of the proposed network. Empty circles 
are Hebbian excitatory, flied circles are anti-Hebbian inhibitory 
connections 

On each learning trial, after the output has been 
calculated, the connections and thresholds are modified 
according to the following rules: 

anti-Hebbian rule-  

Aw iy = - ot( yiyj - p2) 

(if i = j  or w;j > 0 then w # : = 0 )  

Hebbian rule-  

Aq# = flYi (xj - qij) 

threshold modification- 

Ati = Y( Yi - P) . 

Here ct, fl and T are small positive constants and p is 
the specified bit probability. The Hebbian rule contains 
a weight decay term in order to keep the feed-forward 
weight vectors bounded. The anti-Hebbian rule is inher- 
ently stable so no such normalizing term is necessary. 
Note that these rules only contain terms related to the 
units that the weight connect, so all the information 
necessary for the modification is available locally at the 
site of the connection. 

In the next two sections some aspects of the model 
will be demonstrated on two simple, artificially gener- 
ated distributions. 

8 Example  1: learning fines 

Patterns consisting of random horizontal and vertical 
lines were presented to the network. This example was 
chosen for comparison with that given by Rumelhart 
and Zipser (1985) to demonstrate competitive learning. 

momon  m mo 
Fig. 2. A random sample of the patterns presented to the network in 
Example 1 
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Fig. 3. The feedforward connections o f  the 16 output  units as a function o f  learning trials in Example 1. a = 0.1, fl = y = 0.02, 2 = 10, p = 1/8. 
Thresholds were allowed to reach stable values by running the network with ct = fl = 0, 7 = 0.1 for 100 cycles before training 

The important difference is that the patterns here con- 
sist of combinations of lines. On an 8 x 8 grid, each of 
the 16 possible lines are drawn with a fixed probability 
(1/8) independently from all the others (Fig. 2). Pixels 
that are part of  a drawn line have the value 1, all others 
are 0. The network has 16 representation units. 

The feedforward connections developed so that the 
units became detectors of the most common, highly 
correlated components, the suspicious coincidences of  
the set: lines (Fig. 3). Patterns consisting of combina- 
tions of  lines were coded by a combination of activity in 
the units. The code generated in this example is optimal 
in the sense that it preserves all the information in the 
input, and all the redundancy is removed by the net- 
work as the outputs are statistically independent. Of 
course this is only the case because of  the simplicity of 
the artificial distribution and the fact that the network 
size was well matched to the number of components 
(line positions) in the input. 

Example 2: learning the alphabet 

A slightly more realistic example is considered in this 
section where the statistical structure of the input is 
more complicated. This example was chosen for com- 
parison with that presented by Barlow et al. (1989) 
where methods were considered for uniquely assigning 
binary strings of  a fixed length to a set of probabilities 
so as to minimise the higher order redundancy of the 
strings. I f  ,4:. is the probability of  string j, b# denotes the 
ith bit of  the code for the j t h  string and the probability 
of the ith bit being 1 is p;, then higher order redun- 
dancy can be defined as (Barlow et al. 1989): 

R = [e(A, b) --E(A)]/E(A), 

where 

e(A, b) -- - ~ [p, log Pi + ( I - Pl )log( I - p,.)] 
i 

is the sum of the individual entropies of the bits of the 
string, and 

Era) = -y. aj log Aj 
J 

is the entropy of  the set of strings. The sum of the bit 
entropies is never smaller than the entropy of  the 

Table 1. The code generated by the network 
after the presentation o f  8000 letters. The 
rows indicate the output  o f  the 16 units for 
the input patterns indicated on the right- 
hand side (~, =0.01,  /~=0.001,  y = 0 . 0 1 ,  
2 = 10, p = 0 . I )  

network input 
output  patterns 

OCOOCO000~O00~ (space) 
0000010010000(0  e 
1 ~  t 
0 0 0 0 1 ~  i 
0 1 0 0 0 1 ~  o 
0000000010000000 a 
0001000000000001 n 
~ 1 0  s 
ooOOOlOO~OOOOOO r( - " x 
0001000000000000 h m 
00001 l ~  1 T [  
0000000000 I00000 c 
0001000000001000 u 
0001011000000000 d 
1000010000100000 f 
0100010000010000 b 
01100000000000~ p 
0001010010000000 g 
00000001000001 O0 y 
0011010000000100 w 
0000000000001000 v 
0000000000~1100 
0010000000001000 �9 1 C G 
0001010000000000 N H 
0000010000010000 k B R F 
0010010000001000 I 4 l 
0000001101000000 x 
0001000010001000 q 
0010011000000000 ) W 
0000011100000000 V 
0000001100010000 P 
0000011000001000 S 8 
0 0 1 ~  A : < 
0000000000000100 ; 
0010001000001000 2 
0000011000011000 O 0 Q U 9 
00100100000000~ j / ' = > % 
0010010000010000 E K 
0000010000011000 D 6 
0011010000000000 M 
0010000000011000 L 
0010000001000000 z 
000001 I000000000 3 5 
0000010000000100 + [ 
oooooolooooooooo ? 
0010011100000000 # 
0010000100000000 7 
0010011000001000 J 



| | | | | g | l | R | | D | l |  0 

g | H | H i H R H R | | H H B |  , 0 0 0  

g | | | g | l i l | | H | l l i l | |   ooo 

H | H R H R B I B H R R R R H |  
Fig. 4. The receptive fields of the units as 
to settle as in Example 1 
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a function of the number of letters presented to the network in Example 2. Thresholds were allowed 

Table  2. Some properties of the code in Example 2 

input output 

number of units 120 (8 x 15) 16 
entropy (E) 4.34 bits 4.22 bits 

(97% of input) 
sum of bit entropies (e) 24.14 bits 5.86 bits 
redundancy (R) 456% 39% 
bit probabilities high low 
type of representation distributed sparse 

strings, and they are equal only when the bits are 
independent. 

The input patterns in this example consist of images 
of letters presented in a fixed position on an 8 x 15 
raster. During training, letters were presented in ran- 
dom order with the same probabilities as they appeared 
in a piece of English text) 

Due to the prescribed bit probability (p), the result- 
ing output patterns contain only a small number of l's 
(Table 1). Frequent letters tend to have fewer active 
bits than infrequent ones, as otherwise the correlations 
introduced by the frequent simultaneous firing of a 
large number of cells would force the decorrelating 
connections to increase inhibition between the active 
units. Another feature of the code, which is not due to 
an explicit constraint, is that no two frequent letters are 
assigned the same output, so that while the code is not 
completely reversible, it preserved a large proportion 
(97%) of the information present in the input (Table 
2). This is significantly better than the amount of 
information retained by an untrained random network, 
which in this example is less than 50%. 

A property of the code, which is important from the 
point of view of generalization, is its smoothness, i.e. 
that similar input patterns tend to get mapped to 
similar output patterns (as in the case of letter e and o 
and even in the confusion of O, 0, Q, U and 9 in Table 
1). 

The receptive fields of the units reflect the properties 
of the code. Some of the units detect one of the most 

3 Input vectors were constructed from the standard system font of a 
Sun-3 workstation and vectors were normalized to unit length. The 
same letter frequencies were used as in Barlow et al. (1989) 

frequent letters and become highly selective, while 
many other units are less selective and their receptive 
fields consist of different combinations of features in the 
input patterns (Fig. 4). 

10 Discussion 

In both examples the network implemented a smooth, 
information preserving, redundancy reducing transfor- 
mation of the distributed input patterns into an approx- 
imately uncorrelated, sparse activity of units. 

What implications does such a code have for gener- 
alization in a subsequent supervised layer? It can be 
observed in both examples that frequent patterns tend 
to get coded into the activity of a smaller number of 
units then the infrequent ones. Generalisation therefore 
works best for infrequent, 'unknown' patterns that are 
represented as sets of more frequent, 'known' compo- 
nents. For more frequent patterns, the representation 
tends to be more localized, so output patterns can be 
associated to them more specifically, without interfer- 
ence from other associations. 

Unlike in the case of a linear network, it may be 
useful to consider a hierarchical arrangement of such 
subnetworks, each layer extracting different forms of 
redundancy present in the environment. Such a simple 
model, of course, does not answer our original question 
about how a meaningful representation of the world is 
created in the brain, as it ignores most of the known 
facts about the genetically determined properties and 
anatomical constraints of the brain, but it demonstrates 
one of the possible principles that may underlie the 
largely unexplained function of the sensory system. 
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