
VS 265: Neural Computation Fall 2018

Simulating differential equations

Redwood Center for Theoretical Neuroscience

1 Discrete-time systems

• In most real physical systems, such as neurons, time is continuous. Thus, we use mathematical
constructs such as

∫
()dt and d

dt() to represent summation and differences over continuous time,
which is infinitely divisible.

• If we wish to simulate such systems on a digital computer, then we have no choice but to
discretize time. Note however that this is not true of all computation in general. Analog
computers, which pre-dated the digital computers we have today, serve as very useful simu-
lation tools for studying complex dynamical systems using op-amps and capacitors without
the need to discretize time.

• In the digital computer, we represent the continuous-time signal, x(t), by sampling at discrete
points in time:

X(n) = x(n∆t)

where ∆t is the sampling interval and n is the sample number (an integer). Thus, X(n)
represents a sample of x(t) at time t = n∆t. Note that the sampling interval ∆t must
be picked sufficiently small so as to capture the significant time-varying structure in x(t),
otherwise aliasing will result (this is what makes wagon wheels and propellers look like they’re
sometimes moving backwards in movies).

2 Difference equations

• A discrete-time approximation to the derivative is computed by taking the difference between
adjacent samples divided by the sampling interval:

dx

dt
≈ X(n+ 1)−X(n)

∆t

In the limit as ∆t→ 0, this relationship becomes an equality (by definition).

• Now lets say we wish to simulate the differential equation ẋ+ x = 0. Re-expressing this as a
discrete-time difference equation, we have

X(n+ 1)−X(n)

∆t
+X(n) = 0

With a little algebraic manipulation of terms, we obtain

X(n+ 1) = (1−∆t)X(n)

1

https://www.youtube.com/watch?v=-Di-nAgwERk


2

Thus, to simulate this system on a computer, we simply run a loop for n = 1 : nmax and set
X to a fraction of (1−∆t) its previous value at each iteration. Note however that if we pick
∆t too large, then the system will not decay to zero but rather explode to −∞. In this case,
we must have ∆t < 1 since τ = 1.

• In a similar fashion, we can simulate the leaky-integrator with time-constant τ

τ ẋ+ x = f(t)

via the difference equation

X(n+ 1)−X(n)

∆t
+X(n) = F (n)

which results in the discete-time equation

X(n+ 1) = (1− α)X(n) + αF (n)

where α = ∆t
τ and F (n) = f(n∆t). Note again though that in order for this simulation to

work we must have 0 < α < 1, and so ∆t must be picked to be small relative to τ .

• The discrete-time version of the leaky integrator gives us another perspective on what it is
computing. Here we see that at each time step, the next value of X is a weighted sum of
the current value of X and the current value of the input F . The weights that are used to
combine X and F add to one. Thus, if α = 0.1 then the next value of X is 90% of its current
value plus 10% of the current value of F . It is easy to show that this recursive computation is
equivalent to taking an expontentially decaying weighted sum of the present and past values
of F.

• This method of simulating a differential equation is known as Euler’s method. It is by far the
simplest method of simulating a differential equation. Its disadvantage though is that it only
crudely approximates the derivative, and so ∆t must be picked very small to obtain accurate
simulations. A small ∆t means that many iterations are required, which demands more time.
More efficient methods for simulating differential equations, such as the Runge-Kutta method,
achieve the same degree of accuracy with larger time steps and hence fewer iterations.


	Discrete-time systems
	Difference equations

