VS 265: Neural Computation Fall 2018

Simulating differential equations

Redwood Center for Theoretical Neuroscience

1 Discrete-time systems

e In most real physical systems, such as neurons, time is continuous. Thus, we use mathematical
constructs such as [()dt and % () to represent summation and differences over continuous time,
which is infinitely divisible.

o If we wish to simulate such systems on a digital computer, then we have no choice but to
discretize time. Note however that this is not true of all computation in general. Analog
computers, which pre-dated the digital computers we have today, serve as very useful simu-
lation tools for studying complex dynamical systems using op-amps and capacitors without
the need to discretize time.

e In the digital computer, we represent the continuous-time signal, x(t), by sampling at discrete
points in time:

X(n) = z(nAt)

where At is the sampling interval and n is the sample number (an integer). Thus, X (n)
represents a sample of x(¢) at time ¢ = nAt. Note that the sampling interval At must
be picked sufficiently small so as to capture the significant time-varying structure in z(t),
otherwise aliasing will result (this is what makes wagon wheels and propellers look like they’re
sometimes moving backwards in movies).

2 Difference equations

e A discrete-time approximation to the derivative is computed by taking the difference between
adjacent samples divided by the sampling interval:
dr _ X(n+1)— X(n)
dt At

In the limit as At — 0, this relationship becomes an equality (by definition).

e Now lets say we wish to simulate the differential equation & + z = 0. Re-expressing this as a
discrete-time difference equation, we have

X(n+1)— X(n)
At

With a little algebraic manipulation of terms, we obtain

+X(n)=0

X(n+1)= (1 - AHX(n)

—_



https://www.youtube.com/watch?v=-Di-nAgwERk

Thus, to simulate this system on a computer, we simply run a loop for n =1 : n;,4, and set
X to a fraction of (1 — At) its previous value at each iteration. Note however that if we pick
At too large, then the system will not decay to zero but rather explode to —oo. In this case,
we must have At < 1 since 7 = 1.

In a similar fashion, we can simulate the leaky-integrator with time-constant 7
T+ x = f(t)
via the difference equation

X(n+1)—X(n)
At

which results in the discete-time equation

X(n+1)=(1-a)X(n)+aF(n)

where o = % and F'(n) = f(nAt). Note again though that in order for this simulation to
work we must have 0 < a < 1, and so At must be picked to be small relative to 7.

The discrete-time version of the leaky integrator gives us another perspective on what it is
computing. Here we see that at each time step, the next value of X is a weighted sum of
the current value of X and the current value of the input F. The weights that are used to
combine X and F' add to one. Thus, if & = 0.1 then the next value of X is 90% of its current
value plus 10% of the current value of F'. It is easy to show that this recursive computation is
equivalent to taking an expontentially decaying weighted sum of the present and past values
of F.

This method of simulating a differential equation is known as FEuler’s method. It is by far the
simplest method of simulating a differential equation. Its disadvantage though is that it only
crudely approximates the derivative, and so At must be picked very small to obtain accurate
simulations. A small At means that many iterations are required, which demands more time.
More efficient methods for simulating differential equations, such as the Runge-Kutta method,
achieve the same degree of accuracy with larger time steps and hence fewer iterations.



	Discrete-time systems
	Difference equations

