
The Journal of Neuroscience, May 15, 1996, 16(10):3351-3362 

Efficient Coding of Natural Scenes in the Lateral Geniculate 
Nucleus: Experimental Test of a Computational Theory 

Yang Dan,’ Joseph J. Atick, and R. Clay Reid’ 

Laboratories of lNeurobiology and 2Computational Neuroscience, The Rockefeller University, New York, New York 70021 

A recent computational theory suggests that visual processing 
in the retina and the lateral geniculate nucleus (LGN) serves to 
recode information into an efficient form (Atick and Redlich, 
1990). Information theoretic analysis showed that the represen- 
tation of visual information at the level of the photoreceptors is 
inefficient, primarily attributable to a high degree of spatial and 
temporal correlation in natural scenes. It was predicted, there- 
fore, that the retina and the LGN should recode this signal into 
a decorrelated form or, equivalently, into a signal with a “white” 
spatial and temporal power spectrum. In the present study, we 
tested directly the prediction that visual processing at the level 
of the LGN temporally whitens the natural visual input. We 
recorded the responses of individual neurons in the LGN of the 
cat to natural, time-varying images (movies) and, as a control, 
to white-noise stimuli. Although there is substantial temporal 

correlation in natural inputs (Dong and Atick, 1995b), we found 
that the power spectra of LGN responses were essentially 
white. Between 3 and 15 Hz, the power of the responses had an 
average variation of only tlO.3%. Thus, the signals that the 
LGN relays to visual cortex are temporarily decorrelated. Fur- 
thermore, the responses of X-cells to natural inputs can be well 
predicted from their responses to white-noise inputs. We there- 
fore conclude that whitening of natural inputs can be explained 
largely by the linear filtering properties (Enroth-Cugell and Rob- 
son, 1966). Our results suggest that the early visual pathway is 
well adapted for efficient coding of information in the natural 
visual environment, in agreement with the prediction of the 
computational theory. 
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In natural environments, visual signals are highly redundant, so 
the representation of the input by the activity of photoreceptors is 
inefficient. Efficiency of information coding, however, potentially 
has significant evolutionary and computational advantages (Atick, 
1992). It is thus reasonable to assume that an important task of 
the early stages of the visual pathway is to recode the incoming 
visual signals to improve efficiency (Barlow, 1961, 1989; Atick and 
Redlich, 3 990; Atick, 1992). 

The primary sources of redundancy in the visual signals at the 
level of the photoreceptors are the temporal and spatial correla- 
tions in natural scenes. The activity of photoreceptors is not 
independent at different times and between different cells. In 
other words, much information is represented repetitively over 
time and by different neurons. To improve efficiency, the neuronal 
signals must be recoded into a decorrelated form. When trans- 
formed into the frequency domain, this decorrelation is expressed 
as the flattening or “whitening” of the temporal and spatial power 
spectra of the neuronal signals. Previous studies have shown that 
the power spectrum of light intensity in the natural visual envi- 
ronment obeys a simple statistical rule: it is proportional to l/k”, 
where k is the spatial frequency and, at low spatial frequencies, 
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1/02, where o is the temporal frequency (Field, 1987; Dong and 
Atick, 1995a,b). 

It has been proposed that the retina and the lateral geniculate 
nucleus (LGN) are dedicated to recoding and whitening the input 
signals (Barlow, 1961, 1989; Atick and Redlich, 1990; Atick, 
1992). Using information theory (Shannon and Weaver, 1949) to 
assess the efficiency of information representation, Atick and 
coworkers performed a series of theoretical studies of retinal and 
geniculate processing. They derived a theory of retinal processing 
that successfully explained the spatial and, in the primate, the 
chromatic receptive fields of retinal ganglion cells for the entire 
range of adaptation levels. Their only assumptions were that 
retinal processing serves to spatially whiten natural inputs and 
that there was a certain level of noise (Atick and Redlich, 1992; 
Atick et al., 1992). Theoretical analysis of temporal decorrelation 
led to an explanation of not only the temporal tuning properties of 
LGN neurons but also the existence of lagged and nonlagged cells 
(Dong and Atick, 1995a), which have been observed experimen- 
tally in the cat (Mastronarde, 1987; Humphrey and Weller, 
1988a,b). 

The spatial and temporal response properties of the LGN cells 
of the cat have been well characterized over the past few decades 
(So and Shapley, 1981; Dawis et al., 1984; Saul and Humphrey, 
1990). It is not certain, however, to what extent the responses of 
LGN neurons to the simple stimuli used in these studies can 
predict their function in coding natural visual signals. In particu- 
lar, nonlinearities such as the contrast gain control (Shapley and 
Victor, 1978, 1981), rectification at zero spikes per second, and 
saturation can profoundly alter the responses to stimuli with 
different statistics. Because the visual system develops-and, of 
course, evolved-in the natural environment, an important step in 
understanding its function would be to study the input-output 
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relationship with stimuli that resemble natural scenes. The maior 
difficulty in studying the visual system with natural stimuli resides 
in the complexity of the input signal and the lack of appropriate 
methods for characterizing it. To overcome this difficulty, we used 
a statistical approach to study the visual system with a complex 
input ensemble. In contrast to the conventional, deterministic 
approach, in which the properties of neurons are studied by 
correlating their responses to individual, simple stimuli, the sta- 
tistical approach characterizes both input and output by measur- 
ing their ensemble properties. As demonstrated in our studies, 
this approach can provide new insights into the function of the 
visual system and may prove to be an important complement to 
conventional approaches. 

a more realistic limit. The waveforms of the spikes were saved on disk. 
The spike discrimination was first done roughly during the experiment. 
The sorting was carried out more rigorously in postprocessing. 

Visual stimulation 
The data-acquisition PC contained an AT-Vista graphics card (Truevi- 
sion, Indianapolis, IN), which was used to present a variety of visual 
stimuli at a frame rate of 128 Hz. All stimuli were programmed using 
subroutines from a runtime library, YARL, written by Karl Gegenfurtner. 
Spatiotemporal white-noise stimuli were generated to map the receptive 
fields of the neurons. The system is well suited for the efficient real-time 
production of these stimuli using the m-sequence temporal signal (Sutter, 
1987; Reid and Shapley, 1992). Spatially, the white-noise stimuli were 
made up of 16 x 16 grids of square regions (pixels). The pixel sizes were 
adjusted to map receptive fields with a reasonable level of detail (0.2-0.4’ 
at 5-10’ eccentricity). For every frame of the stimulus, the pixels were 
either black or white according to the m-sequence. The receptive field 
maps of the neurons were calculated using the reverse correlation method 
(Jones and Palmer, 1987). For each delay between stimulus onset and 
action potential, the average spatial stimulus that preceded each impulse 
was calculated, This calculation was performed with the fast m-transform 
(Sutter, 1987). Full-field white noise, in which the whole screen was 
temporally modulated by a single m-sequence signal, was also used to 
study the dynamics of some neurons in response to low spatial frequency 
stimuli. 

Drifting gratings of various spatial and temporal frequencies were used 
to measure the spatial and temporal tuning properties of the neurons, 
Contrast reversal gratings were used in the null test to make the X/Y 
classification (Enroth-Cugell and Robson, 1966; Hochstein and Shapley, 
1976). Only X-cells were included in the analysis, because this is the-type 

of cells on which the computational theory was based. Few lagged cells 
were encountered with these electrodes, and none was included in this 
study. 

In this experimental investigation, we characterized the statis- 
tical properties of LGN neurons in response to natural visual 
input. We tested directly the hypothesis that the representation of 
natural visual information at the LGN is temporally decorrelated. 
Movies of natural scenes were used as visual inputs, responses of 
single LGN neurons were recorded, and their temporal correla- 
tions and power spectra were analyzed. Our results largely con- 
firm the prediction based on the assumption of efficient coding 
and information-theoretic anaIysis. Further investigation of the 
mechanism of recoding indicates that the temporal whitening of 
natural signals is largely attributable to the linear filtering prop- 
erties of LGN neurons [see Golomb et al. (1994) for a similar 
relationship between linear response properties ’ and temporal 
coding by LGN neurons]. 

Video recordings of time-varying natural scenes were used as stimuli to 

MATERIALS AND METHODS 
Physiological prepara ti0n 
Adult cats ranging in weight from 2 to 3 kg were used in all the 
experiments. The animals were initially anesthetized with ketamine HCl 
(10 mgikg, i.m.), followed by sodium pentothal (20 mgikg, iv., supple- 
mented as needed). A local anesthetic (lidocaine) was injected before all 
incisions. Anesthesia was maintained for the duration of the experiment 
with sodium pentothal at a dosage of 6 mg/hr. 

A tracheostomy was performed for artificial ventilation. Then the cat 
was transferred to a Horsley-Clarke stereotaxic frame. The cat was 
suspended by clamping the spinous process of one of the lumbar verte- 
brae to minimize respiratory movements, 

Pupils were dilated with a topical application of 1% atropine sulfate, 
and the nictitating membranes were retracted with 10% phenylephrine. 
Eyes were refracted, fitted with appropriate contact lenses, and focused 
on a tangent screen. The positions of the areae centrales were plotted 
with the aid of a fundus camera. Eye positions were stabilized mechani- 
tally by gluing the sclerae to metal posts attached to the stereotaxic 
apparatus. 

A craniotomy (-0.5 cm in diameter) was made over the LGN, and the 
underlying dura was removed. The hole was filled with 3% agar in 
physiological saline to improve the stability of the recordings. 

The animal was paralyzed with Norcuron (0.2 mglkgihr, i.v.) and 
artificially ventilated. Ventilation was adjusted so that the end-expiratory 
CO, was near 3.5%. Core body temperature was monitored and main- 
tained at 38°C. The electrocardiogram and electroencephalogram were 
also monitored continuously. 

Electrophysiological recording 

study the statistical properties of the LGN response. It was assumed that 
all the long sequences of natural, time-varying images have common 
statistics, i.e., they tend to have the same spatiotemporal power spectra 
(Field, 1987; Dong and Atick, 1995a,b) regardless of the details of the 
images. Because we were interested in the coding of natural scenes in 
general, we chose not to impose any restriction in our selection of movies 
other than that they were not disproportionally dominated by static 
scenes. Up to 10 different movies were used. Figure la shows an image 
from CasabZanca, one of the movies used in the experiments. The power 
spectra of the LGN responses to different movies were qualitatively very 
similar, as long as the movies were longer than several minutes. We 
therefore pooled all the data in the analysis. In some experiments, a 
videocassette recorder and a television monitor were used to present 
movies 20-60 min long* In others, movie clips 2-3 min long were 
presented repetitively over a similar duration with the computer software 
Media Player. There was a small 15 Hz artifact in these movies, as can be 
seen from the small secondary peaks in Figure 2u, cells 2 and 3, The 
AT-Vista board was not used for studying the statistical properties of the 
LGN responses, because its limited memory precluded the presentation 
of long movies with appropriate statistics (see below). 

For the linear prediction of the response to natural scenes, we pre- 
sented eight different short movies with the AT-Vista board. These short 
movies were digitized segments of video recordings. The use of the Vista 
board in this study was necessary, because the prediction of the instan- 
taneous firing rate signals requires precise spatiotemporal alignment 
between the receptive fields, which were measured with white noise, and 
the movie stimuli. Because of the Iimited memory of the Vista board, 
each movie was restricted to 16 set long. Each frame contained 64 X 64 
pixels, with a spatial resolution of 0.2”/pixel. To test the linear prediction, 
short movies were in fact desirable, because multiple repeats were re- 

Individual LGN neurons were recorded with a single tungsten electrode 
or a multielectrode array (System Eckhorn, Marburg, Germany) (Eck- 
horn and Thomas, 1993). The array allows seven fiber electrodes to be 
positioned independently with a vertical accuracy of 1 pm. We used a 
glass guide tube to restrict the lateral scattering of the electrodes in the 
array. The inner diameter at the tip of the guide tube was ~400 ,um. All 
recordings were made in layer A or Al of the LGN. 

Recorded signals were amplified, filtered, and passed to an 80486 PC 
running Datawave Discovery software (Broomfield, CO). The system 

quired to assess the reproducibility of the responses. To obtain an 
“actual” response, each movie was repeated eight times. A post-stimulus 
time histogram (PSTI-I) was obtained for the response to each repeat with 
a bin width of 7.7 msec (the same as the interframe interval of the short 
movies and the white-noise stimuli). The instantaneous firing rate of the 
LGN neuron was calculated as the PSTH averaged over all eight repeats 
or over interleaved repeats-l, 3, 5, 7 or 2, 4, 6, 8. 

Data analysis 
accepts inputs from up to eight 
waveforms can be discriminated 

single 
on a s1 

elec trodes. Up to eight different 
ngle electrode, but two or three is 

Calculation of autocomla tion function. The recorded spike train was 
originally represented as a list of times for the occurrence of spikes with 
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a resolution of 0.1 msec. This list was binned with a bin width of 5 msec 
to yield a spike-rate signal sampled at 200 Hz. The autocorrelation 
function of this signal was then computed. So that only the contribution 
from different spikes was considered, the total number of spikes was 
subtracted from the central bin of the autocorrelation function. 

Calculation of power spectrum. We calculated the two-sided power- 
spectral density functions of the spike trains by Fourier transforming 
overlapping segments of data and windowing (Press et al., 1988). The 
spike trains (20-60 min long) were binned with a bin width of 4 msec and 
divided into 4 set segments, with 2 set overlaps between consecutive 
segments. For each segment, a Welch window was applied to reduce the 
spectral leakage caused by the finite duration of the segments (Harris, 
1978), and a two-sided power spectrum was calculated using the standard 
fast Fourier transform procedure, with a frequency resolution of 0.25 Hz 
and a range from -125 to 125 Hz. Finally, the power spectrum of the 
whole spike train was obtained by averaging all the data segments. 

Linear prediction of responses to natural movies. We predicted the 
responses of LGN cells to natural visual inputs by performing a linear 
convolution of the spatiotemporal receptive fields with the luminance 
signals of the movies, followed by a rectification procedure. The under- 
lying assumption is that the output, which is the firing rate of the LGN 
neuron, is the result of a rectifying spike-generation mechanism operating 
on the intracellular potential, which is linearly related to the visual input 
(Rodieck, 1965; Enroth-Cugell and Robson, 1966; Brodie et al., 1978). 
Because, of course, we did not record the intracellular signal, its receptive 
field was calculated from the spike train recorded extracellularly. The 
receptive field of the intracellular potential is equivalent to the first-order 
Wiener kernel (Marmarelis and Marmarelis, 1978) calculated from the 
spike rate multiplied by a factor of 2, assuming a perfect half-wave 
rectification of the LGN cells in response to white noise. (This is a 
reasonable first-order assumption, since the resting-state firing rate or the 
threshold for spike generation is, in general, much lower than the re- 
sponse to the white-noise stimuli with a 100% contrast.) The linear 
convolution is given by: 

R(t) = C2*K(x,y, t’) -S(x,y, t - t’), 
X,Y, f  

where R(t) is proportional to the estimated intracellular potential but in 
units of imnulses oer second: K(x. v. t’) is the first-order Wiener kernel of 
the neuron’ measured in units of impulses per second per unit contrast; 
5(.x, y, t - t’) is the luminance of individual pixels in the movie, normal- 
ized so that the mean luminance of the entire movie is 0 and the minimum 
value is - 1; and x and y  are the positions of the pixels. The white-noise 
stimuli used for measuring the receptive fields had the same pixel size 
and frame rate as those of the movies. These two stimuli were spatially 
aligned so that the correspondence between the pixels in the receptive 
field K(x, y, t’) and those in the movies S(x, y, t - t’) could be 
determined unambiguously. 

The intracellular potential R(t) thus estimated had both positive and 
negative values. The output of the neuron O(t) was predicted by applying 
a simple rectification procedure, which presumably simulates the spike- 
generation mechanism: 

O(t) = (R(t) + N) *H(R(t) + N), 

where H is the Heaviside step function defined as: 

H(x)=l, x>o 

0, x50. 

When N is positive, it represents the resting-state firing rate of the cell; 
when negative, N represents the threshold for spike generation. The value 
of N was adjusted so that the predicted mean firing rate (O(t)) over the 
duration of the movie was equal to the actual mean rate of the same cell. 

RESULTS 
Responses of LGN neurons to natural scenes and white noise 
In the first part of the study, we characterized the statistical 
properties of the LGN spike trains in response to time-varying 
natural visual stimuli. A typical image is shown in Figure la. The 
position of the stimulation monitor was adjusted so that the re- 
ceptive field of the LGN neuron fell within the screen. The movies 
were presented to the cat, and the spike trains of LGN neurons 

a 

b 

Figure 1. Visual stimuli used in the current study: natural scenes and 
spatiotemporal white noise. a, A single frame from the movie Casablanca, 
which, together with other movies, was used as a natural stimulus. b, A 
single frame from spatiotemporal white noise with 100% contrast. A 
complete white-noise stimulus consists of 2r5 frames of these pseudoran- 
dom checkboard patterns. 

were recorded for 20-60 min to accumulate a minimum of 10,000 
spikes. Autocorrelation functions and power spectra of these 
spike trains were calculated. Figure 2, a and b, shows the auto- 
correlation functions and the power spectra, respectively, of three 
LGN neurons in response to movies. Figure 2c summarizes the 
power spectra of 51 LGN neurons. For 45 cells, the mean firing 
rate during the period of movie presentation was 13.1 impulses/ 
set, whereas that in the absence of visual stimuli was 6.0 impulses/ 
sec. Among these, 33 cells showed an increase in mean firing rate 
by at least 2 impulses/set during stimulation by movies. A consid- 
erable degree of temporal variation of the instantaneous firing 
rate was observed during the movie presentations, in apparent 
correspondence to various movie scenes. These observations sug- 
gest that the spiking activity of the LGN neurons was significantly 
modulated by the natural visual input. 

The autocorrelation functions of the responses to movies (Fig. 
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Figure 2. The responses of LGN neurons evoked by natural visual stimuli. a, Autocorrelation functions of the spike trains of three LGN neurons in 
response to movies. The small secondary peaks for cells 2 and 3 were attributable to a weak 15 Hz artifact in the Media Player movies; see Materials and 
Methods. b, Power spectra of the same neurons between 0 and 15 Hz. The power spectral density is in units of (impulses/sec)‘/Hz. c, Summary of the 
power spectra of 51 cells in response to movies. For the sake of clarity, each power spectrum is normalized by its own value at 5-6 Hz, 
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Figure 3. The responses of LGN neurons evoked by white-noise stimuli. a, AutocorreIation functions of the same LGN neurons as those shown in Figure 
2, a and b, evoked by full-field white noise. b, Power spectra of these neurons. c, Summary of the power spectra of 75 LGN neurons in response to full-field 
white noise, normalized as described in Figure 2~. All the power spectra shown here had positive slopes. Some spectra showed small slopes, because they 
were less we12 modulated by white-noise stimuli relative to their noise 1eveIs. 
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Frequency (Hz) 
Figure 4. Temporal-filtering properties of an LGN neuron measured with different methods. a, Power spectrum of an LGN spike train in response to 
full-field white noise with 100% contrast. b, The square of the Fourier transform of the temporal rcccptive field measured with the same full-field white 
noise as in a. For a perfect Iinear filter, this should be equivalent to the power spectrum of the response, as shown in a, except for the presence of 
additional noise in a. The fact that a and b have the same shape but differ in amplitude by a factor of 2 is caused largely by the rectification. c, The square 
of the temporal-tuning function of the same neuron. The temporal-tuning function is defined as the amplitudes of responses to sinusoidally modulated 
inputs with unit contrast but at different temporal frequencies. In this experiment, it was measured with spatially uniform, but temporally modulated 
stimuli at 25% contrast. All three functions were normalized by the power of their respective input and therefore reflect the intrinsic tuning properties 
of the neuron. The fact that c has a higher amplitude than both a and h suggests either a saturation in the response to 100% contrast full-field white noise 
or a contrast gain-control mechanism. The unit of all three power spectra is (impulses/sec)2/Hz. 

2a) showed narrow peaks (centered at 0 msec with half widths of 
lo-20 msec) and were essentially flat beyond the peak. This 
indicates that the LGN output was temporally decorrelated. The 
decor-relation is also revealed by the power spectra of the re- 
sponses (Fig. 2b,c), which are equivalent to the Fourier transforms 
of the autocorrelation functions. The spectra were largely flat 
between 3 and 15 Hz, consistent with the theoretical prediction 
that the natural visual signals at the level of the LGN are white. 
Thus the redundancy at the level of the photoreceptors is largely 
eliminated at the LGN. As discussed below, the deviation from 
whiteness in the power spectra beyond the range of 3-15 Hz can 
be accounted for by the finite duration of the neuronal impulse 
response and the requirement of optimal coding in the presence 
of noise (Atick and Redlich, 1992). 

As a comparison with the temporally decorrelated response to 
natural scenes, we analyzed the autocorrelations and power spec- 
tra of LGN neurons in response to a white-noise input (Sutter, 
1987). White noise provides a rich input ensemble, the statistical 
structure of which differs from that of natural input; therefore, it 
provides an appropriate control stimulus. Figure 3a shows the 
autocorrelation functions of the white-noise responses of 
the same LGN neurons as those shown in Figure 2~. In contrast 
to the responses to natural input, the autocorrelation functions of 
the white-noise responses exhibited a dip between 10 and 100 
msec. This is reflected in their power spectra, which showed a 
positive slope between 1 and 10 Hz (Fig. 3b), Figure 3c summa- 
rizes the power spectra of 75 LGN neurons in response to full- 
field white noise. The great majority of these spectra showed a 

positive slope between 3 and 15 Hz and significantly deviated from 
whiteness. 

To quanti@ the difference between the power spectra in Figures 
2c and 3c, each power spectrum was fitted with a quadratic 
function between 3 and 15 Hz to smooth the data. The average 
deviation of these smoothed spectra from their midpoint was 
10.8% 2 7.3 for the responses to natural stimuli (Fig, 2c) but was 
50.7 ? 20.6 for the responses to white noise (Fig. 3~). We 
presented white-noise stimuli both before and after the movie 
stimuli and observed a consistent difference between the temporal 
characteristics of the responses to movies and to white noise. 
Spatiotemporal white noise (Fig. lb) and full-field white noise 
evoked responses with similar power spectra. Thus the LGN cells 
under study were visually driven, and the power spectra of their 
responses depended on the nature of the input. As shown below, 
the LGN responses to white-noise input reflect their temporal- 
filtering properties, which form the basis of efficient recoding of 
natural scenes. 

Linear prediction of the responses to naturul stimuli 
To bridge the statistical and the deterministic approaches and to 
understand the mechanism of recoding at the LGN, we examined 
whether the temporal whitening of natural visual input can be 
accounted for by the classical response properties of geniculate 
cells. It is well known that both retinal and geniculate X-cells 
behave as approximately linear filters (Enroth-Cugell and Rob- 
son, 1966; Hochstein and Shapley, 1976; Derrington and Fuchs, 
1979; Dawis et al., 1984), and the temporal-tuning properties of 
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a 

b - 

Figure 5. Convolution of the spatiotemporal receptive fields of the LGN 
neurons and the short movies. a, Sixteen consecutive frames of a movie, 
with an interframe interval of 31.1 msec and a spatial resolution of 64 X 
64 pixels. b, Receptive field of an on-center/o$-surround X-cell. The 16 
graphs represent the spatial receptive fields at 16 consecutive temporal 
frames, with an interframe interval of 7.7 msec. Each graph shows a 14 X 
14 portion of the entire kernel, chosen to include both center and sur- 
round. The pixel luminance indicates the sign and magnitude of neural 
excitation evoked by a light signal at the position of the pixel. The 
magnitude of the contrast between pixels is roughly proportional to neural 
excitation in impulses per second. The grid separating the pixels is set to 
the mean luminance. The size and the signature of the surround are best 
appreciated by noting the large region where the receptive field is darker 
than the background grid (i.e., where the grid appears light). For the sake 
of clarity, the receptive field has been spatially magnified relative to the 
movie. The white squares in a indicate the areas in the images that 
correspond to each frame in b. To measure the actual responses, each 
frame in a was repeated four times so that the movie and the white-noise 
stimuli had the same frame rate. 

Impulse Response 
1001 I I I I I 

I I I I I 

20 40 60 60 100 
Time (msec) 

Figure 6. Summed impulse responses for the pixels in the center and 
those in the surround of the receptive field shown in Figure 56. Responses 
were measured in terms of the average increase in the firing rate, in 
impulses per second, after the light phase of the stimulus. The center of 
the receptive field was defined by the following procedure. First, the 
largest single response of the spatiotemporal receptive field (as mapped 
with the luminance stimulus) was located. This peak defined the position 
of the greatest sensitivity at the optimal latency. Next, the spatial receptive 
field was analyzed at the peak latency. Contiguous spatial positions were 
included in the center if the responses were of the same sign as the 
strongest response and were greater than two SD above the measurement 
noise. The measurement noise was estimated by examining the calculated 
responses at long delays between stimulus and response, i.e., when any 
correlation was spurious. The surround was defined as all the remaining 
pixels (shown in the 14 X 14 portion of the entire screen). 

LGN neurons, as reflected by the power spectra of their responses 
to white noise (see Discussion), are roughly the inverse of the 
power spectra of natural inputs (Dong and Atick, 1995a,b). It is 
likely, therefore, that the temporal whitening of natural inputs is 
largely attributable to the linear filtering properties of X-cells. 
Figure 4 provides a qualitative demonstration of the sort of 
arguments used in the theoretical literature. It shows the power 
spectrum of an X-cell in response to 100% contrast full-field white 
noise (Fig. 4u), the square of the Fourier transform of its impulse 
response (Fig. 4b), and the square of its actual temporal tuning 
function (see legend to Fig. 4c). The temporal tuning function was 
measured with full-field, temporally modulated sinusoidal stimuli 
at 25% contrast between 0.5 and 15 Hz. All three functions were 
approximately proportional to o’, the inverse of the temporal 
power spectra of natural inputs in the range of low spatial fre- 
quencies. It is worth noting, however, that the magnitudes of the 
response sensitivity measured with these three methods showed a 
two- to threefold difference. This reflects the existence of nonlin- 
earities such as the contrast gain control (Shapley and Victor, 
1978, 1981), rectification, and response saturation. To investigate 
in more detail the extent to which the linear-filtering properties 
contribute to the whitening of natural input, we tested whether 
the responses to natural scenes can be predicted by the linear 
convolution of the luminance signals of the movies and the spa- 
tiotemporal receptive fields of the neurons (Brodie et al., 1978). 

The spatiotemporal receptive fields of the cells were measured 
with white-noise stimuli and the reverse-correlation method. Fig- 
ure Sb shows the time evolution of an on-center/off-surround 
receptive field between 0 and 116 msec. The magnitudes of center 
and surround components (the impulse responses) of the recep- 
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Figure 7. Comparison of the predicted and the actual responses to a natural movie. a, Top trace, The predicted response of an X-cell to a movie, as 
calculated by convoluting the movie with the spatiotemporal receptive field of the neuron, with a subsequent rectification, Middle trace, The actual firing 
rate of the same neuron in response to the movie, as averaged from the responses to one set of repeats: 1, 3, 5, 7. Bottom trace, The actual response 
averaged from the other set of repeats: 2, 4, 4, 8. b, The predicted (top trace in Fig. 7a) versus the actual response (middle trace in Fig. 7a, Actual 1) at 
corresponding temporal frames. c, The response averaged from one set of repeats (2, 4, 6, 8, bottom trace, Actual 2) versus that from the interleaved set 
(1, 3, 5, 7, middle trace, Actual 1). 
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Figure 8. Summary of correlation coefficients between the predicted and the actual responses to natural movies. a, Scatterplot of correlation coefficients 
between the predicted and the actual responses to eight short movies, indexed from 1 to 8. Each point represents the data from one cell. Al1 49 cells 
studied were included in the plot. b, Correlation coefficients between the actual responses averaged from interleaved repeats (1,3,5, 7 vs 2, 4, 6,s) Data 
from all 49 cells were included. c, Correlation coefficients shown in b versus those shown in a, for the same cells and same movies. The fact that there 
are more points above the diagonal line than below indicates that the act&-actual correlation is, on average, better than the predicted-actual correlation, 
It is also clear from this plot that these two correlation coefficients are correlated. This suggests that the degree of correlation between the predicted and 
the actual responses depends largely on the noise level in the actual responses. 



3360 J. Neurosci., May 15, 1996, 76(10):3351-3362 

b C 

Dan et al. l Coding of Natural Scenes 

Predicted 
Short Movie 

6 

Actual 
Short Movie 

Actual 
Long Movie 

18 0 6 10 lb 

Frequency (Hz) 

0 6 10 15 

Figure 9. Linear prediction of the power spectrum in response to natural movies. a, Power spectrum of one cell in response to a short movie, calculated 
from the predicted firing rate. b, Power spectrum of the same cell in response to the same movie, calculated from the actual response. These spectra were 
not white, attributable to the imperfect statistics of the short movie. The power spectrum of the same neuron in response to a long movie is shown in c. 
All the power spectral-density functions are in units of (impulses/sec)‘/Hz. 

tive field are illustrated in Figure 6. Given the spatiotemporal 
receptive fields, we compared the predicted and the actual re- 
sponses to eight different short movies, each 16 set long. Linear 
convolution of the movie (Fig. Sa) and the receptive field (Fig. 
5b), followed by a rectification (see Materials and Methods), was 
used to obtain the predicted firing rate as a function of time. To 
measure the actual responses, each movie was presented eight 
times. The instantaneous firing rate was calculated as the PSTH 
averaged over multiple repeats. We found that the basic features 
of the predicted responses closely resemble those of the actual 
responses. Figure 7a shows a 4 set sample of the predicted 
response of one LGN neuron to a movie (top trace), its actual 
response averaged from repeat 1, 3, 5, 7 (middle trace), and that 
averaged from repeat 2, 4, 6, 8 (bottom trace). The variability of 
the actual responses measured in different repeats can be appre- 
ciated by comparing the middle and the bottom traces in Figure 
7a. This was, in general, comparable to the difference between the 
predicted (top trace) and the actual responses. A more precise 
comparison was made by plotting the predicted versus the actual 
response (Fig. 7b) and the actual response averaged from one set 
of repeats versus that from another (Fig. 7c), all sampled at 128 
Hz. Similar correlation was found in both cases, suggesting that 
the difference between the predicted and the actual responses can 
be accounted for largely by the intrinsic variability of the neuronal 
response. 

The correlation coefficients between the predicted and the 
actual responses for 49 cells, each tested with eight movies, are 
summarized in Figure 8a. The average correlation coefficient 
between the predicted and the actual responses for the same 
movies was 0.48 2 0.11 (SD). This was significantly higher than 
the average correlation between the predicted and the actual 
responses for different movies (0,004 t 0.05, SD), which repre- 

sents the correlation by chance. The correlation coefficients be- 
tween the actual responses averaged from interleaved repeats, i.e., 
repeat 1, 3, 5, 7 and 2, 4, 6, 8, are summarized in Figure 8b, and 
the correlation between the actual responses from interleaved 
repeats versus that between the predicted and the actual re- 
sponses is shown in Fig. 8c for all 49 cells studied. The actual- 
actual correlation is comparable to but slightly better than the 
predicted-actual correlation. We believe that this can be ac- 
counted for, at least partly, by the fact that the predicted and the 
actual responses were calculated based on two recordings sepa- 
rated in time and that the condition of the neurons was likely to 
change over time. 

We calculated the power spectra of the predicted and the actual 
responses evoked by the 16 set short movies. Figure 9, a and b, 
shows the power spectra of the predicted and the actual re- 
sponses, respectively, of one LGN neuron. They agreed quantita- 
tively. These power spectra, however, were not white. This was 
attributable to the imperfect: statistics of the short movies, because 
the response of the same cell evoked by a long movie exhibited a 
power spectrum that was white between 3 and 15 Hz (Fig. SC). 
Taken together, these results indicate that the responses of LGN 
cells to natural stimuli can be well predicted from their linear 
receptive-field properties. Thus the whitening of natural visual 
signals at the level of the LGN can be largely, if not entirely, 
explained by the linear filtering properties of the cells. 

DISCUSSION 
In the present study, we have directly confirmed the prediction 
that the representation of natural visual information at the level of 
the LGN is temporally decorrelated, particularly between 3 and 
15 Hz. It is important to note that the power spectrum of the LGN 
activity was white only in response to natural input but not to our 
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control stimulus (white noise). This suggests that white (i.e., 
random) patterns of activity are not the intrinsic property of LGN 
neurons. Rather, the early visual pathway has specifically adapted 
for efficient coding of natural visual information during evolution 
and/or development. 

We would like to point out that the concept of “efficient coding” 
has been used with a rather specific definition in this paper; it is 
only one of several mechanisms that may facilitate sensory pro- 
cessing. The temporally decorrelated signal at the LGN is still a 
faithful, point-to-point and moment-to-moment representation of 
natural visual input. The improvement of efficiency at this level is 
independent of the meaning or importance of particular visual 
scenes. Another useful strategy in sensory processing is to selec- 
tively amplify important signals and/or suppress the unimportant 
ones. This is likely to be achieved at higher levels of the brain and 
is distinct from the efficient coding discussed here. 

The power spectra of LGN neurons in response to natural 
input deviate significantly from whiteness beyond the range of 
3-15 Hz. The failure of whitening below 3 Hz is not surprising, 
considering the finite duration of the impulse responses of 
these cells. For a typical LGN cell, the impulse response 
function has a duration of less than 200 msec. The finite 
memory of the system limits its ability to selectively attenuate 
signals below 2-3 Hz. This deficiency, however, may be allevi- 
ated at higher levels of the visual pathway, where the neurons 
tend to integrate visual information over a longer period (Ham- 
ilton et al., 1989; Reid et al., 1991). The failure of whitening 
above 15 Hz may be related to the theoretical finding that 
whitening at higher frequencies is not advantageous for opti- 
mal coding in the presence of noise (Atick and Redlich, 1992). 
At high frequencies, noise may dominate in the visual input. 
The attenuation of high frequency signals could therefore serve 
to avoid amplification of this noise. As a concrete example, it 
has been demonstrated that the receptive field properties of 
visual neurons change at different adaptation levels (Shapley 
and Enroth-Cugell, 1985; Purpura et al., 1988, 1990). This is 
consistent with the theory of efficient coding, because at low 
adaptation levels photon noise begins to dominate at higher 
frequencies. 

The temporal tuning of geniculate cells measured in our exper- 
iments seemed somewhat different from those reported by several 
other investigators. This may be explained by the differences in 
experimental procedures. It is well known that retinal X-cells 
resemble low-pass temporal filters for low-contrast input and 
become more bandpass with high-contrast stimuli (Shapley and 
Victor, 1978; 1981). The use of relatively high-contrast, supra- 
threshold input in our studies may explain the prominent band- 
pass temporal tuning that was not observed in some studies using 
low-contrast stimuli (Lehmkuhle et al., 1980). In addition, differ- 
ent recording electrodes may result in differences in sampling of 
cells. This may explain why cells recorded in our experiments 
have, in general, higher cutoff frequencies than those studied by 
Saul and Humphrey (1990) and Hamamoto et al. (1994). Our 
electrodes almost certainly sampled larger cells, since very few 
lagged cells were encountered. It would be interesting to investi- 
gate whether the cells that were not well sampled in our current 
study also serve to temporally whiten natural inputs. 

We have shown that the whitening of natural signals is largely 
attributable to the linear-filtering properties of LGN neurons. The 
temporal-tuning functions of LGN cells generally show a band- 
pass behavior: within the range of 3-15 Hz, the response is 
roughly proportional to the frequency. This tuning property can 

explain the power spectra of the LGN responses 
scenes and white noise. For a linear neuron: 

to both natural 

This is an approximate description ignoring the spatial dimension. 
] O(w) 1 2 is the temporal power spectrum of the output, K(w) is 
the Fourier transform of the receptive field (first-order Wiener 
kernel), which is equivalent to the temporal-tuning function of the 
neuron, and I S (or)) j 2 is the power spectrum of the stimulus. As 
mentioned above, I K(o) I * 3~ w* is a good approximation of the 
temporal tuning functions of LGN neurons within the range of 
3-15 Hz. In natural scenes (particularly at low spatial frequen- 
cies), I S(U) I 2 m 1/02; therefore, the output is white. For 
white-noise inputs, however, I S(o) I 2 0~ 1; hence, I O(w) I 2 
cf 1 K(o) j * m w2* 

Finally, lateral interactions and feedback could have resulted in 
responses to natural scenes that are not quantitatively predictable 
from the individual receptive fields. The agreement between the 
predicted and the actual responses to short movies argues that this 
is not the case. This agreement also establishes the possibility of a 
firm connection between the statistical and the deterministic ap- 
proaches to studying sensory neurons. 
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