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CHAPTER9

Many of the properties of the models described in this book are cap-
tured by the mathematics of linear algebra. This chapter serves as a
introduction to linear algebra and is a good starting place for the reader
who wishes to delve further into the models presented in other parts of
the book. I will focus on the aspects of linear algebra most essential for
the analysis of parallel distributed processing models, particularly the
notions of a vector space, the inner product, and linearity. I will also
discuss some simple POP models, and show how their workings
correspond to operations on vectors.

VECTORS

A vector is a useful way to describe a pattern of numbers. Col.~ider
for example the pattern of numbers that describe the age, height, -and
weight of an average person. Suppose that Joe is 37 years old, 72
inches tall, and weighs 175 pounds. This information can be summar-
ized in a vector or ordered list of numbers. For each person, there is a
corresponding vector, as in Figure 1 A. Each vector has three com-
ponents: age, height, and weight. There is no reason to limit ourselves
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Carol

to only three components , however . If , for example , we also wanted to
keep track of Joe's shoe size and year of birth , then we would simply
make a vector with five components , as in Figure lB .

One important reason for the great utility of linear algebra lies in the
simplicity of its notation . We will use bold, lower-case letters such as v
to stand for vectors . With this notation , an arbitrarily long list of infor -
mation can be designated by a single symbol.

When a vector has no more than three components , it can be

represented graphically by a point or an arrow in three-dimensional
space. An example with three components is given in Figure 2 for the
vector corresponding to Mary . Each axis in the figure corresponds to
one of the three components of the vector .

It will prove helpful to try and visualize vectors as points or arrows in
two- and three-dimensional space in proceeding through this chapter in
order to develop geom.etric intuition for the operations on vectors .
Notice , however , that there is no fundamental distinction between such
vectors and vectors with more than three components . All of the

operations upon vectors described in later sections apply equally well to
vectors with any finite number of components .

In a parallel distributed processing model , many Quantities are best
represented by vectors . The pattern of numbers representing the
activations of many processing units is one example . Other examples
are the s~t of weights on the input lines to a particular processing unit ,
or the set of inputs to a system .
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�

In linear algebra, a single real number is referred to as a scalar.
vector can be multiplied by a scalar by multiplying every component
the vector by the scalar.

367

Weight

Height

/
/

/
I

I
- - - - - - - - - - - - -

Multiplication by Scalars

A
of

Examples..

�

� -341

. 
I

. I

- 15
5 20

5
--

. 
.

. I

�

2
1

4

2
2 --

another are said to be collinear.

Geometrically, scalar multiplication corresponds to lengthening or
shortening the vector, while leaving it pointing in the same or opposite
direction. As can be seen in Figure 3, multiplying a vector by 2 leaves
it pointing in the same direction but twice as long. In general, multi-
plying a vector by a positive scalar produces a new vector that is longer
or shorter by an amount corresponding to the magnitude of the scalar.
Multiplication by a negative scalar produces a vector pointing in the
opposite direction. It , too, is longer or shorter depending on the mag-
nitude of the scalar. Two vectors that are scalar multiples of one



Two or more vectors can be added by adding their components. The
vectors must have the same number of components to be added; other-
wise the operation is undefined.

- -
Forming the parallelogram with sides v 1 and v 2, we see that the sum of
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FIGURE 3.

Addition of Vectors

Examples.-
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Vector addition is associative (the vectors can be grouped in any
manner) and commutative (the order of addition is unimportant ) just
like addition in ordinary algebra. This is true because if we consider
one component at a time , vector addition is just addition in ordinary

Consider Figure
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Example.. Calculating averages. We can demonstrate the use of the
two operations thus far defined in calculating the average vector. Sup-
pose we want to find the average age, height , and weight of the four
individuals in Figure IA . Clearly this involves summing the com-
ponents separately and then dividing each sum by 4. Using vectors,
this corresponds to adding the four vectors and then multiplying the
resulting sum by the scalar 1/4. Using u to denote the average vector,
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Using vector notation, if we denote the four vectors by VI, V2, V3, and

1

u = "'4 ( v 1 + V2 + V3 + V4 ).
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V4, then we can write the averaging operation as

the two vectors is the diagonal of this parallelogram. In two and three
dimensions this is easy to visualize, but not when the vectors have
more than three components. Nevertheless, it will be useful to imagine
vector addition as forming the diagonal of a parallelogram. One impli -
cation of this view, which we will find useful , is that the sum of two
vectors is a vector that lies in the same plane as the vectors being
added.



370 FORMAL ANAL YS~

LINEAR COMBIN A TI ONS AND LINEAR

Linear Combinations of Vectors

The average vector calculated in the last section is an example of a

�

In this section, we pursue this idea

1 3 9
Consider the vectors VI ~ 2 ' V2 == 2 ' and u = 10. Can u be

written as the sum of scalar multiples of v 1 and V 2? That is, can scalars
Cl and c2 be found such that u can be written in the form

u = CIVI + C2V2 ?
If so, then u is said to be a linear combination of the vectors v 1 and v 2.
The reader can verify that C 1 = 3 and C2 ~ 2 will work, and thus u is a
linear combination of v 1 and v 2.

This can where these vectors are
plotted. Remembering that

�

FIGURE 5.

INDEPENDENCE

The vector u , then , is a vector whose components are the averages of

the components of the four individual vectors . Notice that the same

result is obtained if each vector is first multiplied by 1 / 4 , and the

resulting vectors are added . This shows that multiplication by scalars

and vector addition obey a distributive law , as in ordinary algebra .
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span all of three-

combination

Linear Independence

lengthens a vector and that vector addition corresponds to forming the

diagonal of a parallelogram , it seems clear that we can find scalars to

adjust v I and v 2 to fonn a parallelogram that yields u . This is indicated

in the figure . It also seems clear that , using positive scalars , any vector

in the shaded area of the figure can be generated this way . By using

both negative and positive scalars , any vector in the plane can be writ -

ten as a linear combination of VI and v2 ' This is true because multipli -

cation by a negative scalar reverses the direction of a vector as well as

shortening or lengthening it . The vectors v I and v 2 are said to span the

plane , because any vector in the plane can be generated from these two

vectors .

In general , given a set Vt , V2 , . . . , Vn of vectors , a vector v is said to

be a linear combination of the Vi if scalars Ct , C2 , . . . , Cn can be found

such that

v ~ CtVI + C2V2 + . . . + CnVn . ( 1 )

The set of all linear combinations of the v i is called the set spanned by

the Vi .

1 0 0

Example . The three vectors 0 , 1 and 0

0 0 1

a

dimensional space since any vector v ~ b can be written as a linear

c

1 0 0

v ~ a O + b l + c 0

0 0 1

as the standard basis for three - dimensional space ( more on the idea of a

basis in the next section ) .

To say that a set of vectors span a space is to say that all vectors in

the space can be generated from the original set by linear combination .

We have shown examples in which two vectors span two - dimensional

space and three vectors span three - dimensional space . We might be led

to expect that , in general , n vectors suffice to span n - dimensional

space . In fact , we have been using the tenD " dimension " without defin -

ing what it means ; it would seem that a good definition of n -

dimensional space is the set of vectors spanned by n vectors .

The vectors are referred to



the plane.
Another example is a set of three vectors that lie on a plane in

three-dimensional space. Any parallelograms that we form will be in
the same plane, thus all linear combinations will remain in the plane
and we can't span all of three-dimensional space.

The general rule arising from these examples is that of a set of n
vectors, if at least one can be written as a linear combination of the
others, then the vectors span something less than a full n-dimensional
space. We call such a set of vectors linearly dependent. If , on the other
hand, none of the vectors can be written as a linear combination of the
others, then the set is called linearly independent. We now revise the
definition of dimensionality as follows: n -dimensional space is the set
of vectors spanned by a set of n linearly independent vectors. The n
vectors are referred to as a basis for the space.

E~'Qmples..

vector .

span
nonzero
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To make this definition work , we would require that the same size
space be generated by any set of n vectors. However, this is not the
case, as can be easily shown. Consider any pair of collinear vectors, for
example. Such vectors lie along a single line , thus any linear combina-
tion of the vectors will lie along the same line . The space spanned by
these two vectors is therefore only a one-dimensional set. The col-

I 2
linear vectors I and 2 are a good example. Any linear combina-

tion of these vectors will have equal components, thus they do not span

[ ~] and [ ~]dimensional space.1 22. 1 and 1plane, a two-dimensional space.1 23. l' 1first vector1 32 , 2 ,0 0all of

are linearly dependent. They span only a one-1.

are linearly independent. Thus they span the

- 1

, and 3

minus 4 times the second vector is equal to the third

9

and 10 are linearly dependent .
0

are linearly dependent since 7 times the

4.

third

Clearly they cannot

three-dimensional space, because no vector with a
component can be generated from this set.



Notice the relationship between examples (2) and (3) . The vectors in
example (2) are linearly independent , therefore they span the plane .
Thus any other vector with two components is a linear combination of

these two vectors . In example (3) , then , we know that the set will be
linearly dependent ref ore being told what the third vector is. This sug-
gests the following rule: There can be no more than n linearly indepen-
dent vectors in n -dimensional space .

A linearly independent set of vectors has the important property that
a vector can be written as a linear combination of the set in only one
way . In other words , the coefficients Ci in Equation 1 are unique if the
vectors Vi are linearly independent . This fact can be easily seen, for
example , in the case of the standard basis, for there is only one vector
in the basis which has a nonzero entry for any given component .

For linearly dependent vectors , however , the situation is different . If
a vector can be written as a linear combination of a linearly dependent
set of vectors , then there are an infinite number of sets of coefficients

that will work . . Let us attempt to demonstrate this fact with the aid of

geometric intuition . Suppose that we wish to write vector V as a linear
combination of three vectors vI , V2, and v3 in the plane . Let us choose
any arbitrary coefficient cI for the vector VI . As shown in Figure 6,
there must be a vector w such that v - clvl + w . Thus , if we can write

w as a linear combination of " 2 and V3, i .e ., w ~ C2V2 + C3V3, then we

have succeeded in writing vasa linear combination of v I , V 2, and v 3.
But clearly we can do this , because w is a vector in the plane , and v 2
and V3 together span the plane .
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VECTOR SPACES

Let us pause to reflect for a moment upon what a vector is . I have

implied that a vector is a list of numbers , and I have also used the ternt

to refer to a point or an arrow in space . Are both of these objects vec -

tors , or is one just a heuristic representation for the other ? Are there

other objects that should be called vectors ? Just what is a vector ?

As is often the case in mathematics , these kinds of questions are

solved by being avoided . Consider the following definition of an

abstract vector space , and try to decide what a vector is .

A vector space is a set V of elements , called vectors , with the follow -
. .
mg propertt es :

. To every pair , u and v , of vectors in V , there corresponds a

vector u + v also in V , called the sum of u and v , in such a way

that addition is commutative and associative .

. For any scalar c and any vector v in V , there is a vector cv in

V , called the product of c and v , in such a way that multiplica -

tion by scalars is associative and distributive with respect to

vector addi ti on . 1

The answer to the question is that a vector is an undefined object in

linear algebra , much like a line in geometry . The definition of a vector

space simply lists the properties that vectors must have , without speci -

fying what a vector must be . Thus , any set of objects that obey these

properties can be called a vector space . Lists of numbers are vectors

when addition is defined as adding components separately and scalar

multiplication is defined as multiplying all the components by the

scalar , because these operations fill all the requirements of a vector

space . Arrows or points in space are also vectors when addition is

defined geometrically as taking the diagonal of a parallelogram and

scalar multiplication is defined as lengthening or shortening the arrow ,

because again , these operations fill the requirements of a vector space .

A seemingly unrelated example of a vector space is the set of polyno -

mials of order n , with addition and scalar multiplication defined in the

obvious way .

This sort of abstraction is common in mathematics . It is useful

because any theorem that is true about a general vector space must be

�

1 I have left out certain technicalities usually included as axioms for a vector space .

These include the axiom that there must be a zero vector , and for every vector , there is

an additive inverse .



true about any instantiation of a vector space. We can therefore discuss
general properties of vector spaces without being committed to choos-
ing a particular representation such as a list of numbers. Much of the
discussion about linear combinations and linear independence was of
this nature.

When we do choose numbers to represent vectors, we use the fol-
lowing scheme. First we choose a basis for the space. Since every vec-
tor in the space can be written as a linear combination of the basis vec-
tors, each vector has a set of coefficients cl , c2, . . . , Cn which are the
coefficients in the linear combination. These coefficients are the
numbers used as the components of the vector. As was shown in the
previous section, the coefficients of a given vector are unique because
basis vectors are linearly independent.

There is a certain arbitrariness in assigning the numbers, since there
are infinitely many sets of basis vectors, and each vector in th~ space
has a different description depending on which basis is used. That is,
the coefficients, which are referred to as coordinates, are different for
different choices of basis. The implications of this fact are discussed
further in a later section where I also discuss how to relate the coordi-
nates of a vector in one basis to the coordinates of the vector in
another basis. Chapter 22 contains a lengthy discussion of several
issues relating to the choice of basis.

As of yet, we have no way to speak of the length of a vector or of
the similarity between two vectors. This will be rectified with the
notion of an inner product.

The inner product of two vectors is the sum of the products of the
vector components. The notation for the inner product of vectors
v and w is v . w . As with vector addition , the inner product is defined
only if the vectors have the same number of components.

Example..
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INNER PRO DUCTS

3 1

v ~ - 1 w ~ 2

2 1

v . w ~ (3 . 1) + (- 1 . 2) + (2 . 1) ~ 3.
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Length

lnner product of a vector with

in Figure 7. The inner pro-

duct of v with itself is

v . v ~ 32 + 42 ~ 25.

4

3

2

1 2 3 4

FIGURE 7.

As a special case, consider taking the
3

itself . An example is the vector v = 4

~
 

.

The inner product is a kind of multiplication between vectors,
although somewhat of a strange sort of multiplication, since it produces
a single number from a pair of vectors. What does this single number
ff measure" ?

Consider the right triangle in Figure 7 with sides corresponding to the
components of v , and hypotenuse v itself . The Pythagorean theorem
tells us that the square of the length of v is equal to the sum of the
squares of the sides . Since this is exactly what is calculated by the
inner product v . v , it appears that a reasonable definition of the length
of a vector is the square root of the inner product of the vector with
itself. Thus we define the length of a vector v , denoted by Ilvll , as

Ilvll = (v . V) 'h.

Although the definition was motivated by an example in two dimen -
sions , it can be applied to any vector . Notice that many of the



The angle between two vectors v and w is defined in terms of the
inner product by the following definition:

v . w
C 0 S 9 ~ ~;ilii; f

E~'Qmple.
1
1 calculate the necessary inner product and lengths:
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Angle

(2)

the angle 9 between the vectors v 1 = and

. 
I

Ilv 111 - 1 Ilv 211 - J2,

�

.
-;

1

V2~

where (J is the angle between v and w. Note that all of the quantities on
the right hand side of the equation are easily calculated for n-
dimensional vectors. At the end of this section, I will show geometri-
cally why this formula is correct in two-dimensional space, using the
ordinary geometrical definition of angle.

Find

First , we

vl . v2 ~ 1

properties we intuitively associate with length are included in this defin -

ition . For example , if a vector has larger components than another

vector , it will be longer , because the squared components will contri -

bute to a larger inner product . Multiplying a vector by a scalar pro -

duces a new vector whose length is the absolute value of the scalar

times the length of the old vector :

II cv II = I c Illv II .

This is a property that can be easily proved . Somewhat harder to prove

is the so - called triangle inequality , which states that the length of the

sum of two vectors is less than or equal to the sum of the lengths of

the two vectors :

IIVt + V211 ~ IIVtl1 + Ilv211 .

Geometrically , the triangle inequality corresponds to the statement that

one side of a triangle is no longer than the sum of the lengths of the

other two sides .

Thus , in the special case where the operands are the same vector , the

inner product is closely related to the idea of length . What if the

operands are diff eren t vectors ?



This result could also have been found using basic trigonometry , but

clearly the inner product method is superior in general ( consider find -

ing the angle between vectors with forty components ! ) .

The inner product is often said to measure the " match " or " similari ty "

between two vectors . In a vague sense , this seems to be the case from

the definition of the inner product as the sum of products . Equation 2 ,

however , shows this in a clearer way : Writing out the equation in

tenDS of the components of the vectors gives

t Vi Wi

i - I

cas 9 ~ .

< tv ; 2 ) lh < tw ; 2 ) ' h

i - I i - I

This is the formula for the correlation between two sets of numbers

with zero means .

We can use our geometrical intuitions about angles and our under -

standing of correlation to turn Equation 2 around and gain a better

understanding of the inner product . This understanding is important

for the analysis of PDP models , because as will be seen , PDP models

often compute inner products . Let us imagine moving two vectors

around in space like the hands on a clock . If we hold the lengths of the

vectors constant , then Equation 2 says that the inner product is propor -

tional to the cosine of the angle : v . w = Ilv 1IIIw II cos ( } . For example , if

the angle between the vectors is zero , where the cosine is at a max -

imum , the inner product must therefore be at a maximum . As the two

vectors move farther apart , the cosine decreases , thus the inner product

decreases . It reaches zero when the angle is 900 , and its most negative

value when the angle between the vectors is 180  , that is , when the

vectors point in opposite directions . Thus , the closer the two vectors

are , the larger the inner product . The more the vectors point in oppo -

site directions , the more negative the inner product .

We must be careful , however , in claiming that two vectors are closer

together than two others because they have a larger inner product . We
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and then substitute these values in Equation 2:

1

cos (J ~ 1-~-:J2 - O. 707.

Thus ,

9 - COS- l (0. 707) ~ 45  .
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must remember to divide the inner product by the lengths of the vec-
tors involved to make such comparative statements.

An important special case occurs when the inner product is zero. In
this case, the two vectors are said to be orthogonal. Plugging zero into
the right side of EQuation 2 gives

basis

x ~ Ilvlt cos 8

where 9 is the angle between v and w . This formula generalizes, and
for any vectors v and w , the projection of v on w is given by Equation
3. It is a scalar which can be thought of as indicating how much v is
pointing in the direction of w .

3799. INTRODUCTION TO LINEAR

cas () ~ O.

When we choose a for a space, we typi-

Projections

(3)

which implies that the angle between the vectors is 90 . Thus, orthog-
onal vectors are vectors which lie at right angles to one another.

We will often speak of a set of orthogonal vectors. This means that
every vector in the set is orthogonal to every other vector in the set.
That is, every vector lies at a right angle to every other vector. A good
example in three-dimensional space is the standard basis referred to

A further application of the inner product, closely related to the ideas
of length and angle, is the notion of a projection of one vector onto
another. An example is given in Figure 8. The distance x is the pro-
jection of v on w . In two dimensions, we readily know how to calculate
the projection. It is



Thus, the projection is the inner product divided by the length ofw . In
particular, if w has length one, then Ilw II ~ 1, and the projection of v
on w and the inner product of v and ware the same thing. This way of
thinking about the inner product is consistent with our earlier com-
ments. That is, if we hold the lengths of v and w constant, then we
know that the inner product gets larger as v moves toward w . From the
picture, we see that the projection gets larger as well. When the two
vectors are orthogonal, the projection as well as the inner product are
zero.

Inner Products in Two Dimensions

Equation 2 can be shown to be correct in two-dimensional space with
the help of some simple geometry. Let v and w be two vectors in the
plane, and () be the angle between them, as shown in Figure 9. Denote
the x and y coordinates of v and w by vx, Vy and wx, Wy, respectively.
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x ~ 'Iv" cas 9
v.w

~ II v II ~vii--ii; ir
v.w.~ Ilw II

There is a close relationship between the inner product and the pro-
jection . Using Equation 2, we can rewrite the formula for the projec-
tion :



Let I denote the projection of v on w. We have I = Ilv II cos(J from
geometry. We can break I into two pieces Ix and Iy as shown in the fig-
ure. Iy can be computed from the diagram by noticing that triangles
OAD and COB, in Figure 10, are similar triangles. Thus, the ratio of
corresponding sides is constant:
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Iy Wy- -Vy - Ilwll '
Vy WyIy ~ lW[-
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FIGURE 10.
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In Figure 11, we see how to compute Ix,
EOD and CAB are similar. Thus,

In this section, we collect together some useful algebraic theorems
concerning inner products. Most of these theorems can be easily
proved using the definition of the inner product and properties of real

ANALYS~

. . . . . . .

"
- - -

- - -

B " ...... ""'"
1 ....- = .-;~ ........
.:." , \

. . . . . . .

A -:: : _ - - - - C
Vx

, "

, ..~~,.--::::::;;;;;;;;;;-!\ \ E
\ ,

\ I

\ \~ I
I
I

0 Wx

FIGURE 11.

by observing that triangles

. .
gl vlng

We can now write I - /x + /y, which yields

/ - Ilv II cas 9 - Ix + /., - ~ +
Thus ,

w

v ."cas 8 - .llvIli~;ii.

Algebraic Properties of the Inner Product

Ix Wx- -VX II- II '
Vx WxIx - u;;r.

Vy "..,. v . w- . -
II" II Ilw II



numbers . In what follows , c and Ci will be any scalars, and the v and w
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(4)

(5)

(6)

will be n -dimensional vectors.

The first theorem says simply that order is unimportant ; the inner pro-
duct is commutative . The second and third theorems show that the
inner product is a linear function , as we will discuss at length in a later
section. We can combine these two equations to get
W . (CIV 1 + C2VJ ~ CI (W . v I) + C2 (W . V2) . It is also well worth our
while to use mathematical induction to generalize this formula , giving
us

W . (CIVI + C2V2 + . . . + Cn Vn) ~

CI (W . v I) + C2 (W . V2) + . . . + Cn (W . vn ) . (7)

This important result tells us how to calculate the inner product of w
and a linear combination of vectors.

Another useful theorem is

Iv . wi ~ Ilvllllwll (8)

This is known as the Cauchy-Schwartz inequality . It gives an upper
bound on the inner product.

ONE UNIT IN A PARALLEL DISTRIBUTED
PROCESSING SYSTEM

In this section, we show how some of the concepts we have intro -
duced can be used in analyzing a very simple PDP model. Consider the
processing unit in Figure 12 which receives inputs from the n units
below. Associated with each of the n + 1 units there is a scalar activa-
tion value. We shall use the scalar u to denote the activation of the out -
put unit and the vector v to denote the activations of the n input units .
That is, the ith component of v is the activation of the ith input unit .
Since there are n input units , v is an n -dimensional vector.

Associated with each link between the input units and the output
unit , there is a scalar weight value, and we can think of the set of n



w w W
1 2 n

The activation of the output unit is the inner product of its weight vec-
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FIGURE 12.

. .

. .

FIGURE 13.

weights as an n -dimensional vector w . This is the weight vector
corresponding to the output unit . Later we will discuss a model with
many output units , each of which will have its own weight vector.

Another way to draw the same model is shown in Figure 13. Here
we have drawn the n input units at the top with the output unit on the
right . The components of the weight vector are stored at the junctions
where the vertical input lines meet the horizontal output line . Which
diagram is to be preferred (Figure 12 or Figure 13 ) is mostly a matter
of taste, although we will see that the diagram in Figure 13 generalizes
better to the case of many output units .

Now to the operation of the model: Let us assume that the activa-
tion of each input unit is multiplied by the weight on its link , and that
these products are added up to give the activation of the output unit .
Using the definition of the inner product, we translate that statement
into mathematics as follows :

u = w . v .

tor with the vector of input activations .



The geometric properties of the inner product give us the following
picture to help in understanding what the model is computing . We
imagine that the set of possible inputs to the model is a vector space.
It is an n -dimensional space, where n is the number of input lines.
The weight vector also has n components, thus we can plot the weight
vector in the input space. The advantage of doing this is that we can
now state how the system will respond to the various inputs. As we
have seen, the inner product gives an indication of how close two vec-
tors are. Thus, in this simple POP model, the output activation gives
an indication or measurement of how close the input vector is to the
stored weight vector. The inputs lying close to the weight vector will
yield a large positive response, those lying near 90 0 will yield a zero
response, and those pointing in the opposite direction will yield a large
negative response. If we present a succession of input vectors of con-
stant length, the output unit will respond most strongly to that input
vector which is closest to its weight vector, and will drop off in
response as the input vectors move away from the weight vector.

One way to describe the functioning of the processing unit is to say
that it splits the input space into two parts, the part where the response
is negative and the part where the response is positive. We can easily
imagine augmenting the unit in the following way: if the inner product
is positive, output a 1; if the inner product is negative, output a O.
This unit , referred to as a linear threshold unit, explicitly computes
which part of the space the input lies in .

In some models, the weight vector is assumed to be normalized, that
is, Ilw II = 1. As we have seen, in this case, the activation of the output
unit is simply the projection of the input vector on the weight vector.

l\{.A.. TRICES AND LINEAR SYSTEMS
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The first section introduced the concepts of a vector space and the
inner product. We have seen that vectors may be added together and
multiplied by scalars. Vectors also have a length , and there is an angle
between any pair of vectors. Thus, we have good ways of describing
the structure of a set of vectors.

The usefulness of vectors can be broadened considerably by introduc -
ing the concept of a matrix . From an abstract point of view, matrices
are a kind of " operator" that provide a mapping from one vector space
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to another vector space. They are at the base of most of the models in
this book which take vectors as inputs and yield vectors as outputs.

First , we will define matrices and show that they have an algebra of
their own which is analogous to that of vectors. In particular, matrices
can be added together and multiplied by scalars.

MATRICES

A matrix is simply an array of real numbers. If the array has m rows
and n columns, then we will refer to the matrix as an m x n matrix .
Capital letters will be used to denote matrices.

Examples.. 3 0 0 10 - 1
3 4 5 N ~ 0 7 0 P = - 1 27

M - 101 001

M is a 2 x 3 matrix , N is a 3 x 3 matrix , and P is a 2 x 2 matrix .

Some special matrices. There are several classes of matrices that are
useful to identify . A square matrix is a matrix with the same number
of rows and columns. The matrices Nand P are examples of square
matrices. A diagonal matrix is a square matrix that is zero everywhere
except on its main diagonal. An example is matrix N . A symmetric
matrix is a square matrix whose i ,jth element is equal to its j , ith ele-
ment . Any diagonal matrix is symmetric . Matrix P is an example of a
symmetric matrix that is not diagonal. Finally , the diagonal matrix that
has all ones on its main diagonal is referred to as the identity matrix ,
and is denoted I .

Multiplication by Scalars

A matrix can be multiplied by a scalar by multiplying every element
in the matrix by that scalar.

Example..



Matrices are added together by adding corresponding elements. Only
matrices that have the same number of rows and columns can be added
together.

Example..

Notice that there is a close relationship between these definitions and
the corresponding definitions for vectors . In fact , for fixed integers
m and n , the set of all m x n matrices is another example of a vector
space. However , we will not exploit this fact , rather , we will think
about matrices in another way , in terms of functions from one vector
space to another . This is the subject of the next section .

We now link up vectors and matrices by showing how a vector can be
multiplied by a matrix Consider the matrix

'3 4 _I

1 0 1 ~ We wish to define a vector u

to produce a new vector.5 1and the vector v - O.2which is the product of Wand v, and denoted
5 1
1 0

2
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Multiplication of a Vector by a Matrix

. 
~
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0

M + N -

. I
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+

2
~

- 1

w

3
1u - Wv -

To define this operation, first imagine breaking the matrix into its rows.
Each row of the matrix is a list of three numbers. We can think of the
row as a three-dimensional vector and speak of the row vectors of the
matrix. There are two such row vectors. Now consider forming the
inner products of each of these row vectors with the vector v . This will
yield two numbers. These two numbers can be thought of as a two-
dimensional vector u , which is defined to be the product W v .
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Example..

. I

3 4
1 0

3. 1+ 4.0+ 5.2
1. 1+ 0.0+ 1.2

~u = Wv =

The components of u are the inner products of v with the row vectors
ofW .

For a general m x n matrix Wand an n -dimensional vector v ,2 the
product Wv is an m -dimensional vector u , whose elements are the
inner products ofv with the row vectors ofW . As suggested by Figure
14, the ith component of u is the inner product of v with the ith row
vector of W . Thus , the multiplication of a vector by a matrix can be
thought of as simply a shorthand way to write down a series of inner
products of a vector with a set of other vectors . The vector u tabulates
the results . This way of thinking about the multiplication operation is a
good way to conceptualize what is happening in a POP model with
many output units , as we will see in the next section .

There is another way of writing the multiplication operation that

gives a different perspective on what is occurring . If we imagine break -
ing the matrix up into its columns , then we can equally well speak of
the column vectors of the matrix . It can then be easily shown that the

multiplication operation Wv produces a vector u that is a linear combi -
nation of the column vectors of W . Furthermore , the coefficients of
the linear combination are the components of v . For example , letting

WI , W2, W3 be the column vectors ofW , we have

u = VtWt + V2W2+ V3W3= [ 1 [ ~ + o [ ~1 + 2 [ ~1] = 1~]

u W V

.th 0 .th r ~com~ nent = r~w ~ ..J

FIGURE 14.

2 The dimensionality of v must be equal to the number of columns of W so that the
inner products can be defined. ~

!
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~
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where the Vi are the components of v . This way of viewing the multi -
plication operation is suggested in Figure 15 for a matrix with n
columns.

If we let the term column space refer to the space spanned by the
column vectors of a matrix , then we have the following interesting
result: The vector u is in the column space ofW .

Finally , it is important to understand what is happening on an
abstract level. Notice that for each vector v , the operation Wv pro-
duces another vector u . The operation can thus be thought of as a
mapping or function from one set of vectors to another set of vectors.
That is, if we consider an n -dimensional vector space V (the domain)
and an m-dimensional vector space U (the range) , then the operation
of multiplication by a fixed matrix W is a function from V to U , as
shown in Figure 16. It is a function whose domain and range are both
vector spaces.

�

389

w u

I
~

.
-

. 
I

+ VnWn. . .
. . .

v u
w

VIWI +

�

Algebraic Properties of Matrix Mapping

Several properties of matrix-vector multiplication follow directly from
the properties of the inner product. In all cases, the number of
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Outputs

Inputs

components of the vector must be the same as the number of columns
of the matrix .

W (av ) ~ aWv (9)

W (0 + v ) ~ W 0 + W v ( 10)

B
~

~~
 ~

.

.

.

.

FIGURE 17.

These equations are the counterparts to EQuations 5 and 6. As in that
section, they can be combined and generalized to general linear combi-
nations :

W (CIVI + c2v2 + . . . + cnvn) ~

Cl (WVl) + C2(WV2) + . . . + Cn (Wvn) (11)

In the next theorem , the matrices M and N must have the same

number of rows and columns .

Mv + Nv ~ (M + N )v ( 12)

ONE LAYER OF A PARALLEL DISTRIBUTED
PROCESSING SYSTEM

I now generalize the simple model presented earlier to show how
matrices can be used in analyzing PDP models . Consider Figure 17,
which is the generalization of Figure 12 to the case of many output
units . Suppose that there are m output units , each one connected to all
of the n input units . Denote the activation of the output units by

ul , u21 . . . I Um. Each output unit has its own weight vector Wi '
separate from the other output units . As before , the activation rule
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FIGURE 18.

unit to the

says that the activation of an output unit is given by the inner product

of its weight vector with the input vector , thus ,

Uj ~ ' Wj . v .

If we form a matrix W whose row vectors are the Wi , then we can use

the rule for matrix - vector multiplication to write all of the computations

at once . Let u be the vector whose components are the u ; . Then

u ~ Wv .

This is a very succinct expression of the computation performed by the

network . It says that for each input vector v , the network produces an

output vector u whose components are the activations of the output

units .

Another way to draw the network is shown in Figure 18 , which is the

general ~ zation of Figure 13 to the case of many output units . At each

junction in the diagram there is a weight connecting an input unit with

an output unit . 3 The weight vectors associated with each output unit

appear on the horizontal lines . When drawn this way , it is clear why a

matrix appears in the equation linking the output vector to the input

vector : The array of junctions in the diagram is exactly the weight

matrix W .

Now let us attempt to understand geometrically what is being com -

puted by the model . Each output unit is computing the inner product

Inputs

~

3 Note that the weight in the ith row and jth column connects the jth

ith output unit .

. . .

w w WII 12 . . . In
W W W21 22 . . . 2n

. Outputs.

.
w w . . . Wml m2 mn
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4 This is not standard terminology, and I will continue to use the term weight vector to
refer to the incoming weight vectors.

of its weight vector and the input vector ( which is common to all out -

put units ) . Thus , each unit can be thought of as computing how close

its weight vector is to the input vector . A larger activation is attained

the closer the two vectors are . If all of the weight vectors have the

same length , then that output unit with the largest activation will be the

unit whose weight vector is closest to the input vector .

In the model with only one output unit , we imagined plotting the

weight vector in the input vector space . This enabled us to see directly

which input vectors led to a large response and which input vectors led

to a small response . In the model with several output units , we can

generalize by plotting each weight vector in the input space . Now we

can see for each unit which inputs it responds to . If the weight vectors

are spread around in the space , then every input will lead to some

response . Also , the different units will respond to different inputs . If

the weight vectors are assumed to have unit length , then the activation

of the ith output unit is just the projection of v on the ith weight vec -

tor . For a given input , we can draw the projections of the input on the

weight vectors . This gives us a graphic representation of the output of

the network . It should be emphasized , however , that this representa -

tion is useful mostly as a conceptual tool . The graphic approach cannot

be used in most systems , which can have hundreds or thousands of

input lines .

Another perspective on the operation of the model can be obtained

by focusing on the columns of the weight matrix rather than on its

rows . Whereas the rows of the matrix are the weights on the lines com -

ing in to the processing units , the columns correspond to the weights

on the lines going out from the processing units . Each unit on the

lower row in Figure 17 is associated with such a vector : The com -

ponents of the vector are the weights linking that unit with the output

units above . These vectors are referred to as the outgoing weight vec -

tors , as contrasted with the incoming weight vectors which are the rows of

the weight matrix . 4 In the previous section , it was seen that when a

matrix multiplies a vector , the resulting vector is a linear combination

of the columns of the matrix . This view applies to the PDP model as

follows : The output vector u is a linear combination of the outgoing

weight vectors from the input units . The coefficients in the linear com -

bination are the activations of the input units . Thus , in this perspec -

tive , each input unit multiplies its outgoing weight vector by its activa -

tion , and the resulting vectors are added to yield the output vector of

the system .

In general , as will be discussed further in a later section , a unit can
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/ (Xt + X2) ~ / (Xt) + / (X2).

FIGURE 19.

appear in a multilayer system and thus have both an incoming weight

vector and an outgoing weight vector , as shown in Figure 19 . In this

case , both views of matrix - vector multiplication can be useful : The unit

can be thought of as matching its incoming weight vector to the current

input using the inner product , and sending the result of this match

multiplied by the outgoing weight vector to the next level .

A distinction is often made between a linear system and a nonlinear

system . In general , linear systems are relatively easy to analyze and

understand , whereas nonlinear systems can be difficult . In this section ,

I will characterize linear systems . Nonlinear systems are defined simply

as everything else . In a later section , I will give some specific examples

of nonlinear systems .

Suppose that there is a function f which represents a system in that

for each input x to the system , the output y is given by

y = f ( x ) .

The x and y might be scalars or they might be vectors , depending on

the particular system . The function f is said to be linear if for any

inputs Xl and x2 , and any real number c , the following two equations

hold :

f ( cx ) = c f ( x ) . ( 13 )

( 14 )
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The first of these two equations implies that if we multiply the input by

some constant , then the output is multiplied by the same constant .

The second equation is more important . Consider presenting the inputs

Xl and X2 separately to the system and measuring the outputs . In a

linear system , knowing how the system responds separately to the

innuts is all we need to predict the output of the system when the sum
-

Xl + X2 is presented . We simply add the outputs found separately to

obtain the response to the sum . In a nonlinear system , on the other

hand , we might find that the response to the sum is much larger or

smaller than would be expected based on the inputs taken separately .

The response to the sum might be zero even when strong responses are

obtained separately .

If we restrict ourselves to scalar functions of a scalar variable , then

the only linear functions are those in which the output is proportional

to the input , i . e . , for some real number c :

y = cr .

However , many systems are scalar or vector functions of a vector input .

For example , for a fixed vector w , the function

u = w . v

is a scalar function of a vector input v . This function is a linear func -

tion because

w . ( c v ) = c ( w . v )

and

w . ( v 1 + v 2 ) = w . V 1 + w . V 2 .

The PDP model with one output unit is an example of such a linear

system .

A system in which the output is obtained from the input by ma1rix

multiplication is also a linear system , according to Equations 9 and 10 .

It turns out that these are the only linear vector functions . That is , if a

function f which maps from one vector space to another vector space

is linear , then it can be represented by matrix multiplication . 5

The POP model discussed in the previous section is an example of a

linear system because it is represented by matrix multiplication . In

such a system , because of linearity , we know what the output will be

when the sum of two vectors is presented if we know the outputs when

S Let v ; be the ith standard basis vector and let w ; ~ f ( vi ) . Then if W is a matrix

whose columns are the Wi , f ( v / ) - Wv for all v .



The systems considered until now have been one-layer systems. That
is, the input arrives at a set of input units , is passed through a set of
weighted connections described by a matrix , and appears on a set of
output units . Let us now arrange two such systems in cascade, so that
the output of the first system becomes the input to the next system, as
shown in Figure 20. The composite system is a two-layer system and is
described by two matrix -vector multiplications . An input vector v is
first multiplied by the matrix N to produce a vector z on the set of
intermediate units :

9. INTRODUCTION TO LINEAR ALGEBRA 395

z = Nv ,

the vectors are presented separately. We also know what the output
will be to scalar multiples of a vector. These properties imply that if we
know the output to all of the vectors in some set {v,} , then we can cal-
culate the output to any linear combination of the Vi . That is, if
v - CIVI + C2V2 + . . . + CnVn, then the output when v is presented to
the system is

w v ~ W ( C IV 1 + c 2V 2 + . . . + C n V n ) ~

Cl ( WVl ) + C2 ( WV2 ) + . . . + Cn ( Wvn ) ( 15 )

The terms in the parentheses on the right are known vectors : They are

the outputs to the vectors Vi ' Thus , we simply multiply these vectors

by the Ci to calculate the output when V is presented . If the v i are a

basis for some vector space , then every vector in the space is a linear

combination of the Vi ' Therefore , knowing the outputs of the system

to the basis vectors allows us to calculate immediately the output to any

other vector in the vector space without reference to the system matrix

W . The preceding statement should be studied carefully , because it

expresses an extremely important defining property of linear systems .

Another way to say the same thing is as follows : Imagine that we are

studying some physical system by measuring its responses to various

inputs . The system might be electronic or physiological , for example .

If it is a linear system , then we should first measure the responses to a

set of inputs that constitute a basis for the input space . We then have

no need to make any further measurements . The responses of the sys -

tem to any other input vector can be immediately calculated based on

the measurements that we have already made .

MATRIX MUL TIPLICA TION AND MUL TILA YER

SYSTEMS
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FIGURE 20.

tor u on theand then z is multiplied by M to produce a
set of units :

u ~ Mz.

Substituting N v for z yields the response for the composite system :

u ~ M ( Nv ) . ( 16 )

This equation relates the input vectors v to the output vectors u .
We will now define an operation on matrices , called matrix multiplica -

tion , which will simplify the analysis of cascaded systems , allowing us to

replace the two matrices M and N in Equation 16 by a single matrix P .
Matrices M and N can be multiplied to produce a matrix P = M N as

follows : The i , jth element of P is the inner product of the ith row of

M with the j th column of N . Note that the order of multiplication is

important - the product MN is generally not equal to the product N M .

This is to be expected from the asymmetric treatment of M and N in
the definition .

Example ..

345 12 ( 3 + 8 - 5 ) ( 6 + 0 + 5 ) 611

101 2 0 ~ ( 1 + 0 - 1 ) ( 2 + 0 + 1 ) = 0 3

0 1. 2 - 1 1 ( 0 + 2 - 2 ) ( 0 + 0 + 2 ) 0 2

Another way to think about matrix multiplication follows from the
definition of matrix -vector multiplication . Each column vector of P is

the product of the matrix M with the corresponding column vector of

N . For example , the first column of P is computed by multiplying the



3979. INTRODUCTION TO LINEAR ALGEBRA

pM N

Mns

�

�

1'1
11

11
_1

~1
_1

11
8 

t

OsMDt 2

III
I

!

III
III

M . . .. . . �

FIGURE 21.

of time to compute their outputs.

first column of N by the matrix M . This is shown in Figure 21, where
we have explicitly shown the column vectors of Nand P .

The product of two matrices is defined only if the number of
columns of the first matrix is equal to the number of rows of the
second matrix . Otherwise, the inner products cannot be formed . A
handy rule is the following : Multiplying an r x s matrix and an s x t
matrix yields an r x t matrix .

Let us return to Figure 20 and EQuation 16, which describes the sys-
tem. I make the claim that the matrices M and N in the equation can
be replaced by the matrix P , if P is the matrix product of M and N . In
other words,

u ~ M (N v ) ~ (MN ) v ~ Pv .

What this equation says is that the two-layer system in Figure 20 is
equivalent to a one-layer system with weight matrix P . For every input
vector v , the two systems will produce the same output vector u . Thus,
for linear systems at least, the distinction between two-layer systems
and one-layer systems is more apparent than real. 6

We can attempt to justify our claim and, in so doing, get a better
understanding of matrix multiplication if we examine the system in Fig-
ure 20 more closely. Let us assume that a matrix P exists which can
replace the cascaded pair M , N , and consider what the element in the
first row and the first column of P should be. This element gives the
strength of the connection between the first component of the input
vector v and the first component of the output vector u . In the cas-
caded system, there are s paths through which this connection can
occur, as shown in Figure 22. We must multiply the weights along
each path and add the values for the paths to get the strength of the
connection in the equivalent one-layer system. This is calculated as

Pll - mllnll + m12n21 + . . . + mls nsl.

�

6 The two systems are identical in the sense that they compute the same function . Of
course, they may have different internal dynamics and therefore take different amounts
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FIGURE 22.

This equation can be easily generalized to give the strength of the con-
nection between thejth element ofv and the ith element ofu :

Pij ~ m/ I n Ij + m; 2 n 2.1 + . . . + m/s nsj .

This formula calculates the iOlter product between the ith row of M
and the j th column of N , which shows that P is equal to the product
MN .

This result can be extended to systems with more than two layers by
induction . For example, in a three-layer system, the first two layers
can be replaced with a matrix (as we have just seen) , and then that
matrix can be multiplied by the matrix of the remaining layer to get a
single matrix for the whole system . In general , the cascaded matrices
of any n -layer linear system can be replaced by a single matrix which is
the product of the n matrices .

As a final comment , the definition of matrix multiplication may
seem somewhat odd, especially since it would seem more straightfor -
ward to define it by analogy with matrix addition as the element -wise
product . In fact , it would be perfectly acceptable to define multiplica -
tion as the element -wise product , and then to use another name for the
operation we have discussed in this section . However , element -wise
multiplication has never found much of an application in linear algebra .
Therefore , the term multiplication has been reserved for the operation
described in this section , which proves to be a useful definition , as the

application to multilayer systems demonstrates .
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M (cN) = cMN

M (N + P ) ~ MN + MP

(N + P )M = NM + PM

The next two sections develop some of the mathematics important
for the study of learning in POP networks. First , I will discuss eigenvec-
tors and eigenvalues and show how they relate to matrices. Second, I
will discuss outer products. Outer products provide one way of con-
structing matrices from vectors. In a later section, I will bring these
concepts together in a discussion of learning.

Recall the abstract point of view of matrices and vectors that was dis-
cussed earlier: The equation 0 = Wv describes a function or mapping
from one space, called the domain, to another space, called the range.
In such vector equations, both the domain and the range are vector
spaces, and the equation associates a vector 0 in the range with each
vector v in the domain.

In general, a function from one vector space to another can associate
an arbitrary vector in the range with each vector in the domain. How-
ever, knowing that u ~ Wv is a linear function highly constrains the
form the mapping between the domain and range can have. For exam-
ple, if v 1 and v 2 are close together in the domain, then the vectors
01 - Wv 1 and 0 2 ~ Wv 2 must be close together in the range. This is
known as a continuity property of linear functions . Another important
constraint on the form of the mapping is the following , which has
already been discussed. If V3 is a linear combination of Vi and V2, and
the vectors Ul ~ WVl and 02 ~ WV2 are known, then U3 ~ WV3 is com-
pletely determined - it is the same linear combination of Ul and 02.
Furthermore , if we have a set of basis vectors for the domain, and it is
known which vector in the range each basis vector maps to, then the

399

(17)

(18)

(19)

EIGENVECTORS AND EIGENV ALVES

Algebraic Properties of Matrix Multiplication

The following properties are identical to the corresponding properties
of matrix -vector multiplication . This is to be expected given the rela-
tionship between matrix multiplication and matrix -vector multiplication
(cf . Figure 21) .
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is shortened or lengthened after multiplication by W .

Example..

4 - 1 1

2 1 2 ~ 2 0
�

WV2 Wv 1V2

FIGURE 23.

.J lii
iii

1

- 30

. I . 
I

1
2

mappings of all other vectors in the domain are determined (cf . Equa -
tion 15 ) .

In this section , let us specialize to the case of square matrices , that
is , matrices with the same number of rows as columns . In this case ,

the domain and the range will have the same number of dimensions

(because the vectors v and u must have the same number of com -
ponents ) , and the vectors in the domain and the range can be plotted in
the same space. This is done in Figure 23, where we have shown two
vectors before and after multiplication by a matrix .

In general , vectors in this space will change direction as well as
length when multiplied by a matrix . However, as demonstrated by one
of the vectors in Figure 23, there will be some vectors that will change
only in length , not direction . In other words , for these vectors , multi -
plication by the matrix is no different than multiplication by a simple
scalar . Such vectors are known as eigenvectors. Each eigenvector v of a
matrix obeys the equation

Wv ~ Xv (20)

where X is a scalar . X is called an eigenvalue, and indicates how much v



There is another, more trivial , sense in which a matrix can have mul -
tiple eigenvectors: Each vector that is collinear with an eigenvector is
itself an eigenvector. If v is an eigenvector with eigenvalue '\ , and if
y - c v , then it is easy to show that y is also an eigenvector with eigen-
value '\ . For the ensuing discussion, the collinear eigenvectors will just
confuse things, so I will adopt the convention of reserving the term
eigenvector only for vectors of length 1. This is equivalent to choosing
a representative eigenvector for each direction in which there are eigen-
vectors .

. 3 0
Let us now return to the diagonal matrix 0 4 . We have seen that

1 0
this matrix has two eigenvectors, 0 and 1 ' with eigenvalues 3 and
4. The fact that the eigenvalues are the same as the diagonal elements
of the matrix is no coincidence: This is true for all diagonal matrices,
as can be seen by multiplying any diagonal matrix by one of its
eigenvectors- a vector in the standard basis. It is also true that this
matrix has only two eigenvectors. This can be seen by considering any

a
vector of the form b ' where a and b are both nonzero. Then we
have 3 0 a 3a0 4 b ~ 4b
Such a vector is not an eigenvector, because the components are multi-
plied by different scalars. The fact that the matrix has distinct eigen-
values is the determining factor here. If the diagonal elements had
been identical, then any two-dimensional vector would indeed have
been an eigenvector. This can also be seen in the case of the n x n
identity matrix I , for which every n -dimensional vector is an eigenvec-
tor with eigenvalue 1.

In general, an n x n matrix can have up to, but no more than, n dis-
tinct eigenvalues. Furthermore, distinct eigenvalues correspond to dis-
tinct directions. To be more precise, if a matrix has n distinct
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A matrix can have more than one eigenvector, which, geometrically,means that it is possible to have eigenvectors in more than one direc-tion. For example, the leftmost matrix above also has the eigenvector11 with eigenvalue 3, and the diagonal matrix on the right also has the0eigenvector 1 with eigenvalue 4.



U = Cl (WVl ) + C2 (WV2) + . . . + Cn (Wvn).

If we next substitute for each of the Quantities Wv;, using EQuation 20:

U - CIA Iv 1 + C ~ 2V 2 + . . . + C n A n v n .
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v = C IV 1 + c 2V 2 + . . . + C n V n .

+ CnVn ).

We can now write :

u = Wv

u = W ( CtVt + C2V2 +

Using linearity ,

(21)

eigenvalues, then the n associated eigenvectors are linearly independent.
Although the conditions under which a matrix has a full set of distinct
eigenvalues are beyond the scope of this chapter, it is Quite possible to
have matrices with fewer than n eigenvalues, as in the case of the iden-. .
tlty matrIx .

I will not discuss how to find eigenvectors and eigenvalues for a par-
ticular matrix , but refer the reader to the books on linear algebra listed
at the end of the chapter. There are several methods, all of which can
be computationally expensive for large matrices. In a later section I
will discuss how to construct a certain class of matrices given a set of
desi red eigen vectors.

The goal now is to show how eigenvectors can be used. To do so, let
us begin by assuming that we are dealing with the most favorable case:
an n x n matrix W with n distinct eigenvalues AI , A2 , . . . , An.
Denote the associated linearly independent eigenvectors by
vI , V 2 , . . . , V n. Recall that if we have a set of basis vectors for the
domain of a matrix , and if we know the vectors in the range associated
with each basis vector, then the mapping of all other vectors in the
domain are detennined . The eigenvectors of W form such a basis.
This is because there are n eigenvectors, and they are linearly indepen-
dent. Furthermore , we know the vectors in the range associated with
each eigenvector Vi ; they are simply the scalar multiples given by
Wv = Xv.

To show how to take advantage of these observations, pick an arbi-
trary vector v in the domain of W . It can be written as a linear combi-
nation of the eigenvectors, because the eigenvectors form a basis:



Notice that there are no matrices in this last equation. Each term CiAi is
a scalar; thus we are left with a simple linear combination of vectors
after having started with a matrix multiplication.

This equation should give some idea of the power and utility of the
eigenvectors and eigenvalues of a matrix. If we know the eigenvectors
and eigenvalues, then, in essence, we can throwaway the matrix. We
simply write a vector as a linear combination of eigenvectors, then mul-
tiply each term by the appropriate eigenvalue to produce Equation 21,
which can be recombined to produce the result. Eigenvectors turn
matrix multiplication into simple multiplication by scalars.

It is also revealing to consider the magnitudes of the eigenvalues for
a particular matrix. In Equation 21, all of the vectors Vi are of unit
length, thus the length of the vector u depends directly on the product
of the magnitudes of the Ci and the eigenvalues Ai. Consider the vec-
tors that tend to point in the directions of the eigenvectors with large
eigenvalues. These are the vectors with large c; for those eigenvectors.
Equation 21 says that after multiplication by the matrix they will be
longer than vectors of the same initial length that point in other direc-
tions. In particular, of all unit length vectors, the vector that will be
the longest after multiplication by the matrix is the eigenvector with the
largest eigenvalue. In other words, knowledge of the eigenvectors and
eigenvalues of a system tells which input vectors the system will give a
large response to. This fact can be useful in the analysis of linear
models.

TRANSPOSES AND THE OUTER PRODUCT

The transpose of an n x m matrix W is an m x n matrix denoted
W T. The i ,j th element of W T is the j , i th element of W .
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Example.'

3 4 5 T 3 1

102 - 40

5 2

Another way to describe the transpose is as follows : The row vectors of
W T are the column vectors of W , and the col umn vectors of W Tare
the row vectors of W .
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Algebraic Properties of the Transpose

(WT)T ~ W

(CW)T ~ CWT

( M + N ) T ~ MT + NT

( MN ) T = NTMT

If a matrix is its own transpose , that is if WT ~ W , then the matrix is
.

symmetrIc .

Ou ter Products

Before discussing outer products , let me attempt to ward off what
could be a confusing aspect of the notation we are using. Consider, for
example , the entity below . Is it a matrix with one column or is it a
vector ?

3

1

2

The answer is that it could be either - there is no way of distinguishing
one from the other based on the notation . There is nothing wrong with

this failure to distinguish between vectors and n x 1 matrices for the
following reason . In equations involving vectors and matrices , the
same results will be obtained whether entities such as the one above are

treated as vectors or as matrices . This is true because the algebra for
vectors and matrices is exactly the same, as a review of the relevant
earlier sections will show . Thus , as long as we are simply interested in

calculating values and manipulating equations, there is no need to dis-
tinguish between vectors and n x 1 matrices . Rather , by treating them
as the same thing , we have a uniform set of procedures for dealing with
all equations involving vectors and matrices .

Nevertheless, on the conceptual level , it is important to distinguish
between vectors and matrices . The way we are using the terms , a vec-
tor is an element in a vector space , whereas a matrix can be used to

define a linear mapping from one vector space to another. These are
very different concepts .

With this caveat in mind , we will continue to take advantage of the

uniformity of notation , blurring the distinction between a vector and an



n x 1 matrix . For example, for every n -dimensional vector v , we can
Conn the transpose vT , which is simply a matrix with one row. We can
then Conn the product v T u , where u is any n -dimensional vector, as in
the following example.

Example..
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��

�

vrU - [31

w . = u .v
I I

where u; is the i th component of the vector u .

041u -

. 
I

3
1
2

y -

. I

0

4

1
- [6]

Notice that the result has only a sing; e component, and that this com-
ponent is calculated by taking the inner product of the vectors v and u .
In many applications, there is no need to distinguish between vectors
with one component and scalars, thus the notation v T u is often used
for the inner product.

Let us next consider the product u v T. This is a legal product
because the number of columns in u and the number of rows in v Tare
the same, namely one. Following the rule for matrix multiplication , we
find that there are n 2 inner products to calculate and that each inner
product involves vectors of length one.

Example..

1 3 1 2

uv T ~ 4 [ 3 1 2] ~ 12 4 8
0 0 0 0

The i ,jth element of the resulting matrix is equal to the product Ui Vj.
For those who may have forgotten the noncommutativity of matrix

multiplication , this serves as a good reminder : Whereas the product
v T u has a single component, a simple change in the order of multipli -
cation yields an n x n matrix .

Products of the form uv T are referred to as outer products, and will
be discussed further in the next section. Note that the rows of the
resulting matrix are simply scalar multiples of the vector v . In other
words, if we let W be the matrix BV T, and let Wi be the i th row of W ,
then we have
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OUTER PRODUCTS , EIGENVECTORS , AND LEARNING

In this section , I discuss two example PDP systems that bring

together several of the concepts discussed previously , including eigen -

vectors and outer products . These systems are described in J . A .

Anderson , Silverstein , Ritz , and Jones ( 1977 ) and Kohonen ( 1977 ) .

We have seen that simple linear PDP systems can be modeled with

the equation u ~ Wv , where W is a weight matrix ~ The rows of Ware

the weight vectors associated with each of the units in the upper level

of the system . Until now , we have taken the matrix W to be a given ,

and have discussed how it maps input vectors to output vectors . Let us

now consider a simple scheme , referred to as a Hebbian learning rule ,

whereby we can choose a matrix that associates a particular output vec -

tor u with a particular input vector v . A system that can autonomously

implement such a scheme is capable of a rudimentary form of associa -

tive learning .

The scheme will only work with input vectors of unit length , so let

us begin by making that assumption . Thus , we have v . v ~ 1 . Let us

consider the simplest case , in which the output vector u has only one

component , which we will denote by u . This is the system discussed in

Figure 13 . We wish a weight vector w such that when v is present as

the input , the output is u : u ~ w . v . Note that u and v are the given

here , and w is the unknown . To make a choice for w , we can use the

following logic . We wish to convert the vector v into a scalar u . If we

were to choose v itself as the weight vector , then we would have

v . v ~ 1 . Since we wish the scalar u , not 1 , we choose v multiplied by

u , which gives the desired result . This can be seen using simple algebra

as follows :

w . v = ( uv ) . v

~ u ( v . v )

~ u .

Geometrically , the problem of finding w corresponds to finding a

vector whose projection on v is u . As shown in Figure 24 , any vector

along the dotted line will work , because each such vector projects to the

same place on v . Our solution involved making the simple choice of

the vector that points in the same direction as v .

It is not difficult to generalize to the case of an output vector u with

more than one component . To do so , let us consider the POP system

of Figure 18 . Each output unit has a weight vector , and these weight

vectors form the rows of the weight matrix W . As discussed earlier ,

each unit calculates the inner product between its weight vector and the
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' Wi = UiV .

The i th unit will then produce the i th component of 0 when presented

with v . Thus , the system as a whole will produce the vector 0 when

presented with v . We now would like a way to write a matrix W whose

rows are given by Equation 22 . This is done by noting that Equation 22

is , set of equations calculating the outer product of 0 and v . Thus , W

can be written as follows :

W = ovT .

We can check the correctness of this choice for W as follows :

Wv = ( ovT ) v

= 0 ( v Tv )

= 0

using the fact that v is of length one in making the last step .

The fact that W is an outer product has important implications for

the implementation of Hebbian learning in POP networks . As discussed
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FIGURE 24.

(22)

input vector v , and these inner products are the components of the out-
put vector u . To implement a learning scheme, we need to be able to
choose weight vectors that produce the desired components of u .
Clearly, for each component, we can use the scheme already described
for the single unit model above. In other words, the ith weight vect,or
should be given by
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W. = U.V.TI I I

Finally,
the Wi :

we form a composite weight matrix W which is the sum of

developed above:

in the previous section , the i ,jt ,h element of W is equal to the product

Uj Vj, which is the product of the activation of the jth input unit and
the ith output unit . Both of these quantities are available in a physi -
cally circumscribed area on the link joining these two units . Thus , the
weight on that link can be changed by autonomous local processes. The
Hebb rule is often referred to as a loco/ learning rule for this reason .

To summarize, we have established a procedure for finding a matrix
W which will associate any particular pair of input and output vectors .
Clearly for every pair of vectors , we can find a different weight matrix
to perform the association . What is less obvious is that the same
matrix can be used for several pairs of associations . Let us assume that
we are given n n -dimensional output vectors U 1, U2 , . . . , Un which
we want to associate with n n -dimensional input vectors
VI , V2 , . . . , Vn . In other words , for each ; , we wish to have

U ; = WV ; .

Let us further assume that the vectors Vi form a mutually orthogonal
set and that each vector Vi is of unit length . That is, we assume

T - 1 if i = j
V i V j - 0 otherwise .

We now form a set of matrices Wi using the learning scheme
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The property of orthogonality was crucial here, because it forced the
disappearance of all terms in vol ving vectors other than U i in the next to
last step. The reader may find it useful to justify the steps in this
derivation .

When the set of input vectors is not orthogonal, the Hebb rule will
not correctly associate output vectors with input vectors . However , a
modification of the Hebb rule , known as the delta rule , or the Widrow -

Hoff rule , can make such associations . The requirement for the delta
rule to work is that the input vectors be linearly independent . The
delta rule is discussed further in Chapter 11, and at length in Kohonen
( 1977) .

Earlier it was discussed how , at least for square matrices , knowledge
of the eigenvectors of a matrix permits an important simplification to
be made . The matrix multiplication of ' a vector can be replaced by
scalar multiplication (cf . EQuation 21) . I will now show that the Heb -
bian learning scheme fits nicely with the notion of eigenvectors . Sup-
pose that we wish to associate vectors with scalar copies of themselves .
This is what is done , for example , in an auto -associator like those dis -
cussed in J. A . Anderson et ale ( 1977) ; see Chapters 2 and 17. In other

words , we want the vectors U i to be of the form A ; v ; where v j are the

input vectors . Let us further assume that the n scalars A; are distinct .
Using the outer product learning rule , we have

w ~ WI + . . . + W; + . . . + Wn

where

W . ~ u .v .T ~ \ .v .v .T
, " 1\ . " , .

If we now present the vector V ; to the matrix W thus formed , we have

Wv ; ~ (WI + . . . + W; + . . . + Wn ) v ;

~ (AIVIVr+ . . . + A;v;vT + . . . + AnVnV! )v;

~ 0 + . . . + A; Vi (v jTV; ) + . . . + 0

~ A ;V ; .

This equation shows that Vi is an eigenvector ofW with eigenvalue Ai .
Let me summarize . When we calculate a weight matrix W using the

Hebbian learning rule and associate input vectors to scalar multiples of
themselves , then those input vectors are the eigenvectors of W . It is
important to note that the matrix W need not even be calculated - as
was stated in the section on eigenvectors , once we have the eigenvec -
tors and eigenvalues of a matrix , we can throwaway the matrix . All
input -output computations can be done by using EQuation 21. This



approach is in contrast to a scheme in which we first calculate a matrix
W from the input vectors, and then calculate the eigenvectors from the
matrix W . Here, the eigenvectors are available in the statem~nt of the
problem.

Why should one want to associate vectors with scalar copies of them-
selves? & sentially , the answer is that a system which learns in this
way will exhibit the desirable property of completion. That is, when par-
tial versions of previously learned vectors are presented to the system,
it will be able to produce the whole vector. Readers desiring more
details on how this is done should consult Anderson et ale (1977) .

410 FORMAL ANALYSES

MATRIX INVERSES

Throughout this chapter, I have discussed the linear vector equation
u ~ Wv . First , I discussed the situation in which v was a known vector
and W a known matrix . This corresponds to knowing the input to a
system and its matrix , and wanting to know the output of the system.
Next , I discussed the situation in which v and u were known vectors,
and a matrix W was desired to associate the two vectors. This is the
learning problem discussed in the previous section. Finally , in this sec-
tion , I discuss the case in which both u and Ware known, but v is
unknown . There are many situations in which this problem arises,
including the change of basis discussed in the next section.

As we will see, the solution to this problem involves the concept of a
matrix inverse. Let us first assume that we are dealing with square
matrices. The inverse of a matrix W , if it exists, is another matrix
denoted W- l that obeys the following equations:

W - lW = I

WW - l = I

where I is the identity matrix .

Example..

- 
--

-
-

~
- 

I . 
I

� Ih 2 1- --3 32 2- -3 3W- l =
1

- 1
w --



ww -

Thus the solution of the equation simply involvesmultiplying
matrix W- l .

Example.
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. 
- 

I .
-~

--
 

I

. 
.

1 0~ 0 1
�

~ v .

u by the

We wish to find the vector v that satisfies the equation

. I . 
1

To do so, we use the matrix W- l given above:

~
 

J �

We can now check the result as follows:

. I . I

2 1- --3 32 2- -3 3
Ih

�

1
- 1

.1 --

W- IW ~

�

1
0~

1 Ih

- 1 1 [

. I

3
3v -

v ~
3 13 ~ 4.

. J . 
I

. 
J

. 1

1 1/2 1 3
- 1 1 4 = 3

It is important to realize that W- l, despite the new notation, is sim-
ply a matrix like any other. Furthermore, the equation v ~ W- lu is
nothing more than a linear mapping of the kind we have studied
throughout this chapter. The domain of this mapping is the range of

2 1- --3 32 2- -3 3

�

A good discussion of how to calculate a matrix inverse can be found
in Strang (1976) .

Let us now show that the matrix inverse is the tool we need to solve
the equation u ~ Wv , where v is the unknown . We multiply both
sides of the equation by W- l , which yields

W -1 W- IWU - V

= Iv



W , and the range of the mapping is the domain of W . This in verse
relationship is shown in Figure 25. The fact that W- I represents a
function from one vector space to another has an important conse-
quence. For every u in the domain of W- I, there can be only one v in
the range such that v ~ W- I u. This is true because of th.e defini ti on of
a function . Now let us look at the consequence of this fact from the
point of view of the mapping represented by W . If W maps any two
distinct points VI and V2 in its domain to the same point u in its range,
that is, if W is not one-to-one, then there can be no W- I to represent
the inverse mapping.

We now wish to characterize matrices that can map distinct points in
the domain to a single point in the range, for these are the matrices
that do not have inverses. To do so, first recall that one way to view
the equation u ~ W v is that u is a linear combination of the column
vectors of W . The coefficients of the linear combination are the com-
ponents of v . Thus, there is more than one v which maps to the same
point u exactly in the case in which there is more than one way to write
u as a linear combination of the column vectors ofW . These are com-
pletely equivalent statements. As discussed earlier, we know that a
vector u can be written as a unique linear combination of a set of vec-
tors only in the case where the vectors are linearly independent. Other-
wise, if the vectors are iinearly dependent, then there are an infinite
number of ways to write u as a linear combination . Therefore , we have
the result that a matrix has an inverse only if its column vectors are
linearly independent.

For square matrices with linearly dependent column vectors and for
non-square matrices, it is possible to define an inverse called the gen-
eralized inverse, which performs part of the inverse mapping. In the
case in which an infinite number of points map to the same point , there
will be an infinite number of generalized inverses for a particular
matrix , each of which will map from the point in the range to one of
the points in the domain.
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v u
W

W -1

FIGURE 2S.
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In summary , the matrix inverse W - 1 can be used to solve the equa -

tion u = Wv , where v is the unknown , by multiplying u by W - l . The

inverse exists only when the column vectors of Ware linearly indepen -
dent . Let me mention in passing that the maximum number of linearly

independent column vectors of a matrix is called the rank of the
matrix .1 An n x n matrix is defined to have full rank if the rank is equal

to n . Thus , the condition that a matrix have an inverse is equivalent to
the condition that it have full rank .

CHANGE OF BASIS

As was discussed earlier , a basis for a vector space is a set of linearly

independent vectors that span the space . Although we most naturally
tend to think in tenns of the standard basis , for a variety of reasons it

is often convenient to change the basis . For example , some relation -

ships between vectors or operations on vectors are easier to describe

when a good choice of basis has been made . To make a change of

basis , we need to be able to describe the vectors and matrices we are

using in terms of the new basis . In this section , I use the results of the

previous section to discuss the problems that arise under a change of
basis . I also discuss some of the implications of a change of basis for

linear PDP models .

The numbers that are used to represent a vector , it should be

remembered , are relative to a particular choice of basis . When we

change the basis , these numbers , which we refer to as coordinates ,

change . Our first task , then , is to find a way to relate the coordinates
in a new basis to the coordinates in the old basis . Let me begin with an

example . In Figure 26 , there is a vector v , which in the standard basis

has the coordinates I ~ \ . We now change basis by choosing two new- -

1 1/2

basis vectors , Y 1 = - 1 and Y2 = 1 . As shown in Figure 27 , v can

be written as a linear combination of Yl and Y2. It turns out , as we

shall see below , that the coefficients 1 and 2 are the correct coefficients

of Y 1 and Y 2 in the linear combination . Let the symbol v . represent v
1

in the new basis . Thus , v . = 2 .

7 An important theorem in linear algebra establishes that , for any matrix , the max--
imum number of linearly independent column vectors is equal to the maximum number
of linearly independent row vectors. Thus, the rank can be taken as either .



Let us form a matrix Y whose columns are the new basis vectors y ; ,
and let v . be the vector whose components are the c; . Then Equation
23 is equivalent to the following equation:

where v . is the unknown . The solution to the problem is now clear: we
use the inverse matrix V- I to calculate the unknown vector as in the
previous section:

Example. Letting y 1 ~

�
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FIGURE 26.

(23)v = CtYt + C2Y2+ . . . + CnYn.

v = Yv. (24)

v . = v - Iv .

. I

�

1 Ihl-1 1

. I

. 1

1
- 1

I

IA
1 , we have Y =

.-
-

--
~

~
 .

2 1----3 32 2- -3 3and y - I ~

We now want to show how to find the coordinates of a vector v in a

new basis Y 1 , Y2 , . . . , Yn . These coordinates are simply the coeffi -

cients Cj in the equation



EBRA

Notice that we have also solved the inverse problem along the way.
That is, suppose that we know the coordinates v . in the new basis, and
we wish to find the coordinates v in the old basis. This transformation
is that shown in Equation 24: We simply multiply the vector of new
coordinates by Y .

We have shown how to represent vectors when the basis is changed.
Now, let us accomplish the same thing for matrices. Let there be a
square matrix W that transforms vectors in accordance with the equa-
tion u = Wv. Suppose we now change basis and write v and u in the
new basis as v . and u. . We want to know if there is a matrix that does
the same thing in the new basis as W did in the original basis. In other
words, we want to know if there is a matrix W' such that u . = W' v . .
This is shown in the diagram in Figure 28, where it should be remem-
bered that v and v . (and u and u . ) are really the same vector, just
described in terms of different basis vectors.

To see how to find W' , consider a somewhat roundabout way of
solving u . = W' v . . We can convert v . back to the original basis, then
map from v to u using the matrix W, and finally convert u to u . .

4159. INTRODUcnON TO LINEAR ALG

�
v

FIGURE 27.

Thus,

. J ~
- 

I

2 1- --3 32 2- -3 3v . = V - IV =
2 11 = 2.
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W '
v ' ~ u '

v . u

y-1 y

w
FIGURE 28.

each of these

u ' ~ y - 1 u .

Putting these three equations together , we have

u . ~ y - lo

~ y - I Wv

Luckily , we already know how to make
transformations - they are given by the equations :

.

v ~ Yv

u ~ Wv

~ y - IWyv . .

Thus , W ' must be equal to y - 1 WY . Matrices related by an equation of
the form W ' - y - lWY are called similar .

One aspect of this discussion needs further elaboration . We have

been treating matrices as linear operators on a vector space. However ,
as the results of this section make clear , a matrix is tied to a particular
basis. That is, the numbers in the matrix are just as arbitrary as the
numbers used for representing vectors. When the basis changes, the
numbers change according to the equation w ' ~ y - lWY . The under-
lying mapping , which remains the same when the matrix W is used in

the original basis and the matrix W ' is used in the new basis, is called a
linear tran .yformation. The same linear transformation is represented by
different matrices in different bases .

It is interesting to recast the results on eigenvectors in terms of a
change of basis. For some matrix W , let us consider changing basis to
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The coefficients in the linear combination are the same in the old and
in the new basis. The equations show that this result holds because
change of basis is a linear operation.

The behavior of a linear POP model depends entirely on the linear
structure of the input vectors. That is, if w ~ av 1 + bv 2, then the
response of the system to w is determined by its response to v 1 and v 2
and the coefficients a and b. The fact that a change of basis preserves

~ y - l ( aVl + bV2)

~ ay - IYl + by - lY2

. b .~ avl + V2 .

the eigenvectors of W . Let us find the matrix W ' in the new basis .

For each eigenvector Y i , by definition

Wy ; = A ; Y ; e ( 25 )

If Y is a matrix whose columns are the Yi , then we can write Equation

25 for all of the eigenvectors at once as follows ( cf . Figure 21 ) :

WY = YA

where A is a diagonal matrix whose entries on the main diagonal are

the eigenvalues Ai . You should try to convince yourself of the correct -

ness of this equation , particularly the placement of A . Now premultiply

both sides by V - I to give

y - lWY = A .

Thus , the matrix W ' is equal to A . In other words , when we use the

eigenvectors of W as the new basis , the matrix corresponding to W in

the new basis is a diagonal matrix whose entries are the eigenvalues .

This is really nothing more than a restatement of the earlier results on

eigenvectors , but seen in a different perspective .

It is worthwhile to consider the implications of a change of basis for

POP models . How does the behavior of the model depend on the basis

that is chosen ? This question is discussed in depth in Chapter 22 . For

now , let us simply note that the linear structure of a set of vectors

remains the same over a change of basis . That is , if a vector can be

written as a linear combination of a set of vectors in one basis , then it

can be written as the same linear combination of those vectors in all

bases . For example , let w = avl + bV2 ' Let Y be the matrix of a

change of basis . Then we have

w . = y - lw
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�

8 Since nonlinear systems in general are systems that are defined as "not linear ," it is
important to understand clearly what" linear' means. A review of the section on linearity
may be necessary her ore proceeding.

the linear structure of the vectors shows that it is this linear structure

that is relevant to the behavior of the model , and not the particular
basis chosen to describe the vectors .

�

NONLINEAR SYSTEMS
�

The use of nonlinearity occurs throughout this book and throughout
the literature on parallel distributed processing systems (Anderson et
al ., 1977; Grossberg , 1978; Hopfield , 1982; Kohonen , 1977) . In this
section , I will indicate some of the reasons why nonlinearities are
deemed necessary. 8 Although these reasons are based on the desire for
behaviors outside the domain of linear models , it should be stated that

linear systems have a great deal of power in themselves , and that many

of the nonlinearities represent comparatively small changes to underly -
ing models which are linear . Other models are more fundamentally
nonlinear . Further discussions of nonlinear mathematics can be found

in Chapters 10 and 22.
One simple nonlinearity has already arisen in the discussion of a PDP

system with one output unit . Such a system computes the inner pro -

duct of its weight vector and the input vector . This is a linear system ,
given the linearity of the inner product . The geometrical properties of
the inner product led us to picture the operation of this system as com -
puting the closeness of input vectors to the weight vector in space.

Suppose we draw a line perpendicular to the weight vector at some
point , as in Figure 29. Since all vectors on this line project to the same
point on the weight vector , their inner products with the weight vector
are equal . Furthermore , all vectors to the left of this line have a
smaller inner product , and all vectors to the right have a larger inner
product . Let us choose a fixed number as a threshold for the unit by
requiring that if the inner product is greater than the threshold , the unit
outputs a 1, otherwise it outputs a O. Such a unit breaks the space into

two parts by producing a different response to vectors in the two parts .
This use of a threshold is natural in using the unit to classify patterns

as belonging to one group or another . The essential point is that the
threshold permits the unit to make a decision. Other units in a larger
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system that take their input from this unit could choose completely dif-
ferent behaviors based on the decision. Notice also that the unit is a
categorizer: All input vectors that are on the same side of the space
lead to the same response.

To introduce a threshold into the mathematical description of the
processing unit, it is necessary to distinguish between the activation of
the unit and its output. A function relating the two quantities is shown
in Figure 30. It produces a one or a zero based on the magnitude of
the activation. It is also possible to have a probabilistic threshold. In
this case, the farther the activation is above the threshold, the more



likely the unit is to have an output of one, and the farther the activa-
tion is below the threshold , the more likely the unit is to have an out-
put of zero. Units such as these are discussed in Chapters 6 and 7.

The threshold unit is a good example of many of the nonlinearities
that are to be found in PDP models. An underlying linear model is
modified with a nonlinear function relating the output of a unit to its
activation . Another related example of such a nonlinearity is termed
subthreshold summation. It is often observed in biological systems that
two stimuli presented separately to the system provoke no response,
although when presented simultaneously, a response is obtained. Fur-
thennore , once the system is responding, further stimuli are responded
to in a linear fashion. Such a system can be modeled by endowing a
linear POP unit with the nonlinear output function in Figure 31. Note
that only if the sum of the activations produced by vectors exceeds T
will a response be produced. Also, there is a linear range in which the
system responds linearly . It is often the case in nonlinear systems that
there is such a linear range, and the system can be treated as linear pro-
vided that the inputs are restricted to this linear range.

One reason why subthreshold summation is desirable is that it
suppresses noise. The system will not respond to small random inputs
that are assumed to be noise.

All physical systems have a limited dynamic range. That is, the
response of the system cannot exceed a certain maximum response.
This fact can be modeled with the output function in Figure 32, which
shows a linear range followed by a cutoff . The system will behave
linearly until the output reaches M , at which point no further increase
can occur. In Figure 33, a nonlinear function is shown which also has a
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maximum output M. This curve, called a sigmoid, is a sort of hybrid
between Figure 31 and Figure 32. It combines noise suppression with a
limited dynamic range. Chapter 8 shows how such units are necessary
for certain kinds of interesting behavior to arise in layered networks.

To summarize, I have described some of the ways in which linear
systems are modified to produce nonlinear systems that exhibit certain
desired behaviors. All of these systems have an important linear com-
ponent and are sometimes referred to as semi/inear. Furthermore,
several of the systems have a linear range in which the nonlinearities
can be ignored. The next chapter discusses more fundamentally non-
linear systems.
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