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o Single Gaussians
o Fully-Observed Mixtures
o Hidden Mixtures



Perception Involves Inference and Learning

e Must infer the hidden causes, a, of sensory data, x
o Sensory data: air pressure wave frequency composition, patterns of electromagnetic radiation
o Hidden causes: proverbial tigers in bushes, lecture slides, sentences

e Must learn the correct model for the relationship between hidden causes

and sensory data
o Models will be parameterized, with parameters 6
o  We will use quality of prediction as our figure of merit



Generative models

inference > p(alg;, 9)

observed data

XL

p(CE I Of, 9) explanation or prediction



Maximum Likelihood and Maximum a Posteriori

e The model parameters 8 that make the data most probable are called the
maximum likelihood parameters
e or hidden causes a or causes

INFERENCE — G = argmax p(alz; )

LEARNING — 0 = argmax p(z; )

7}
p(x;0) =) plz,0;0)
=Y p(|e; 0)p(e; 0)



In practice, we maximize log-likelihoods

e Taking logs doesn’t change the answer

A

& = argmax p(alz; 0)= argmax log p(alz; )
o o’
e Logs turn multiplication into addition

e Logs turn many natural operations on probabilities into linear algebra operations

e Negative log probabilities arise naturally in information theory



https://golem.ph.utexas.edu/category/2016/06/how_the_simplex_is_a_vector_sp.html
https://charlesfrye.github.io/stats/2017/11/09/the-surprise-game.html

The Maximum Likelihood Answer Depends on Model Class
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Why Mixtures?



What is a Mixture Model?

K
DATA— p(x;0,w) = Zp (x|a; 0,) pla; we)

=1
LIKELIHOOD — 4, (11 .
PRIOR— P(a;wy) = w,

e This is precisely analogous to using a basis to approximate a vector



Example Mixture Datasets

Mixtures of Uniforms l

Spike-And-Gaussian Mixtures Mixtures of Gaussians




Why Gaussians?
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Why Gaussians? An unhelpfully terse answer.

e (Gaussians satisfy a particular differential equation:

d

ap(x) = —xp(x)

e From this differential equation, all the properties of the Gaussian family can
be derived without solving for the explicit form.

O  Gaussians are isotropic, Fourier transform of a Gaussian is a Gaussian, sum of Gaussian RVs
is Gaussian, Central Limit Theorem

e See this blogpost for details: http://bit.ly/gaussian-diff-eq



http://bit.ly/gaussian-diff-eq

Why Gaussians?

e (Gaussians are everywhere, thanks to the Central Limit Theorem

e (Gaussians are the maximum entropy distribution with a given center (mean)
and spread (std dev)

e Inference on Gaussians is linear algebra



Central Limit Theorem

e Statistics: adding up independent random variables with finite variances
results in a Gaussian distribution

e Science: if we assume that many small, independent random factors produce
the noise in our results, we should see a Gaussian distribution



Central Limit Theorem in Action

A Series of 25 Coin Flips
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Central Limit Theorem in Action

A Series of 25 Coin Flips
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Why Gaussians?

e (Gaussians are the maximum entropy distribution with a given center (mean)
and spread (std dev)

e Inference on Gaussians is linear algebra



Gaussians are a natural MAXENT distribution

e The principle of maximum entropy (MAXENT) will be covered in detail later

e Teaser: MAXENT maps statistics of data to probability distributions in a
principled, faithful manner

e For the most common choice of statistic, mean + s.d., the MAXENT is a
Gaussian



Why Gaussians?

e (Gaussians are everywhere, thanks to the Central Limit Theorem

e Gaussians are the maximum entropy distribution with a given center (mean)
and spread (std dev)

e Inference on Gaussians is linear algebra



Inference with Gaussians is “just” linear algebra

e The log-probabilities of a Gaussian are a negative-definite quadratic form
log p(x; 1, %) = —=(x —p) ' 7 H(x —p) = C

e Quadratic forms can be mapped onto matrices

e So solving an inference problem becomes solving a linear algebra problem

e Linear algebra is the Scottie Pippen of mathematics



https://graphicallinearalgebra.net/2015/04/23/makelele-and-linear-algebra/
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What is a Gaussian Mixture Model?

K
DATA - [ p(x; 1y Zyw) = D | p(X|; ta; T )P(05 Wer)

a=1
LIKELIHOOD —  (x|a; o, X)) = Ze—%((x—ua)ngl(x—ua)) |
PRIOR — N — 0,

Model parameters 0, = { i, Xa, Wa }

Z, 1s a normalization constant.




Maximum Likelihood for Gaussian Mixture Models

Plan of Attack:

1. ML for a single Gaussian
2. ML for a fully-observed mixture
3. ML for a hidden mixture



Maximum Likelihood for a Single Gaussian

L(x30):=40(x:0)):

(log p(x; 0))
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Maximum Likelihood for a Single Gaussian
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Maximum Likelihood for a Single Gaussian

o2 o2

By a similar argument:

6% = ((z" — n)*)



Maximum Likelihood for Gaussian Mixture Models

Plan of Attack:

2. ML for a fully-observed mixture
3. ML for a hidden mixture



Maximum Likelihood for Fully-Observed Mixture

e “Observed Mixture” means we receive datapoints (x,a).

e Examples: classification (discrete), regression (continuous)
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Maximum Likelihood for Fully-Observed Mixture

e For each mixture element, the problem is exactly the same - what are the
parameters of a single Gaussian?

e Because we know which mixture each data point came from, we can solve
all these problems separately, using the same method as for a single
Gaussian.
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e How do we figure out the mixture weights w? ,U,a
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Bonus: We Can Now Classify Unlabeled Datapoints

e \We can label new datapoints x with a corresponding a using our model
e This is the key idea behind supervised learning approaches in general.

e How do we label them?

o Max Likelihood method - find the closest mean (in z-score units), that’s our label
o Fully Bayesian method - maintain a distribution over the labels - p(a | x ; 8)
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Maximum Likelihood for Gaussian Mixture Models

Plan of Attack:

3. ML for a hidden mixture



Hidden Variables Example: Spike Sorting
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Maximum Likelihood for Models with Hidden Variables

e p(x|u,Z,0)is the same, but now we don’t have the labels a.
e Problem: if we had the labels, we could find the parameters (just as before),
and if we had the parameters, we could compute the labels (again, just as

before). It's a chicken-and-egg problem!

e Solution: let’s just “make-believe” we have the parameters.



Our Clustering Algorithm on Spike Sorting
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Our Clustering Algorithm on Spike Sorting

Delay
100 |
20
e0
ot o 4
spuptiod
¥ M
+ 4+ 44
70 -
T+
+ 44
= Lk
.j{
$ +
i
50+ 1’
i
40 ’ * Duration
1 2 3 4 S 6

Wikipedia



The K-Means Algorithm

1. Make up K values for the means of the clusters
o Usually initialized randomly

2. Assign datapoints to clusters
o Each datapoint is assigned to the nearest cluster

3. Update the cluster means to the new empirical means
4. Repeat 2-4.



Issues with K-Means

1. Cluster assignment step (inference) is not Bayesian

2. Small changes in data can cause big changes in behavior



“Soft” Clustering?
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Expectation-Maximization for Means

1. Make up K values for the means
2. (E) Infer p(alx) for each x and a
3.

(M) Update the means via weighted average
a. Weight the contribution of datapoint x by p(a|x)

4. Repeat 2-4.



Full Expectation-Maximization

1. Make up K values for the means, covariances, and mixture weights
2. (E) Infer p(alx) for each x and a
3.

(M) Update the parameters with weighted averages
a. Weight the contribution of datapoint x by p(a|x)

4. Repeat 2-4.



E-Step: Bayes’ Rule for Inference

Dz, 050)  p(x]o;0)p(a; 6)
PO ="0iz6) — p(w0)

p(z;0) = p(z,0;0) =  p(z|a;0)p(c; 6)



M-Step: Direct Maximization

(x P(a]x))
e = " (P(al))
o _ (¥ paf* Plafx))
"« = (P(alx))
P(a) = (P(alx))



Bonus Slides: Information Geometry



A Geometric View

All Probability / Family of Model Distributions
Distributions



Geometry of MLE
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All Probability / Family of Model Distributions
Distributions (here, Gaussians with different means)
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Family of Data

E-Step: Inference =

\ Family of Model Digfributions
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