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Perception Involves Inference and Learning
● Must infer the hidden causes, α, of sensory data, x

○ Sensory data: air pressure wave frequency composition, patterns of electromagnetic radiation
○ Hidden causes: proverbial tigers in bushes, lecture slides, sentences 

● Must learn the correct model for the relationship between hidden causes 
and sensory data

○ Models will be parameterized, with parameters θ
○ We will use quality of prediction as our figure of merit



Generative models

explanation or prediction

inference



Maximum Likelihood and Maximum a Posteriori

● The model parameters θ that make the data most probable are called the 
maximum likelihood parameters

● or hidden causes α or causes

INFERENCE →

LEARNING →



● Taking logs doesn’t change the answer

● Logs turn multiplication into addition

● Logs turn many natural operations on probabilities into linear algebra operations

● Negative log probabilities arise naturally in information theory

In practice, we maximize log-likelihoods

https://golem.ph.utexas.edu/category/2016/06/how_the_simplex_is_a_vector_sp.html
https://charlesfrye.github.io/stats/2017/11/09/the-surprise-game.html


The Maximum Likelihood Answer Depends on Model Class
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Why Mixtures?



What is a Mixture Model?

DATA →

LIKELIHOOD →

PRIOR →

● This is precisely analogous to using a basis to approximate a vector



Example Mixture Datasets

Mixtures of Uniforms

Mixtures of GaussiansSpike-And-Gaussian Mixtures



Why Gaussians?



Why Gaussians?

Wikipedia



Why Gaussians? An unhelpfully terse answer.
● Gaussians satisfy a particular differential equation:

● From this differential equation, all the properties of the Gaussian family can 
be derived without solving for the explicit form.
○ Gaussians are isotropic, Fourier transform of a Gaussian is a Gaussian, sum of Gaussian RVs 

is Gaussian, Central Limit Theorem

● See this blogpost for details: http://bit.ly/gaussian-diff-eq

http://bit.ly/gaussian-diff-eq


Why Gaussians?
● Gaussians are everywhere, thanks to the Central Limit Theorem

● Gaussians are the maximum entropy distribution with a given center (mean) 
and spread (std dev)

● Inference on Gaussians is linear algebra



Central Limit Theorem

● Statistics: adding up independent random variables with finite variances 
results in a Gaussian distribution

● Science: if we assume that many small, independent random factors produce 
the noise in our results, we should see a Gaussian distribution



Central Limit Theorem in Action



Central Limit Theorem in Action



Why Gaussians?
● Gaussians are everywhere, thanks to the Central Limit Theorem

● Gaussians are the maximum entropy distribution with a given center (mean) 
and spread (std dev)

● Inference on Gaussians is linear algebra



Gaussians are a natural MAXENT distribution
● The principle of maximum entropy (MAXENT) will be covered in detail later

● Teaser: MAXENT maps statistics of data to probability distributions in a 
principled, faithful manner

● For the most common choice of statistic, mean ± s.d., the MAXENT is a 
Gaussian
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Inference with Gaussians is “just” linear algebra
● The log-probabilities of a Gaussian are a negative-definite quadratic form

● Quadratic forms can be mapped onto matrices

● So solving an inference problem becomes solving a linear algebra problem

● Linear algebra is the Scottie Pippen of mathematics

https://graphicallinearalgebra.net/2015/04/23/makelele-and-linear-algebra/
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What is a Gaussian Mixture Model?

Example

DATA →

LIKELIHOOD →

PRIOR →



Maximum Likelihood for Gaussian Mixture Models
Plan of Attack:

1. ML for a single Gaussian
2. ML for a fully-observed mixture
3. ML for a hidden mixture



Maximum Likelihood for a Single Gaussian



Maximum Likelihood for a Single Gaussian



Maximum Likelihood for a Single Gaussian

By a similar argument:



Maximum Likelihood for Gaussian Mixture Models
Plan of Attack:

1. ML for a single Gaussian
2. ML for a fully-observed mixture
3. ML for a hidden mixture



Maximum Likelihood for Fully-Observed Mixture
● “Observed Mixture” means we receive datapoints (x,α).

● Examples: classification (discrete), regression (continuous)

Memming Wordpress Blog

Cats Dogs



Maximum Likelihood for Fully-Observed Mixture
● For each mixture element, the problem is exactly the same - what are the 

parameters of a single Gaussian?

● Because we know which mixture each data point came from, we can solve 
all these problems separately, using the same method as for a single 
Gaussian.

● How do we figure out the mixture weights w?



Bonus: We Can Now Classify Unlabeled Datapoints
● We can label new datapoints x with a corresponding α using our model

● This is the key idea behind supervised learning approaches in general.

● How do we label them?
○ Max Likelihood method - find the closest mean (in z-score units), that’s our label
○ Fully Bayesian method - maintain a distribution over the labels - p(α | x ; θ)

Memming Wordpress BlogCats

Dogs



Maximum Likelihood for Gaussian Mixture Models

Plan of Attack:

1. ML for a single Gaussian
2. ML for a fully-observed mixture
3. ML for a hidden mixture



Hidden Variables Example: Spike Sorting

Martinez, Quiran Quiroga, et al., 2009
Journal of Neuroscience Methods



Maximum Likelihood for Models with Hidden Variables
● p(x | μ,Σ,α) is the same, but now we don’t have the labels α.

● Problem: if we had the labels, we could find the parameters (just as before), 
and if we had the parameters, we could compute the labels (again, just as 
before). It’s a chicken-and-egg problem!

● Solution: let’s just “make-believe” we have the parameters.



Our Clustering Algorithm on Spike Sorting

Wikipedia



Wikipedia

Our Clustering Algorithm on Spike Sorting



The K-Means Algorithm
1. Make up K values for the means of the clusters

○ Usually initialized randomly

2. Assign datapoints to clusters
○ Each datapoint is assigned to the nearest cluster

3. Update the cluster means to the new empirical means
4. Repeat 2-4.



Issues with K-Means
1. Cluster assignment step (inference) is not Bayesian

2. Small changes in data can cause big changes in behavior



“Soft” Clustering?

Bishop - PRML



Expectation-Maximization for Means
1. Make up K values for the means
2. (E) Infer p(α|x) for each x and α
3. (M) Update the means via weighted average

a. Weight the contribution of datapoint x by p(α|x)

4. Repeat 2-4.



Full Expectation-Maximization
1. Make up K values for the means, covariances, and mixture weights
2. (E) Infer p(α|x) for each x and α
3. (M) Update the parameters with weighted averages

a. Weight the contribution of datapoint x by p(α|x)

4. Repeat 2-4.



E-Step: Bayes’ Rule for Inference



M-Step: Direct Maximization



Bonus Slides: Information Geometry



A Geometric View

Family of Model Distributions All Probability 
Distributions



Geometry of MLE

Family of Model Distributions
(here, Gaussians with different means)

 All Probability 
Distributions



Geometry of EM

Family of Model Distributions

 All Probability 
Distributions

Family of Data Labelings 

(same p(x), different p(a|x))



Family of Model Distributions

Family of Data Labelings 

E-Step: Inference
M-Step: Learning


