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CHAPTER

INTRODUCTION

Even the most naive observer can see that the nervous system is vastly dif-
ferent from a computer. Living systems are made from three-dimensional.
squishy cells; computers are constructed of rigid inorganic matter in Hat,
two-dimensional sheets. Living systems are powered by metabolic bio-
chemistry; computers are powered by transformers and rectifiers from
the power mains. Living systems have approximately 100-millivolt nerve
impulses lasting nearly a millisecond: computers have 5-volt signal levels
switching at nanosecond intervals. The destruction of a few percent of
the cells in a brain will cause no discernible degradation in performance:
the loss of even a single transistor in a computer (save for in its memory)
may cause complete loss of functionality. The average nerve cell dissi-
pates power in the 10~ ?-watt range; the average logic gate in a computer
dissipates 10 million times as much.

Nonetheless, a more careful look reveals some underlying similari-
ties between the two kinds of systems. Both process information. Sig-
nals are represented as differences in electrical potential, and are con-
veyed on “wires” formed by surrounding a conducting path with an ex-
cellent electrical insulator. Active devices cause electrical current to How
in a second “output” conductor due to the potential in a first “input”
conductor. The “output”™ of an active device has more energy than
was present in the “input” to that device; hence, the systems possess
“gain” —the essential ingredient for unbounded information processing

.
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which is accompanied by an unavoidable dissipation of energy. A “power supply”
Iaintains a near-constant average difference in electrochemical potential across
i he active devices. The active devices are formed of extremely thin energy barriers
that prevent the flow of current between two electrical nodes. The passage of
current is mediated by the potential on a third “control” electrical node. That
current varies exponentially with the potential on the control node.

Heartened by these less obvious but deeper similarities between the two
we may be tempted to conclude that the brain is, indeed, a digital
Its nerve pulses encode information in much the same way as do

one exchange. Neurons perform Boolean AND and OR operations
f computation. Small

svstens.
computer.
pnlses in a telepl
on the way to firing off a nerve pulse to the next stage o
nenral memory elements store information in much the same way as computer
emories do. Perhaps we are. after all, on the verge of discerning one of nature’s
most profound and best-kept secrets: the working of thought itself,
Speculations of this sort were rampant in the late 1940s. A film depicting the
operation of the Whirlwind. an early vacuum-tube computer with magnetic-core
memory. was called Faster than Thought [Bowden, 1953]. The field of artificial
intelligence was born. Soon, however, signs of distress could be seen. By 1977,
Marvin Minsky. one of the artificial-intelligence pioneers, opened a seminar at

Caltech with the following observation:

Our first foray into Artificial Intelligence was a program thatl did a cred-
ible job of solving problems in college calculus. Armed with that success,

we tackled high school algebra: we found, to our surprise, that it was much
harder. Attempts al grade school arithmetic, involving the concept of num-
her, etc.. provide problems of current research interest. An explorution of
the child's world of blocks proved insurmountable, except under the most
rigidly constrained circumstances. It finally dawned on us that the over-
whelming majority of what we call intelligence is developed by the end of
the first year of life. [Minsky, 1977]

The visnal system of a single human being does more image processing than do
the entire world’s supply of supercomputers. The digital computer is extremely
offective at producing precise answers to well-defined questions. The nervous
system accepts fuzzy, poorly conditioned input, performs a computation that
is ill-defined. and produces approximate output. The systems are thus different
in essential and fundamentally irreconcilable ways. Our struggles with digital
computers have taught us much about how neural computation is not done;
unfortunately. they have taught us relatively little about how it is done. Part
of the reason for this failure is that a large proportion of neural computation is
done in an analog rather than in a digital manner.

Perhaps the most rewarding aspect of analog computation is the extent to
which elementary computational primitives are a direct consequence of funda-
mental laws of physics. In Chapter 3, we will see that a single transistor can take
al its gate a voltage-type signal and produces at its drain a current-type signal
that is exponential in the input voltage. This exponential function is a direct
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result of the Boltzmann distribution. We will see that addition and subtraction
of currents follows directly from the conservation of charge. In subsequent chap-
ters, we will encounter many examples of computations that follow directly froE
physical laws. ) 1

It is essential to recognize that neural systems evolved without the slight-
est notion of mathematics or engineering analysis. Nature knew nothing c;f bits

Boolean algebra, or linear system theory. But evolution had access to a va;st1
array of physical phenomena that implemented important functions. It is evi-
dent that the resulting computational metaphor has a range of capabilitie% ti]‘dt
exceeds by many orders of magnitude the capabilities of the most powerful (kiigital
computers.

‘ It is the explicit mission of this book to explore the view of computa-
Flon that emerges when we use this evolutionary approach in developing an
integrated semiconductor technology to implement large-scale COHE‘(‘ti\"E‘ angalo
computation. o ‘ °

The biological questions asked about neural computation were for man
years. z_md to a large extent still are, basically reductionist. It is tacitly aqqume(}i]
that, if we understand in detail the operation of each molecule in a nAerv‘eh mem-
brane, we will understand the operation of the brain. It is to this view that
our knowledge of computers can bring some insight. A computer is buiit up of
a completely known arrangement of devices; the operation of these devices is
understood in minute detail. Yet it is often impossible to derive even a \'implé
proof that a program that we ourselves write will compute the desired reéult or‘
for that matter, that the computation will even terminate! o ‘

. The complexity of a computational system derives not from the complexity
of its component parts, but rather from the multitude of ways in which a large
colle.ction of these components can interact. Even if we understand in elaborai;
deFaﬂ the operation of every nerve channel and every synapse, we will not by bO
dOlI.lg have understood the neural computation as a system. It is not the neural
de.vwes themselves that contain the secret of thought. it is, rather, the organizin
principles by which vast numbers of these elementary devices vx;ork in ioncertg
Nl:,?lll“d] computation is an emergent. property of the sybttem which is only vaguel .
evident in any single component element. 7 vy

Although study of the elements is an essential step in understanding the
system organization, in and of themselves, the elements tell us very little. Fur-
thermore, we have learned enough in recent years concerning the .operation of
nerves and synapses to know there is no mystery in them. In not a single instance
is there a function done by a neural element that cannot, from the point of view
of a s}jstem designer, be duplicated by electronic devices.

V\ hat then is to prevent us from creating a nervous system in silicon? T
barriers have historically blocked the way: v

1. Neural systems have far greater connectivity than has been possible in stan-
?a{d cgmputer hardware. Many early attempts to create neural systems
ailed sunp.ly because no workable technology existed for realizing s;fstems
of the requisite complexity. .
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9. Sufficient knowledge of the organizing principles involved in neural systems
was not available.

The rapidly developing technology of very large scale integrated (VLSI) cir-

cuits has given us a medium in which it is presently possible to fabricate tens
of millions of devices (transistors) interconnected on a single silicon wafer. This
number will increase by two orders of magnitude before fundamental limitations
are encountered [Hoeneisen et al., 1972a]. The densest and most widely available
technology uses metal-oxide-silicon (MOS) transistors; it has been primarily con-
ceived as a digital technology, and has been highly evolved for the production
of microprocessors, memories, and other digital products. It might therefore be
supposed that the most highly evolved fabrication process would not be suitable
for the functions required in neural processing. The noise level of a typical device
is higher, or the precision with which any two devices can be matched is lower,
for example, than are those of technologies historically used for implementing
analog functions. We observe, however, that the precision, reliability, and noise
properties available in neural wetware fall short of those used in even the most
rudimentary electronic systems. This lack of precision and reproducibility at the
component level is more than offset by the redundancy introduced at the system
level. Whether this property is the primary reason for the large connectivity in
neural systems, or whether it is a byproduct of an organizing principle dictated
by other system needs, is not a question open to us at the present time. We do
know, however, that robustness under failure or imprecision of individual com-
ponents is one important emergent property of neural systems. If we base our
designs on the same organizing principles, we should not be concerned that indi-
vidual devices will cause system malfunction. To the contrary, we can expect that
systems with extraordinary reliability and robustness will result; so much so that
useful integration at the scale of a complete wafer is feasible. In the chapters that
follow, we will explore many ways in which an ordinary digital technology (com-
plementary MOS, or CMOS) can be used to implement extraordinary systems
based on neural paradigms.

In terms of discovering neural organizing principles, we are less well off. Al-
though a great deal of progress has been made in recent years, there is still no
global view of the principles and representations on which the nervous system is
organized. There has been, however, a striking increase in knowledge of particular
systems, due in large part to experimental techniques developed over the past
decade. Detailed physiological studies have given us a picture of the mapping
from the visual field onto the visual cortex [Schwartz, 1977}, and similar infor-
mation is available for many important auditory areas [Merzenich et al., 1977].
Several authors have put together a more unified view of these findings. Readable
accounts of the gross connectivity among major areas of the brain have been given
for the visual system [Van Essen, 1984; De Yoe et al., 1988] and the auditory sys-
tem [Pickles, 1982; Kim, 1984]. A most notable account of the detailed synaptic
circuits of each of several areas of the brain is given in The Synaptic Organization
of the Brain by Gordon Shepherd of Yale University [Shepherd, 1979].

b
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Ma1.1y people have proposed hypotheses about the way computation is per-
forme(.i in these systems. To date, it has proved difficult if not impossible ;ither
to verify or to disprove any given hypothesis concerning the operating prinéi les
of even Lh.e simplest neural system. Major areas are so richly interconnected I:md
computatl.on within a given area is so intertwined, that there exists no good’ wa;
of separatlng one function from another. Our traditional scientific approach oyf
studying the elements separately in order to understand the whole fails us com
plelztely. Simple neural systems based on clear, obvious principles may once hav;
i}usted‘ but they are buried by the sands of time. Billions of years of evoiutior;
! ;SV; I;I)lrsej'sented us with highly efficient, highly integrated, and impossibly opaque

A NEW APPROACH

Let us, then, undertake the following program. We have already noted that
elementary operations found in the nervous system can be realized in silicon
We also note that many neural areas are thin sheets, and carry two—dimensionai
representations of their computational space. The retina is the most obvious
example of this organization, which also occurs in the visual cortex and in sev-
eral auditory areas. In both neural and silicon technologies, the active devices
gsy.napses and transistors) occupy no more than 1 or 2 percent of the spécef—
.w1.re” .ﬁl]s the entire remaining space. We can be confident, therefore, that the
hmlt_atlon of connectivity will force the solution into a very pe;rticular fo7rm If the
required functions could have been be implemented with less wire nature'would
have evolved superior creatures with more computation per unit l;rain area, and
they would have eaten the ones with less well-organized nervous systems 7

We will therefore embark on a second evolutionary path—that of a.silicon
nervous system. As in any evolutionary endeavor, we must start at the beginnin
Our first systems will be simple and stupid. But they, no doubt, will be smartti
t}}an the first animals were. We are, after all, endowéd with the ’product‘ of a few
billion years of evolution with which to study these systems! ‘

The co.nst.raints on our analog silicon systems are similar to those on neural
systems: wire is limited, power is precious, robustness and reliability are essential
We thferefore can expect that the results of our second evolution will bear fruits O.f
biological relevance. The effectiveness of our approach will be in direct i)roportion
?o the attention we pay to the guiding biological metaphor. We use therterm
‘metaphor” in a deliberate and well-defined way. We are in no better position to
“copy” biological nervous systems than we are to create a flying machine with
ieathers 'apd flapping wings. But we can use the organizing principles as a basis
S(z)ra r(;g; sglli((:ion systems in the same way that a glider is an excellent model of a

It is in that spirit, then, that we will proceed. First we will describe th
relevz-mt aspects of neural wetware at the level of abstraction where we will bj
working. We will then develop the operations that are natural to silicon, and
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examine how they can be used to implement certain known neural functions. Fi-
nally, we will show several examples of complete subsystems that have metaphors
drawn, in one way or another, from biology.

It is the author’s conviction that our ability to realize simple neural functions
is strictly limited by our understanding of their organizing principles, and not
by difficulties in implementation. If we really understand a system, we will be
able to build it. Conversely, we can be sure that we do not fully understand a
system until we have synthesized and demonstrated a working model.

The silicon medium can thus be seen to serve two complementary but insep-
arable roles:

1. To give computational neuroscience a synthetic element, allowing hypotheses
concerning neural organization to be tested

2. To develop an engineering discipline by which collective systems can be de-
signed for ¢,.ecific computations

The success of this venture will create a bridge between neurobiology and
the information sciences, and will bring us a much deeper view of computation
as a physical process. It also will bring us an entirely new view of information
processing, and of the awesome power of collective systems to solve problems
that are totally intractable by traditional computer techniques.
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