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Summary

Let P and €& be convex sets of finite measures,

let
5 € P be arbitrary, and let for each

nz O Qn € § mini-
mize the Kullback-Leibler informational divergence D(P_1IQ)

for Q € @ while P .1 € P minimizes D(png ) for P € P.
We prove that D(PnHQn) converges to the infimum of

P

D (P Q)
on P0 * & where P0 is the set of all P € F such that
D(PﬂQn) < 4= for some n. In special cases also the conver-

gence of the sequences {Pn} and {Qn} is proved. The basis
BAMS subject classifications.

Primary 60 A 10, 65 U O05.
Secondary

65 J 05, 62 B 10, 94 A 34, 40

Key words and phrases: alternating minimization, distance

of two sets, Kullback-Leibler infor-

mational divergence, EM algorithm,
maximum likelihood from incomplete
data, decomposition of mixtures,
channel capacity, rate distortion

function, investment portfolio.

This paper was presented at the Colloquium con Information
Theory, Budapest, August 1981.




206 Csiszar-Tusnady

of our approach is a general convergence criterion of a geo-

metric flavor, also applicable to other problems.

Implications for iterative algorithms suggested in the
literature for computing maximum likelihood estimates (in
particular, for decomposition of mixtures), channel capacity,
rate-distortion functions and optimum investment portfolios
are discussed.

ﬁ. Introduction x

For the numerical solution of various extremum problems
arising in statistics and information theory (as well as in
other branches of mathematics) alternating minimization pro-
cedures of the following form have been suggested. Let d(P,Q)
be an extended real valued function of two variables P € P,
Q €E ¢ where P and § are given sets. For P, P' in P

and Q, Q' in @ write

1
(1.1 P — Q' iff d4(P,Q') = min 4(P,Q) < +e
" ' Qeq
Q — P' iff 4(P',Q) = min d(P,Q) < +e .
PEP

Here the numbers 1 and 2 indicate that the first, respec-
tively second variable of d 1is fixed in the minimization;
the numbers also distinguish this symbol from that of conver-

L 0o oo
gence. Now, we say that the sequences {Pn;n=O and {Qn}n=0

from P and ¢, respectively, are obtained by alternating
R . : 1 2
minimization if Pn —_ Qn — Pn+1 , n=20,1,... , where the

"starting point" P, € P is arbitrary.

In applications we have in mind, P and ¢ are sets of
probability distributions or of arbitrary finite measures and
d(P,Q) is the Kullback-Leibler informational divergence
D(PIQ). Often, the above setup arises as a device for solving

an extremum problem in one variable. Then the existence of a
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Q' (P') minimizing d(P,Q) for fixed P (Q), as well as
their explicit form, is known by the very construction. Typi-
cal examples are the so-called EM algorithm for maximum like-
lihood estimation from incomplete data, cf. Dempster, Laird
and Rubin (1977) and algorithms suggested by Arimoto (1972)
and Blahut (1972) for computing channel capacity and rate-dis-
tortion functions, cf. Section 5.

In the theory of numerical methods various general theorems
are known on the convergence of iterative procedures, cf. egq.
Zangwill (1969). They mainly deal with functions defined on
finite dimensional spaces and involve conditions of analytic
nature such as compactness, convexity, differentiability. In
this paper we give sufficient conditions of a geometric flavor
for the convergence of alternating minimization procedures.

We shall say that for a P € P the "five points property"
holds if for every OQ € ¢

129 d(p,Q) + d(P.QO) 2 d{P,Q1) + d(P1,Q1)
2 1
whenever Q0 —— PT — Q1 5
Here and in the sequel, the symbols P and Q (with or
without indices) stand for elements of F and ¢, respective-

ly, unless stated otherwise.

We prove in Section 2, cf. Theorem 2, that if the five
points property holds either for every P € ' or for some
P € P which with some Q € ¢ attains the minimum of d then

(1.3) lim d(Pn,Qn) = inf a(p,Q) .,
n-»o PeP,Qeqg

provided that the last infimum is not changed when replacing
P by

(1.4) Po ={pPp : PE€EP, d(P,Qn) < +e for some n }

Notice that Ee depends, in general, on the sequences (P

and {Qn}. Of course, if d is finite valued then P7_ = P.
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As shown in the Example at the end of Section 2, for closed
convex subsets P and ¢ of a Hilbert space and the squared
distance in the role of d, the five points property holds
for every P € P; this leads to a new proof of a theorem of
Cheney and Goldstein (1959).

In Section 3 the five points property and thereby the
convergence of the alternating minimization procedure .is
proved for the case when P and ¢ are convex sets of (not
necessarily probability) measures‘and d 1is the Kullback-
Leibler informational divergence D. This is applied in Sec-
tion 4 to iteratively determine, in certain cases, the element
of a convex set of measures which is closest in the divergence
sense to a given measure. In particular, if ¢ is the convex
hull of a finite set of measures Q1,...,Qk on a measurable

k
space (X,X), and P <« I Q is a probability measure on
i=1

(X,X), then we get the following result, cf. Theorem 5 (where
the notation is somewhat different). Let (c?,...,cﬁ) be any

vector with positive components and define recursively

do. k

c? = c2_1 I__T#éT , where Q"' = & 02"1Qi ;
(e10)] i=1
k
then <t s cf (= 1,03k}, and Q* = xz cfQ. satisfies
i i joq 171

1

P — Q.
In Section 5 various applications in statistics and

information theory are given.

2. General sufficient conditions for the convergence of

alternating minimization procedures

Let P and § be arbitrary sets and d(P,Q) be an ex-
tended real valued function on F x § which does not take

the value -« . For any pair of sets 4cP, Zcg define
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d(4,B) = inf 4(P,Q) .
PEA,QEB

oo

Let {Pn}:;o and {Q_} be sequences from P and @,

n n=0
respectively, not necessarily obtained by alternating minimi-

zation. We clearly have
(2.1) d(Pn,Qn) E d(PD,Q) = Oy T

where P has been defined in (1.4). We shall give criteria

ensuring

limd(Pn,Qn) = d(POrQ) -

Ti—co

The following simple lemma will be used.

Lemma 1. Let a bn (n =0,1,...) be extended real
numbers greater than -« and ¢ a finite number such that
(2.2) o F bn—1 z bn + a , n= 1.5 205 vmw
and
(2.3) lim sup bn > —w, bn < +oo for some n_ .

n-reo o}
Then
lim inf a_ £ c .
IN—co 2!
If, in addition,
z +
(2.4) T {c—an) < 4o
n=0
then
oo
b3 la. = ¢l € 4+
n=n0+1
and consequently
lim a_ = ¢ .
IN—eoo o

Proof. If r (c - an)+ = +o then lim inf a s ¢

n=0 T—co

obviously holds, hence it suffices to prove the second
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assertion. (2.2) implies, by induction, that a < +e;, b < +e
for every n > n if b < +w . Thus (2.2) gives
o n,
?n —csb 4~ b, if n>mn, .

Hence for every N > n,

N

z (a_ - c) £b - b, .

n=n_+1 e g

o
Here, by (2.4), the left side has a limit if N - «, and the
proof will be complete if we show that this limit is less
than + . This follows, however, from assumption (2.3) which
implies that this limit has the finite upper bound
b, - lim sup bn a

O T—ee
Theorem 1. For arbitrary sequences {Pn}n=0 and {Qn}n=O
from P resp. & such that
’ i (2.5) da(p,q) + d(P,Qn_1) z d(P,Qn) + d(Pn’Qn) o= 1,2,0..,
i either for every P € P (cf. (1.4)) or for some P € P,
P

such that 4(p,Q) = d(PO,Ql then

(2.6) iiz d(Pn'Qn) = d(PorQ] .
Under the first hypothesis the seguence {d(Pn,Qn}}:=O is

non-increasing, while under the second hypothesis

(==}

(2.7) T (@(r,,Q) - AP Q) < +e
n=n.|

for some index n,.

Proof. If Po = ¢ then d(Pn,Qn) = d(PO;Q) = +w for

every n thus (2.6) is true. If (2.5) holds for some P € P,
then Lemma 1 applies to

a_=d(e_,0) , b, =ap,0) ,c=dEae .

In fact, since P € Po' we have bn < +o for some ng and
le]
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c < +e , cf. (1.4). Then (2.5) with n = ng + 1 shows that
c = d(P,g) > -, and since bn z ¢, this implies, in turn,
that the condition 1lim sup bn > —ew is also met.

I =

Under our first hypothesis, Lemma 1 gives that

(2.8) lim inf d(Pn,Qn) s d(P,q)

11 —co
for every P € PD. If we establish the monotonicity of
d(p ,Q.), this and (2.1) will imply (2.6). Supposing
d(Pn-1'Qn—1 in (2.5)
shows that d(P__,,Q,) < +« and

) < +o, the substitution P = P

a(p, ,Q)) = d(e__,,0 _,)

as claimed. Since the last inequality is trivial if

d(Pn—1’0'n—1)

first hypothesis is proved.

= 4+ o=

;, the assertion of Theorem 1 under the

Under the second hypothesis, (2.1) implies

d{PnrQn) z d(POrQ) = d(P#Q) ’

ey a, = ¢ for every n. Hence the second part of Lemma 1

immediately gives (2.6} and (2.7). o

In the sequel we shall consider sequences {Pn}§=0 and
{Q ).y obtained by alternating minimization, i.e., with the
notation (1.1}, '

1 2 1 2
(2.9) PO — QO —_— P1 —_— Q1 —_— ...

r

where the "starting point" P, € P 1is arbitrary. Of course,

such a pair of sequences need not exist for an arbitrary

P, € P, or, conceivably, for no P, € 7. The question of

existence will not be entered here.
Clearly, for sequences satisfying (2.9)

(2.10) d(Pn,Qn) = d(Pp d(p

n+1'Qn)g n+1'Qn+1
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If the five points property (1.2) holds for some P € P then
condition (2.5) of Theorem 1 is met for the same P, for every
pair of sequences constructed by alternating minimization. Now
we formulate two conditions which together imply the five
points property. These will be the conditions we shall check

in the applications of Theorem 1.

Let 6&(P,P') be a non-negative valued function on P x P
such that 6(P,P) = 0 for each P € P. Given d and 1§, we
shall say that for a P€ P the "thee points property" holds,if

2
(2.11) 6{?,?1) + d(P1,QO) = d[P,QO} whenever QO iy P1 .
Further, we say that for a P € P the "four points property"
holds if for every Q € ¢
(2.12) d(P,0,) s 6(P,P,) + d(P,Q) whenever P, —»0Q
An example suggesting an intuitive geometric interpretation
of the three and four points properties will be given at the

end of this section.

oo r 3 O
Theorem 2. Let {Pn}n=0 and \Qn’n=0

tained by alternating minimization, cf. (2.9). Then

be seguences ob-

(2.13) éiz d{Pn,Qn) = d{PO,QJ

providing either every P € Po' or some P € PO with

d(p,&) = d(PD,Q), has the five points property (1.2), where

P, is defined by (1.4). The five points property (1.2) is
implied by the three and four points properties (2.11), (2.12).
Further, if the latter properties hold for some P £ = with
d({p,q) = d(PO,Q) then, in addition to (2.13), we also have
(for this P )

(2.14) 4&(p,P ) s G(P,Pn} ;0= 00 s s

n+1

Proof. As it has already been noted, the first assertion
is immediate from Theorem 1. To prove that (2.11) and (2.12)

imply the five points property (1.2), it suffices to consider
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r' e P eP then Qo 's with d(P,Q )< +e. Then (2.11) implies §(P,P1) < 4w
1e same P, for every and (1.2) follows by adding (2.11) and (2.12), since
ing minimization. Now a(P,,Q4) s d(P;,Q,). Finally, if P has the three and four
; i 9 2 2
r imply the five points properties, ?ubstltute Q. _Tﬂ Pn+1 for Q B,
ions we shall check in (2.11) and By — 4, for P, — Q; in (2.12). Thus we
| get for every Q ¢ ¢
function on P x P — 6(P,Pn+1) + d(P_,4.Q) = d(P,Q.) = §(P,P ) + d(p,Q)
i d andéd 9§, we
iven . 6(P,Pn+1j +d(P,1,Q,) = §(P,P ) + d(P,q).
ints property" holds,if ;
2 If here d(p,q) = d(P,,q) then d(Pn+1’Qn) > d(P,Q), thus
B By = By v (2.14) follows. 2

. "
our points property Remarks. Of course, in applications of Theorem 2 one wants

to have the limit relation (1.3) rather than (2.13). To this
ver P, oy Q - end, the starting point Po € P (or O, € @) of the itera-
tion should be "properly" selected, i.e., in such a way that
for the set PO defined by (1.4) d{PO,Q) = d(F,g) should
hold. One might be interested also in the convergence of the
s véry sequences {Pn} and {Qn} to limits P* ang Q* such
that d(p*,Q*) = d(P,q) (in some "natural" topology on p
and ¢@). In applications we shall consider, this is often
easy to show if d(P,g) is attained by a unique pair (p¥,0%),
The last assertion of Theorem 2 will be useful to prove con-
vergence results Pn - P*, Qn - Q* in the harder case when

min d(P,Q) may be attained for several pairs (P,Q), cf. the

metric interpretation
ill be given at the

be sequences ob-
2.7 Then

P e PO with

perty (1.2), where nexk: example ‘and Thecrem 3.
property (1.2) is
erties (2.11), (2.12).

r some P € Pg with

Example. Let P and ¢ be closed convex subsets of a
Hilbert space and set d4(P,Q) = jp - Quz, §(P,P') = 3P - P'n2

.13), we also have Then the three and four points properties (2.11) and (2.12)

hold for every P ¢ P. This is an elementary geometric con-
sequence of the fact that the triangles QOPIP and P1Q1Q
have angles = w/2 at P1 and Q,, respectively. Since d

he first assertion is finite valued, we have P_ = P and Theorem 2 gives
he firs ]
t (2.11) and (2.12) | (2.15) 1lim a(p_,Q) = d(p,0)

- n—m
suffices to consider
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for any pair of sequences {Pn} and {Qn} obtained by
alternating minimization. A theorem of Cheney and Goldstein
(1959) states that if P (say) is compact then By P*,
Qn - Q* where d(P*,Q*) = d(rP,q). A new proof of this can
be obtained from our results as follows. Let P° be the
limit point of some subsequence {Pni} of {Pn}. Then (2.15)
implies d®*, Q) = a(p,Q), and (2.14) gives that the se-
guence HP* - Pnnz, n=1,2,... 1is non-increasing. Since

*
Pni - P, this sequence then must converge to zero, which
means that actually P - P*. Ofsicourse, this implies that
Ql’l
follows from (2.15).

also converges to some Q*, and d(P*,Q*) = d(P,q)

3. Information distance of convex sets of measures

Let (X,X) be an arbitrary measurable space. Throughout
this section, P, § will be sets of finite measures on (X,X).
(By measure we shall always mean a finite measure not identi-
cally O, unless stated otherwise.) We suppose that both P

and @ are convex, i.e., for arbitrary Po’ P1 in P resp.
Q

(3.1)  P.= (1-t)P  +tP, , Q

also belong to P resp. &.

o’ Q1 in ¢ and O < t < 1 the measures

e~ (1 - t)Qo. + 1:Q1

Let the role of d4d(P,Q) be played by the Kullback-Leibler
informational divergence
Ij'log pdp if P €0Q

(3.2) D(PIQ) = 1 4
+ if P 0]

=d_P
P dao -

remarks at the end of this section.)

where (Concerning a different definition cf. the

We shall show that Theorem 2 on alternating minimization
procedures applies to this case, by proving that the three
and four points properties (2.11) and (2.12) hold for every
pep, if &(p,P'") is defined as
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(3.3) §(p,P") D(PIP') + P"(X) - P(X) .

While DI(PIQ) =z O in the most familiar case when P and Q
are probability measures (with equality iff P = Q), for
arbitrary measures D(PIQ) < O is also possible. The func-
tional & defined by (3.3) is, however, always non-negative
and vanishes iff P = P', as one sees from the inequality
-log t 21 = t .

Let us recall the notation (1.1) which we henceforth use
for DI(PIQ) -in the role of d(P,Q). With an obvious exten-
sion, notation like P T o or. Q —ga P' will also be
used when P or Q is an arbitrary measure not necessarily

in P or @.

The following lemma establishes the three points property.
The case of probability measures has been covered already in
Csiszar (1975) Theorem 2.2. The general case is completely
analogous; still, for the reader's convenience, we give the
simple proof.

Lemma 2. Let P be a convex set of measures and let Q

(@]
be another measure on (X,X). Then Qo —24 P1 implies

(3.4) D(PIP1) + P, (X) - P(X) + D(ijQo) S D(PHQO)
for every P € P.

Proof. By assumption, D(P41Q ) = D(PIQ.) < +e . D(PIQ,) < +e
may also be assumed since else (3.4) is trivial. Write

@, dBy s O
17 d@, ao,

(3.5)

Il

Since the measures P (1 - £)P + tP.I

set P for each O < t £ 1, it follows that

belong to the convex

£(t) = D(PtHQO)
attains its minimum at t = 1. Thus

£() - £(0) _

(3.6) 0 = =t

1
T-glPq 109 py - p, log p.1dQ
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where p; = (1 - t)p + tp,- Here the integrand is a difference
quotient of the convex function Py log Pt of t, hence it

is non-increasing as t 4 1. By monotone convergence, the
limit as t 4+ 1 in (3.6) can be exchanged with the
integration, yielding

) d = =
0 = [ gglpy 109 Py) |¢oq 99, = J (14109 By) (pq = PIAQ, -
This is egquivalent to (3.4). o

The next lemma establishes the ‘four points property.

Lemma 3. Let § be a convex set of measures and let P1

be another measure on (X,X). Then P1 —la Q1 implies
(3.7} D(P[IQ.i) s D(PIIP1) + l?.| (X) - P(X) + D(PIQ)
for every measure P on (X,X) and every Q € &.

Proof. The proof is similar to that of Lemma 2. The

assumptions imply that the function
g(t) = D(P4Q.) , O <t <1

attains its minimum at t = 1, where Qt = (1 - t)0 + tQ1 5
Denote by 0 and 6; the absolutely continuous component
with respect to P, of Q and Ql' respectively, and write

_ 4o _ 9
9% ap, ¢ 91 = gp, -

Since D(P1HQ1) = D(P1HQ] < += , we have P1 <« 04 and con-
sequently, 4q, > 0 P, - a.e. Further, P, < Q4 implies
91 & Qt for every O < t £ 1. Since the Radon-Nikodym deriv-
ative of the absolutely continuous component of Qp with
respect to P, is dy = {1 = t)g + taq . it follows by (3.2)

that

g(1) - glt) _ 1
Gx === f4
One sees as in the proof of Lemma 2 that the integrand con-

verges non-increasingly to é%(—log qt)!t_1 =1 = éL. Thus by
e 1
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monotone convergence we get

3.8 g fer < & )
( ) 0 IS q1)dP1

Now, to prove (3.7) we may suppose that P <<:P1r P «Q, for
else the right side is + o . Then P, «Q, implies also

P «:Q1, further, with p = 5%1 , we have P - a.e. Pag, > 0]
and !

4ar _ p ar _ p

dQ1 C_{.I ' do q \
Thus, using the inequality -log t 2z 1 - t , we obtain

D(PIP;) + D(P#Q) - D(PIQ,) = j[logp+1og§— 1oq-éP—]dP:

1
= [ -log —2-ap = f(1 - L) ap=pPwx) -[ZL ap, .
I g pa, .[ Pq, Iq1 1

On account of (3.8), this completes the proof. a

Combining our results thus far, we obtain

Theorem 3. Let P and @& be convex sets of measures on

w lm o« -
(X,%) and let {Pn,n=0 ' {Qn}n=0 be sequences from F resp.
€ obtained by alternating minimization of d{(P,Q) = D(PQ),
starting from some PO € P, cf. (2.9). Then

lim D(PnliQn) = D(POHQ] ;
Tl—co
where
(3.9) PO = {P : D{PHQn) < +w for some n} .

Further, if X is a finite set and F and ¢ are closed in
the topology of pointwise convergence then Pr1 converges to
some P~ € P, such that D(P*1Q) = D(Z_1q) .

Remark. If X 1is finite and P, is positive for exactly
those x £ X to which there exist P € 7 and Q € £ with
P(x)Q(x) > O, then Py = {P : D(PIg) < +»}, and consequently
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D(P_NIQ) = D(PIE) .

Proof. Lemmas 2 and 3 mean that the three and four points
properties hold for every P € P. This, by Theorem 2, proves
the first assertion.

If X 1is a finite set then D(PIQ) < +« iff P «O.
Hence one sees that if P 1is closed, so is PD. Thus there
is a convergent subsequence {Pni} of {Pn} with - limit
p” € Po’ say, and for some further subsequence {ni} of
{ni} also {Qni} converges tg, some Q* € @. Since D(PiIQ)
is lower semicontinuous, we then have
(3.10) D(P*#Q") = lim D(PniHQni) = D(P_1Q) ,
where, of course, the strict inequality is impossible. Thus
D{P*HQ) = D{POHQ} and by (2.14) in Theorem 2 it follows that
G(P*,Pn) is monotone non-increasing in n, where 4§ 1is de-

fined in (3.3). In particular, 1lim 5(P*,Pn) exists, and
-

then P, = P implies that this limit equals O. Hence, in
i
turn, we can conclude that P = P, o

The convergence P - p* (proved for finite X) immediate-
ly imply the convergence of Qn[x) for every x € X with
P*(x) > O. Notice the essential role of the continuity
argument in the proof involving the function ¢ defined by
(3.3). This causes the proof break down for infinite X. On
the other hand, if it were known that a unique pair (P*,Q*)
attaining the minimum D(Pi@) exists then P o p¥, D 5 o*
could be proved under much weaker conditions (assuming now
that D(POHQ) = D(PIQ)). B.g., if on a metric space with its
Borel c-algebra the usual weak convergence of measures were
considered, compactness of both P and ¢ would already be
sufficient for Pn - P*, Qn - Q*. This follows by the argumen
leading to (3.10), since D(PliQ) is known to be lower semi-

continuous for the weak convergence of measures.
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For practical computations based on Theorem 3, it is de-
D(P Q) -

= D(POHQ)r for the purpose of determining when to stop the

P € Po D(PDHQ), the five points

(with d = D) for Q. P Q

=17 "n
implies

sirable to have some bound on the difference
iteration. If a attains
property (1.2)
of Qo' Pys Q1

in the role

D(PIQ) + D(PIHQ,_,) 2 D(PIQ)) + D(P Q) ,

1

Ta€ay
dQn
D(Pann) - D(POHQ) < D{PHQnL1) - D(PnQn) = [log==——-dP.

dQn—1
While this bound involves the unknown P, it leads to
dQn

(3.11) D(Pn”Qn) - D(PO”Q) £ log sup a'Q-r:

x
which is already a useful bound in many cases. In particular,
if X 1is a finite set and the sequence 9,
then the right side of (3.11) tends to 0O as

is convergent

n - w.

Remarks. In some applications, one may be interested in

minimizing instead of D(PIQ) some related functional. E.g.,

the integral with respect to P of some given function c(x)

may be added to D(P(Q). Notice that this particular case is

covered by the results in this section, since
D(PIQ) + [c(x)dP = D(PIQ)

is defined by letting %% = exp(-c(x)). Another

choice of interest for at least one application (the compu-

where 5

tation of channel capacity per unit cost, see Section 5) is

_ D(PIQ)
(3.12) d(p,Q) fcxar
where c¢(x) 1is a given positive valued function. One can

show similarly to the proof of Lemma 2 that the three points
property holds also in this case, with

_ D(PuP') + P'(X) - P(X)

$(P,P") fc(x)ap ’
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while the four points property for these d and & 1is an

immediate consequence of Lemma 3. Choosing, in particular,

c(x) = 1, (3.12) gives the alternative definition of infor-
mational divergence suggested in Rényi (1961).

4. Minimizing information distance from a single measure

Let (X,X) and (Y,Y) be measurable spaces and T be a
measurable mapping of (¥X,x) into (Y¥,¥). The T-image of a
measure Q on (X,X) will be denoted by QT and for a set
g of measures on (X,X) we shall write

4.1) @ =@  :0€eq) .

It may happen that to measures P on (X,¥) one can "easily"
find Q € @ with P —»Q (cf. (1.1), where now d(P,Q) =

= D(PIQ) ), while to measures P on (Y¥,Y) one cannot easily
find OF € @° with B — o'. Similarly, given a set P of
measures on (X,X) it may be "easy" to find P € P with

0 %, P (to given Q), without having a direct way of finding

T : P ;
pT ¢ P with 0 2y p’ Hooa given § on (Y,Y). The next
theorem shows how alternating minimization can be used to

these problems. We shall use the well-known inequality
T
D(PIQ) =z D(PT1Q")

valid for any two measures P and Q on (X,x), where in
case P <« Q with

- T

EE(x} = QE~('I‘(x)) for every x € X

dgQ dQT

(4.2)

the equality holds.

Theorem 4. (i) Given a measure P on (Y,Y) and a con-

vex set § of measures on (X,¥}, define

(4.3) P ={p : BT = B} .

. 2 1 2 1
Starting from some Q0 € g, let QO — P1 — Q1 =g P2 g

be obtained by alternating minimization of D(P1Q), P ¢ P,
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Q € g, where the step Qn~1 —ga P is given, cf. (4.2), by
a8 ap
(4.4) Y (T(x)) for every x € X .
40,1 ao>
n-1
Then ’
(4.5) lim D(ﬁugg) = p(Bigh)
Il

iff for PD defined by (3.9) we have

(4.6) D(P_Q) = D(PIQ) . .

(ii) Given a convex set P of measures on (X,X) and a
measure @ on (Y,Y), set
(4.7 @={0:0 =70) _
. let P 1 2 & 1 0
Starting from some PO e P, le 5 —F QO — P, — Q= ...

‘be obtained by alternating minimization of D(PuQ), P e P,

Q € g, where the step Pn _lﬂ 0, is determined, cf. (4.2), by

ap ae;
(4.8) a—g(x) = —(T(x)) for every x € X .
n ad

Then (4.6) is necessary and sufficient for

T

nuﬁ) = D(PU1D)

(4.9) lim D(P

IN—oo

Proof. (4.4) and (4.8) guarantee, respectively,
D(P o ) = D(Fua’ )
n “n-1 n-1

in case (i) and

D(P Q) = D(Pgﬂﬁ) ¥
in case (ii). Since
iiz D(PnHQn) = D(POHQ)
by Thecrem 3, the proof is complete. s}
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The intuitive assumption underlying Theorem 4, i.e., that
an element of ¢ (P) minimizing D(PIQ) for given P (Q)
can be "easily" found, is fulfilled in the important case
described in the next lemma.

Lemma 4. Suppose that (X,%) = (Z,2) x (Y,Y), where
2 ={1,...,k} and 2 is the family of all subsets of Z.
Let pqr---riy be given measures on (Y,Y), and let R be
the set of all measures on (X,%X) of form

k k
R = 151 ciﬁixui . @ 20 151 c. = 1 ,

where 5i is the point mass in i € Z. Then to any given
measure S on (X,X¥) with D(SIR) < += or D(RIS) < +=,
respectively, the measure R € B with S —la R or S —34 R,

respectively, is uniquely determined by

(4.10) ¢y = S(i) /s(X) .,
and
D(u,ltv,}) + X
= Leops - i o4
(4.11) cy eS(:L} exp { ui{Y) Yo,
respectively, where S(i) = s({i} x ¥), vy is defined by
_ 8({i} x B)
\Ji{B) = S(i) r

and A is determined by the condition Zzc; = 1.

k
Proof. For R = % ciéixui we have
i=1
k ? k dv.,
D(SIR) = J'log%-gd8= s S(4i) 1oq§él—)+ £ S(i)[log z== dv;
i=1 i i=1 i
k . k du.
- dR 4p = i i
D(RIS) = J'logds dR—iE_I c by (V) logeriy + 151 c,f log &, duy -

Hence the assertions follow by standard calculus. o




siszar-Tusnady

—

m “i.e., that
r given P (Q)
portant case

,Y), where
ubsets of Z.
and let # be

to any given
D(R"S) < +°°r
» R or S —Ea R,

b
-
.

Csiszar-Tusnady 223

Using Theorem 4 and Lemma 4, one can find to any measures
k

Sy Myr---rky oON (Y,¥) a convex combination R = 3 ¢
i=1

for which D(SIR) or D(RIS) is minimized, by an explicitly

iMi

defined iterative procedure. For brevity, we shall consider

only the first case, assuming - without any loss of general-
ity - that § = F is a probability measure.
Theorem 5. Let ﬁ, Hpreeerbp be given measures on a

measurable space (Y,Y) and let @ be the set of all
measures of form

.k k
(4.12) Q = _Z CiHy + C4 z 0, _Z ey = T %
i=1 f=1
We suppose that P(Y) = 1 and D(PIf) < +w. Starting from
some vector go = (c?,...,cg) with positive components of sum
1, let S, = (c?,...,cﬁ), n=1,2,... be defined recursively
by
n n-1 dui ~ ~ K n
(4.13) Ci = Ci I;"-d—"— dP , Ql'l = 151 Ci]Ji .
n-1
Then lim &= g* exists and
N —oo
D(P1g) = lim D(PHQH) = D(PIQ}) for Q@ = % Cily -
N-—m i=1
further, cn+1
D(PIB) - D(FIY) < max log ln .
1=izk o
i
Proof. We apply Theorem 4 (i) to (X,X) = (2,Z) x (Y,Y)

as in Lemma 4, letting T be the projection of X onto Y,
and letting € be the set £ of Lemma 4, i.e., the set of

all measures of form

k
(4.14) Q@ = 151 ciéixui PGy 2 0O, xc.=1 .

For O as in (4.14) QF equals the T of (4.12).
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P={P : P =DP) is now the set of all probability measures

on (X,X) having Y-marginal equal to P, and the iteration
2

step Q4 — P is given, cf. (4.4), by

n
_ ap ~
(4.15) F7—(i,y) = By
n-1 dQn_1

The step Pn —la Qn is now determined, cf. (4.10), by

k
n _ e . = n
(4.16) & = P (i) P ({i} x Y): Q, 151 cinﬁixui s
Combining these steps, we obtain (4.13). Thus by Theorem 4 (i),
to prove

(4.17) D(ﬁnﬁn) - D(BIQ)

for an defined in (4.13) it suffices to show that for every
P € P, D(PIQ) < +o for some Q € ¢ implies D(PIQ ) < +

o
(for in this case (4.6) is clearly satisfied). Notice that for

every Q and Q  as in (4.14), (4.16), Q « Q, holds iff
c; = 0O whenever c? = 0 and then
ai

daQ . R
(4.18) aﬁ—(l,y) =l
n cy

This implies that
k c

. _ dpP do _ ) . i

(4.19) D(PﬂQn) = jlog(dQ aﬁnjdp = D(PyQ) + I P(i)log—
n i=1 e

1

where P(i) = P({i} % ¥). Since c? S0 B 1 = Mhew ek,

this proves that D(PHQO) < +o as claimed.

The convergence of the vectors <, follows from Theorem 3

if ¥ 1is finite, and can be established by the same method

k
in general. To this end, notice first that D(Bu x ciui} is
i=1
a lower semicontinucus function of ¢ on the simplex ci z 0,
K =
pX c; = 1, as one checks with Fatou's lemma (discontinuity
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may occur only on the boundary). Now, for a convergent sub-

* i
sequence ¢ = - C , say, define

QH = I Ciﬁixui Q= 51 CiH; v

i=1 i
* . * 2 *
and let P € P Dbe defined by Q° — P . From (4.2), the
k

lower semicontinuity of D(PI £ ciui), and (4.17) it follows
that =

(4.200 p(*10") = p(BUT*) = D(BUY) = D(pUQ) .
This means, in particular, that in addition to Q* —gq p*
alge BT Ll 0" holds so that by Lemma 4

c;y = P () = PY({i} x V) .

This and (4.16) imply that

*
k (o358
* _ * 1 *,
(4.21) Dlg ugn) = I c¢;log— < D(PIP.) .

i=1 c:
i

Further, by the three points property (3.4) and by (4.19)

* * _
D(P IP,) + D(P Q _,) s D(PUQ _,) =
* * k * C; * ¥* *
=D(P Q) + £ P (i)log—— = D(P Q") + Dlguc__,
i=1 i -0

i
Comparing this with (4.21) and taking into account (4.20)
and (4.15) we obtain

* . == o o TP =
(4.22) Dl(cng ) = Dlglig, 4) [D(PiQ__4) D(PiIQ)] <
s D(ghig ) -
Since the assumption ¢ =~ =~ g* implies D(g*Hgn ) - 0, by
J j

(4.22) we have proved that actually D(g*ugnJ - 0, i.e.,

L. = g*. Also the last assertion of the Theorem follows

from (4.22):

p(Big ) - D(®u0) = D(cig

]
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n
a3
i
cn-—1
i

max log
l1<isk

Remark: The algorithm of Theorem 5 is widely used in the
literature for decomposition of mixtures, cf. the discussion

in the next section (at the end of part A).

5. Applications

(A) Maximum likelihood from fncomplete data

et 5 = (¥X,X%X,0) be a statistical space, i.e. let (X,x)
be a measurable space and @ a set of probability distribu-

tions on (X,X). Let u be some o-finite measure dominating

_ 4o
q= 3.
the densities q are used). Let x = (x;,...,% ) be an

¢ and write (it is assumed that fixed versions of

i.i.d. sample from s; then the log-likelihood function is
1 N
2 . (5.1) L{Q) = 5 151 log q(x;) = floquP§

4 . where P is the empirical distribution of the sample, i.e.,

[

(here &  stands for the probability measure concentrated

in x).

We say that we are given incomplete data from s if
instead of x = (x1,...,xN) only the sample Yy = (Y1""’YN)
is available, where

Yi=T(xi) i=1r---rN#

for some measurable mapping T of (X,x) into another
measurable space (Y,Y). Let the set QT be defined by (4.1)

and let ﬁ be a dominating measure for QT, with densities

T
T _d
q - 49

au

¥ QT € QT. Then the likelihood function based on
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the incomplete data y is

(5.2) L(QD) =

M=

log qT(yi} = [log qT(y) dap
1 Y

i
N

]

widely used in the %
where, of course, P _ = P

f. the discussion
We are interested in finding a maximum likelihood estimate
of Q on the basis of y, i.e., a Q € ¢ maximizing (5.2),

providing that a maximum likelihood estimate of Q on the

lata basis of x could be "easily" found. More exactly, we assume

o foey et (X% that to every measure v on (X,X) a Q € @ maximizing

yability distribu- i Jlogg dv can be "easily" found. Now we show how Theorem 4

\easure dominating can be applied to this problem.

‘ixed versions of | Let us suppose first that Y is a finite set. Then,
...,xN) be an ! choosing for W the counting measure, {(5.2) becomes
iood function is | N
| T, 1 T _ T
(5.3)  L(Q@) =g I logQ (y;) = [logQ (y) ey .

i=1 L

& T
{ Since this differs but in a constant term from —D(PyuQ ).
|

: Fgg_éample, PendSs the maximum likelihood estimate of QT achieves D?PyuQT}.

Hence, by Theorem 4 (i), one can use the alternating minimi-

zation procedure to maximizing L{(Q"), providing ¢ 1is con-
e s | vex. Starting from some Qo € 0 define the sequences {Pn}

and {Qn} with densities {pn}, {qn} such that (in accord-

ance with (4.4), where now P = P_)
v from s if ¥

e z == (Y1;---:YN) PY(T(X))
Poyq(¥) = —— q_(x)
| nt of(T(x)) ™
_ n
sl sapedien and Q.. ménimizes D(P_,,1Q). By Theorem 4 (i) we then
e defined by (4.1) | haxe D{Py”Qn) = D(Py“Q Lo lvesi
', with densities B i B T
(5.4) L(Qn) - sup L(Q")
nction based on QeQ
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As to the determination of Qn+1, suppose that jloqpm_.ldPn+1

is finite (a sufficient condition for this is that [log gdQ

be finite for every Q € g). Then we can write

-D(P__41Q) = [ log B BBy ™= Jlogq @P__ .
where the second term equals
Py(T(x))
(5.5) L(QIQ ) = [loggq-—— dQ_ =
" of(rx))y ™
n
4
1 H 1o
= 5 ¥ J’ Tg__cL dg z
i=1 -1 i T
T (yi) i

It follows that D(P NQ) is maximized by the same Q

n+1
which maximizes L(QIQn); this can, by assumption, be easily

found, since (5.5) is of form [ loggdv .

Notice that (5.5) can also be written as

(5.6)  L(QlQ)) = E4 (L(Q)1y) ,

n

i.e., as the conditional expectation of the log-likelihocd
(5.1) given the sample y if the underlying distribution
is Qn'

The iteration consisting of the steps of maximizing
L(QIQn) in © and then letting the maximizing Q be Qn+1
is widely used in statistical practice for maximizing the
log-likelihood L(QT), which is justified if (5.4) holds. In
this generality, this iterative method was suggested by
Dempster, Laird and Rubin (1977) under the name "EM algorithm",
where a long list of earlier papers using this method in

special cases is also provided, dating back to Hartley (1958).

The above reasoning proves the desirable convergence
property (5.4) of the EM algorithm whenever @ 1is convex and
Y is finite; further, in this case (5.4) easily implies the
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convergence of Qg(y) for every y in the sample y. The

restriction to finite Y will be removed soon. The sequence
T
L(Q))

ing also for non-convex

generated by the EM algorithm is monotone non-decreas-
¢. This fact, proved in Dempster,
Laird and Rubin (1977), follows from our approach for free.
On the other hand, the desired convergence relation (5.4)
does not hold in general. In the literature known to us the
most complete discussion of the problem of convergence is

Wu (1983).

.

When Y is not finite, the EM algorithm can still be
fitted into our framework as follows. Suppose that the domi-
nating measure u of @ can be represented by a o-finite
measure 1§ on (Y,Y) and a family of o-finite measures

n(-ly) on (X,X}) in the sense that n(Al-) is Y-measurable

for every A € X and
p(a) = fn(aly)u@dy) ,

where n(-ly) is concentrated on TF1{y}. Then QT <« Y for

every 0 € @, with density

qT(y) = [q(x)n(dxly) .

Further,
5%29— if T(x) =y
g(xiy) = { a ¥
o} else
is the conditional density of Q given T(x) = y with respect
to n(-ly} .

Now, given the sample Y be the set
of those y € Y

concentratedon T 'Y be defined by

¥ = (y1:---;yN). let
which are in the sample and let a measure [

= x_nlly) .
yeY

For each Q € ¢ let 6 be the measure with f{i-density equal

to the p-density of Q. Then
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AT :
Q (yy) = qT(yi) = fpmag N

and therefore the log-likelihood function (5.2) has the form
(5.3) with Q replaced by 6. It follows that the arguments
given for the case of finite Y apply to maximizing (5.2)
also in the general case, if we replace ¢ by 0 = (d:0Qeo0);
the elements of 9 need not be probability measures, but
this affects nothing. Notice, in particular, that (5.5) (with
O and Q  replaced by 0 and @n) becomes

N

1 logyg (x) .

N .21 J’ = qndn( |Yi)
l:

L(®10,) =
TH1(yi)qn(yi}

which is the same as the conditional log-likelihood function
(5.6) . Hence maximizing L{ﬁlﬁn) with respect to 6 is the
same as maximizing L(QlQn) with respect to ¢, as required
by the EM algorithm.

An important field of applications of the EM algorithm is
the decomposition of mixtures, particularly in the case when
the number of components is large so that other numerical
methods cf. Zangwill (1969) are not feasible. Formally, the
problem is a special case of the model in this section which

is obtained by setting X = ZxY, T(z,y) = Y (where Z={1,..
..¢k}, and k is the "number of components"”), and letting o
to be the set of measures (4.14), where Hyre--su, are known

probability measures and Cqre-.sCy are unknown parameters.
(The case when the uy 's contain unknown parameters has also
been investigated in the literature, including the references
below, but is not covered by our convergence theorem.) To our
knowledge, the iteration (4.13) for getting the ML estimate

of the parameters Cqree+4Cy  Was first suggested by Hasselblad
(1966) ; another relevant early reference is Slezinger (1968).
An’ extensive list of references can be found in Grim (1982).
The convergence results on the algorithm (4.13) available in

the literature do not seem to yield convergence of the weight
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vectors <, without the so-called identifiability condition.
(The latter means that the representation (4.12) of elements
of O is unique, in this case the optimizing vector g* is
unique and Sn g* easily follows.) Thus our Theorem 5
appears to be a stronger convergence result than those known
priviously, even though the strengthening, i.e., the conver-
gence of the very weight vectors S, is more of theoretical
than of practical interest. As a sample of practical appli-
cations we mention remote sensing (Peters and Coberly (1976)),
tomography (Shepp and Vardi (1982)) and cluster analysis of

congenital malformations (Czeizel, Telegdi and Tusnady (1984)).

(B} Channel capacity. A memoryless channel with finite

input alphabet X and finite output alphabet Y is deter-
mined by a stochastic matrix W : X - ¥, i.e., a family of
{W(-Ix)}xex

the book Csiszar and Korner (1981) and refer to the same book

distributions on Y. We follow the notation of

for the information-theoretic significance of the concepts

below. The capacity of this channel is C(W) = max I(P,W)
where
(5.7)  I(B,W) = 3 P(x)W(yix) log LX)

X,y y

and the maximum is taken for all distributions P on X; here

PW(y) = Z P(x)W(yIx) .
X
Arimoto (1972) and Blahut (1972) suggested an iterative
algorithm for computing C(W), based on the observation that

it can be written as a double maximum:

(5.8) C(W) = max ¥ P(x)W(ylx) log =Xyl
P (x)
P,o X,y
Here ¢ ranges over all stochastic matrices ¢ : Y -» X. For
fixed P, the maximum in ¢ equals I(P,W) and it is

attained by
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_ P(
sty - EHBIx)

The maximizing P for a fixed ¢ can also be readily given
by an explicit formula. The mentioned algorithm consists in
alternating minimization with respect to P and ¢, starting
from some PO such that Po(x) > 0 for every x € X.

Now, let P resp. @ be the set of all measures on X«xY
of the form P(x)W(yIx) resp. @(xIly)W(yix) where P is
any distribution on X and @ : Y - X is any stochastic
matrix. Notice that » consists of probability distributions,
while ¢ does not. Clearly, (5.8) is egquivalent to

c(w) = -D(pPIQ) ,

and the Arimoto-Blahut algorithm is just the alternating
minimization procedure for D(PIQ), P € P, Q € 0. Hence
Theorem 3 contains the result proved by Arimoto (1972) that
the iteration converges to C(W) and, in addition, the
distributions P, on X constructed in course of the
iteration converge to some P* such that I(P*,W) = C(W) .

The first part of this result follows from Theorem 3 also for
countable alphabets X and Y (understanding C(W) as the
supremum of I(P,W), for now the maximum need not be attained)

while the convergence of the P 's no longer follows.

A variant of the capacity computing algorithm has been

suggested by Jimbo and Kunisawa (1979) for computing

max L{EzW)
p c(P) .

the so-called capacity per unit cost. Here

c(P) = £ P(x) c(x) ,
XEX
where c(x) 1is a given positive function interpreted as the
cost of transmission (or duration) of the symbol x € X.
Their method is equivalent to the alternating minimization
procedure for D(PIQ)/c(P), P € P, Q € ¢ where P and ¢
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are the same as above. By the last remark in Section 3, the

three and four points properties are wvalid for d(P,Q) =

be readily given | = D(PIQ) /c(P), hence our general results cover also this case

thm ponslists: do yielding the convergence theorem of Jimbo and Kunisawa (1979).

and ¢, starting

ery x € X. The capacity computing algorithm fits into our framework

! also in another way, letting pr resp. ¢ be the set of all
|

easuren on AmY distributions on X resp. of all stochastic matrices

where P is ® : Y » X, and considering directly

|
ny stochastic |
|
|

ity distributions, d(p,%) = ¢ P{X}W(y!x)log-gé%$¥L , Pep, & €9 .
alent to s £
For this function, the three and four points properties hold
with &(p,P') = D(PitP') for every P € p, thus Theorem 2
alternating

applies. This shows, in particular, that the convergence re-
€ 0. Hence

oto (1972) that
dition, the |

sults remain valid even for channels with abstract output

alphabet, as long as the input alphabet X 1is finite. Even
this finiteness assumption can be dispensed with if conver-
rsi of the I gence to C(W) is all what is reguired, without any conver-
(P ,W) = C(W) .

gence statement on the P_ 's.

heore& 3 also for ; 4

ng —<. (W) as the | (C) Rate-distortion functions. Let X and Y be finite
d be attained), t sets and p(x,y) be a non-negative valued function on X x Y.
r follows. T The rate-distortion function of a distribution P on X is
ithm has been ' R(A) = min I(P,W) (4 2O

omputing W:p(P,W)SA

where I(P,W) is defined by (5.7),

p(P,W) = ¥ PIW(lyIx)plx,y) .,
/Y

and the minimization refers to all stochastic matrices
W : X - Y satisfying the indicated constraint. For evaluating

the function R(A), the standard approach is to introduce a
terpreted as the

Lagrange multiplier &, thereby reducing the problem to the
ymbol x € X. :

evaluation of the function
g minimization

(5.9) G(s) = min[I(P,W) + 8p(P,W)] =

sre P and © W
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W(ylix)
PW(y)exp[-6p(x,y) ] °

= min I P(x)W(yIx) log
W x,y
An iterative algorithm for evaluating G(s8), § = O, was
suggested by Blahut (1972). It is based on the observation
that G(§8) can be written as a double minimum:

G(¢8) = min I P(x)W(ylIx) log Wiy ix)
W,Q x,vy Q{ylexp[-6p(x,y) ]""

where Q ranges over the distributions on Y. For fixed W,
the minimum is attained when Q = ﬁw, and the minimizing W
for fixed Q <can also be given explicitly. The mentioned
algorithm consists in alternating minimizations with respect
to W and Q. Denoting by P resp. ¢ the set of measures
on XxY of form P(x)W(ylx) (for some W : X - Y) resp.
P(x)Q(y) exp [-6p(x,y)] (for some distribution Q on Y¥), it
is obviocus that Theorem 3 applies to this case. It gives the
result proved by Csiszar (1974) that Blahut's iteration does
converge to G(¢), and, in addition, the stochastic matrices
Wn : X = Y obtained in course of the iteration converge to
some W' : X » Y which attains the minimum in (5.9). Perhaps
it is worth pointing out that, in contrast with the previous
case, now it is the set X whose finiteness is not needed
for the result.

(D) Investment portfolio with maximum expected log return.

Let X1,X2,...,Xk be non-negative valued random variables
with finite expectations. Xj is interpreted as the yield
(per one dollar investment) of the j'th one of k given
stocks where Xj > 1 means gain while Xj < 1 means loss,
and an investor is supposed to invest fractions CqpreeesCp
of his total invested capital into these stocks. The vector
c= (c1,...,ck) with non-negative components of sum 1

is called the investment portfolio. Cover (1981) suggested an
iterative algorithm for computing the portfolio yielding

maximum expected log return, i.e., maximizing E log % chj
3=1
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8), 6§ 2 0, was
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Im =
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[-8p(x,y) ] '
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(supposing that the joint distributuion of the Xj 's is
known) . For literature substantiating that this is the right
optimality criterion we refer to Cover (1981). Cover's
algorithm is given by

(5.10) c?” = C?E——]— 4 n 0,71, veu

can be any vector with positive components.
]

[e] o
where (01,..-,Ck]

Now let ¥ be the set of all k-dimensional vectors
¥ = (r1,...,rk) with non-negative components. Let the

measure P on (the Borel o-algebra of) Y be the joint

distribution of x1,...,xk, and let the measures Hpreeerly
on Y be defined by
dui
g (r1,...,rk} = r; i=1,...,k
Then
k k - .
E log .21 cy¥y = [(log _z1 cjrj)dP = -D(PUQ)
J= : 3=
where
- k
= I C.U. .
0 j=1 33

Thus maximizing the expected log return is the same as
minimizing D(P!Q). Obviously, Cover's algorithm (5.10) is
the same as (4.13) applied to the present setup. In particu-
lar, Theorem 5 contains the result of Cover (1981) that the
iteration (5.10) is convergent to a portfolio g* yielding

maximum expected log return.
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