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By examining the experimental data on the statistical properties of nat-
ural scenes together with (retinal) contrast sensitivity data, we arrive
at a first principles, theoretical hypothesis for the purpose of retinal
processing and its relationship to an animal's environment. We argue
that the retinal' goal is to transform the visual input as much as pos-
sible into a statistically independent basis as the first step in creating
a redundancy, reduced representation in the cortex, as suggested by
Barlow. The extent of this whitening of the input is limited, however,
by the need to suppr~ss input noise. Our explicit theoretical solutions
for the retinal filters also show a simple dependence on mean stimu-
lus luminance: they predict an approximate Weber law at low spatial
frequencies and a De Vries-Rose law at high frequencies. Assuming
that the dominant source of noise is quantum, we generate a family
of contrast sensitivity curves as a function of mean luminance~ This
family is compared to, psychophysical data.

1 The Retina and the Visual Environment

An animal must have knowledge of its environment. As Barlow (1989)
has emphasized, one important type of knowledge that needs to be stored
in the brain is knowledge of the statistical properties of sensory messages.
This provides an animal with data about the regular structures or features
in its environment. New sensory messages can then be compared to
expectations based on this background data; for example, the background
data can be subtracted. In this way, one can argue, the brain is able to
discover unexpected events and new associations. Here we explicitly

. explore the possibility that even the retina knows some of the statistical
properties of visual messages; Our prejudice is that discoverIng how
this information is used in the retina will not only help explain retinal
processing but will be invaluable in applying this idea to the cortex.

To discover what, the retina knows about the statistics of its environ-
ment, it is first necessary to find out just what characterizes the ensemble
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of visual messages in a natural environment. An imporrant step in this
dir~ction has been taken by Field (1987), who has been analyzing pictures

, of "natural" scenes, such as landscapes without human-made objects as
well as. pictures of human faces. As Field has argued, these represent a
very small subset of all possible images: all possible arrangements and

. values of a set of pixels. What he found is that natural images have
unique and clearly defined statistical properties.

The first statistical measure Field calculated is the two-dimensional
spatial autocorrelator

R(x

y) 

(L(x)L(y)) (1.1)

which is defined as the average over many scenes (or the average over
one large scene assuming ergodicity) of the product of luminance levels
L(x) and L(y) at two spatial points x and y. Actually, by homogeneity
of natural scenes the autocorrelator is only a function of the relative
distan~e: R(x 

- y)- 

One can thus define the spatial power spectrum, which
is the Fourier transform of the autocorrelator R(f) = J dxe

if.xR(x). This is
the quantity that Field directly measured. What he found is

R(f) '" 
If I

which corresponds to a scale invariant autocorrelator: under a global
resealing of the spatial coordinates --7 ax the autocorrelator R(ax) --7

R(x). Although this scale invariant spatial power spectrum is by no
means a complete characterization of natural scenes, it is the simplest
regulqrity they possess. The retina, being the first major stage in visual
processing, is not expected to have knowledge beyond the simplest as-
pects of natural scenes and hence for understanding the retina the power
spectrum may be sufficient.

. The question at this stage is what is the relationship between this
property. of the visual environment and the observed visual processing
by the retina? To answer this, let us explore what happens to the spatial
power spectrum of the visual signal after it is processed by the retina.
The output of one major class of retinal ganglion cells2 is known to be
related to the light input approximately through a linear filter:

O(Xj) = 
f dx 

K(xj - x) L(x) - L (1.2)

where L(x) is the light intensity at point x, O(Xj) is the output of the
jth ganglion cell, and K(x - x) is the linear ganglion cell kernel (Xj is the
center of the cell's receptive field. Here we assume translation invariance
of the kernel which means that all ganglion cell kernels are the same
function, but translated on the retina). Once adapted to bright light
this ganglion cell kernel, in spatial frequency space, is a bandpass filter.

2X-cells in cat, P-pathway cells in monkey-
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Typical retinal filters at high luminosity are shown in Figure lA and C,3

where the experimental responses K(f) (actually the contrast sensitivity
which is K(f) times the mean luminance 101 are plotted against stimulus
frequency. The data shown in Figure lA are from De Valois et al. (1974)1
whil~ the data in Figure lC are from Kelly (1972).

Now to see how the power spectrum is modified by the retina, we
need only multiply the input spectrum R(f) by K(f)K* (f) since the average
output spectrum is (O(f)O* (f)) = ((K(f)L(f))(K(f)L(f))*

). 

We can also
plot the square root of this output spectrum the amplitude spectrum

simply by multiplying the experimentally measured kernels K(f) 

Figure lA and C by the input amplitude spectrum

VR(f) = Ifl-

This has been done in Figure IB and D, which shows an intriguing re-
sultAt low frequencies, the input spectrum Ifl~2 is converted into a flat
spectrum at the retinal output: (O(f)O* (f)) = constant This whitening 

the input by the retina continues up to the frequency where the kernels
in Figure lA and C peak. Had this whitening continued up to the sys-
tern s cutoff. frequency, this would have meant the ganglion cell outputs
would be complet~ly decorrelated in space. This is because a white or flat
spectrum infrequency space Fourier transforms into a delta function in
space, giving (O(Xi)O(Xj)) r-o..I 8ij. In other words, the signals on different
ganglion cell nerve fibers would be statistically independent So it ap-
pears that the retina is attempting to decorrelate its input, at least down
to the scale of the peak frequency.

The idea that the brain is attempting to transform its sensory input
to a statistically independent basis has been suggested by Goodall (1960)
and Barlow (1989) (see also Barlow and Foldiak 1989), and has been dis-
cussed by many others. Barlow has emphasized that one advantage.
having a statistically independent set of outputs Oi is that all of their
joint probabilities Pijk... can be obtained directly from knowledge of the
relatively small set of individual probabilities Pi. The values of the indi-
vidual Pi can also be represented by taking the output strengthsOito be
proportional to their improbability, - log(Pi), that is, to the amoUl~t of in,~
formation in each output. This then gives a very compact representation
of not only the signals, but also their probabilities. In such cf-statistically

Actually, what is plotted in Figure lA and C are the results of psychophysical con-
trast sensitivity measurements, rather than of single ganglion cell responses, Tb.e siJ1gle-

; .

cell results, however, are qualitatively similar, and in this short paper for .t()p.~ehkss
we compare theory exclusively to psychophysical results (all figures). In genera1;/we -
believe that the psychophysical data represent an envelope of the collection of single-
cell contrast sensitivities. Then, given our asswnption of translation invariance the
psychophysical envelope and the single-cell results should coincide, However, we do
not exclude the possibility of a more complicated relationship between psychophysical
and single-cell contrast sensitivities,
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Figure 1: Retinal filters (A, C) in Fourier space at high mean luminosities, taken
from the contrast sensitivity data of De Valois et aI, (1974) (A) and Kelly (1972)

(C), B (D) is the data in A (C) multiplied by l/lfl, which is the amplitude spec-
trum of natural scenes. This gives the retinal ganglion cells' output amplitude
spectrum. Notice the whitening of the output at low frequencies, The ordinate
units are arbitrary.

independent basis, the outputs oi represent "features," for example, in
English text they would correspond roughly to "words ; they are the

statistical structures that carry useful information, Finding these features
effectively reduces the redundancy in the original sensory messages, leav-
ing only the so-called "textual" (not predictable) information, One may
therefore state this goal of statistical independence in information theory
language as a type of redundancy reduction,

Based on the experimental evidence in Figure IB and 0, one might
advance the hypothesis that the goal of the retinal processing is to pro-
duce a decorrelated representation of an image. However, this cannot
be the only goal in the presence of input noise such as photon noise or
biochemical transduction noise, In that case, decorrelation alone would
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be a very dangerous computational strategy as we now illustrate: If the
retina were to whiten all the way up to the cutoff frequency or resolu-
tion limit, the kernel K(f) would be proportional to If I up to that limit.
This would imply a constant average squared response KRK* to natu-
ra!" signals L(x), which for R f'V Ifl-2 have large spatial power at low
frequel1!;ies and low power at high frequencies, But this same K(f) f'V If I

acting on input noise whose spatial power spectrum is approximately
flat (noise is usually already decorrelated) has a very undesirable effect,
since it~mplifies the noise at high frequencies where noise power, unlike
signal pOwer, is not becoming small, Therefore, even if input noise were
not a major problem without decorrelation, after complete decorrelation
(or whitening up to cutofO it would become a problem, Also, if both
noise aI14 signal are decorrelated at the output, it is no longer possible to
distingu,1$h them. Thus, if decorrelation is a strategy, there must be some
guarant~~ that no significant input noise is passed through the retina to
the next~tage,

Further evidence that the retina is concerned about not passing signif-
icant am~)Unts of input noise is found in experiments in which the mean
stimulus'Juminance is lowered. In response to this change, the ganglion
cell kernel K(f) makes a transition from bandpass to lowpass filtering,
This is j~st the type of transition expected if the kernel is adapting to
a tower.~ignal to noise ratio, since lowpass filtering is a standard sig-
nal pro~essing technique for smoothing away noise. Such a bandpass to
lowpasstransition also occurs when the temporal modulation frequency
of the ~timulus is increased (the retinal kernel is actually a function of
both the spatial frequency f and the temporal frequency which has
up to now been suppressed), In this case too there is an effective de-
crease in the spatial signal to noise ratio, so it is also evidence for noise
suppre$~ion,

In a, :previous paper (Atick and Redlich 1990) we found an infor-
matiOIi: theoretic formalism that unifies redundancy reduction and noise
suppres~ion, That formalism predicts all the qualitative aspects of the
experimental data, However, it is highly technical and uses parameters
that do hot seem to have clear physical roles, This makes it more difficult
to do qu.cmtitative comparisons with experiments, since the necessary de-
pendence of these parameters on, for example, mean luminance is not
intuitive' ~ In this paper we adopt a modular approach where noise sup-
pression and redundancy reduction are done in separate stages, This has
two advantages: first it produces parameters with more direct physical
meaning, ;and second it gives a clearer theoretical understanding of the
purpose-of retinal processing, 

In th~ next section we formulate our theory mathematically making
more col1~rete the heuristic notions of decorrelation and noise suppres-
sion, ~e. then derive a simple theoretical retinal transfer function, and
compar~ it to experiments,
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2 Decorrelation as a Computational Strategy in Retina

1 Decorrelation in the Absence of Noise. In the previous sectton
we gave some experimental evidence leading to the hypothesis that :the
goal of retinal processing is to produce a representation with reduced, re-
dundancy, This implies a representation where the ganglion cell activities
are as decorrelated as possible (more generally, statistically independent),
given the inherent problem of input noise in the retina, In this section,
we formulate this notion as a mathematical theory of the retina, We first
set up the decorrelation problem ignoring noise, and later introduce i the
simple but important modification needed for noise suppression,

The outputs i O(Xi)) of the array of ganglion cells are completely
decorrelated iff (O(Xi)O(Xj)) 

'" 

Dij, where the brackets denote an ensemble
average over natural stimuli. In general, due to the presence of noise, the
retina will not decorrelate completely, Instead the filter Kwill only t~nd
to decorrelate (or decorrelate up to a given scale), For this reason it is
most natural to formulate the problem in terms of a variational princ~ple
with an energy or cost functional EiK), that grades different kernels
according to how well they decorrelate the output. Any constraints on
this process are easily incorporated as penalty terms in the energy f4nc-
tional. To find the correct energy functional for decorrelation one may
use Wegner s theorem (Bodewig 1956), which states that

det(O(xi)O(Xj)) 
II 

(cJ2(Xi)) (2,

" ,

with equality if and only if the matrix (O(Xi)O(Xj)) is diagonal. ":fhjs
means that decorrelation can be achieved by keeping det(O(xdO('Xj))
fixed and minimizing IIi (O2 (xd), One reason for k'eping det(O(xi)O(~j))

det(.l(TRK) fixed is that this ensures a reversible transformation, SJ.nce

it is the same as requiring det(KTK) )- 0, (Here we are treating the kernel
as a matrix Kij K(Xi - Xj)'

Actually, there are a couple of mathematical steps that lead to a sp.n-
pier energy functional. First, with the assumption of translation in~a:ri-
ancewe can minimize (02(XQ)) for one ganglion cell at location Xo ins~e.ad
of IIi(02(xi))' Again by translation invariance, this is equivalent to ll1P1i-
mizing the explicitly invariant expression Ei(O2 (xd) = Tr(KRK?), Finally,
it is more convenient to hold fixed 10gdet(KTK) rather than det(KNK) 

Thus

. . .

EiK) Tr(KRKT log det(KTK) (2,

is a lagrange multiplier used to fix det(KTK) to some value, but sirice
we do not know this value we will subsequently treat as a parameter
penalizing small det(KTK),

We shO'uld PO'int O'ut that the decO'rrelating filter that minimizes 2,2 is nO't the usual
Karhunen-Loeve transfO'rm which WO'uld be the FO'urier transfO'rm fO'r translatiO'napy
invariant R, This KL transfO'rm gives a nO'nlO'cal, nO'ntranslatiO'nally invariant K, 
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To find the kernel that minimizes equation 2,2, it is best to work in
frequency space, where traces such as Tr(KRKT become integrals over
frequencies, Also, the second term in equation 2,2 can be converted to
an integral, by first using the matrix identity log det(KTK) = Tr log (KTK) 

The equivalent energy functional becomes

EtK~ df IK(f)12 R(f) dflog IK(f)12 (2,

which when varied with respect to K(f) gives

IK(f)1 = ~f)
(2,

With Field's R(f) f"V 1/lf12, this gives the whitening filter K(f) f"V JPItI,
Having arriyed at the energy functional (equation 2,2 (or 2,3)) as the

one that produces decorrelation, it is now straightforward to explain its
information theoretic interpretation, Minimizing the first term in equa-
tion 2,2 is equivalent (see Atick and Redlich 1990) to minimizing the
sum of bit entropies Li Hi = - Li J dOiP(Oj) 10g(P(Oj)j, where P(Oj) 

the probability density for the ith ganglion cell output Oi O(xd, The

second term in equation 2.2 is the change in entropy H (including correla-
tions, not just bit entropy) due to the retinal transformation, so requiring
this term to vanish would impose the constraint that no information is
lost this is related to requiring reversibility, although it is stronger,
Therefore minimizing E in equation 2,2 has the effect of reducing the
ratio of bit entropy to true entropy: Li Hi/H which is what we mean
here by redundancy, Minimizing this ratio reduces the number of bits
carrying the information H; technically, it reduces all but the first order
redundancy, Also, one can prove that Li Hj .c( H with equality only when
the O(Xj) are statistically independent, so minimizing this ratio produces
statistically independent outputs,

2 Introducing the Noise. Since here we are primaril9"'41terested in
testing redundancy reduction, we take a somewhat simplified approach
to the problem with noise, As discussed earlier, instead of doing a full-
fledged information theoretic analysis (as in Atick and Redlich 1990), we
work in a formalism where the signal is first low-pass filtered to eliminate
noise, The resulting signal is then decorrelated as before, Actually, since
we will be comparing with real data, we have now to be more explicit
about the stages of processing that we believe precede the decorrelation
stage,

In Figure 2 we show a schematic of the signal processing stages that
we assume take place in the retina, First, images from natural scenes
pass through the optical medium of the eye and in doing so their im-
age quality is lowered, It is well known that this effect can be taken
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Figure 2: Schematic of the signal processing stages assumed to take place in the
retina.

into account by multiplying the images by the optical modulation transfer
function or MTF of the eye, a function of spatial frequency that is mea-
surable in purely non-neural experiments. In fact, an exponential of the
form exp(-(Ifl/fe for some scale fe characteristic of the animal (in pri-
mates fe '" 22 c/ deg and '" 1.4) is a good approximation to the optical
MTF. The resulting image is then transduced by the photoreceptors and
is low-pass filtered to eliminate input noise, Finally, we assume that it is
decorrelated. In this model, the output-input relation takes the form

O=K.(M.(L+n)+noJ (2.5)

where the dot denotes a convolution as defined in equation 1.2. n(x) 

the input noise (such as quantum noise) while no (Xi) is some intrinsic
noise that models postreceptor synaptic noise. Finally, M is the filter that
takes into account both the optical MTF as well as the low-pass filtering
needed to eliminate noise. An explicit expression for M will be derivedbelow. 

With this model, the energy functional determining the decorrelation
m~K~ 

ElK! J df IK(f)12 tM2 (f)(R(f) + N51- P dflog IK(f) (2.

where N2(f) (In(f)12 ) and N5(f) (Ino(f)12) are the input and synaptic
noise powers, respectively. This energy functional is the same as that in
equation 2.3 but with the variance R(f) replaced by the output variance

of a in equation 2.5.
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As before, the variational equations 8E/8K = 0 are easy to solve for 

The experimentally measured filter Kexp is then this variational solution,
K, times the filter M:

M(f)..;p
IKexp(f) I = IK(f) I M(f) = t 

M2(f) (R(f) + N2) + N5 J 
1/2 (2.

An identical result can be obtained in space-time trivially by replacing the
autPcorrelator R(f) and the filter M(f) by their space-time analogs R(f, w)
and M(f w), respectively, with the temporal frequency. However, we
focUs here on the purely spatial problem where we have Field's (1987)
m~surement of the spatial autocorrelator R(f) of natural scenes: R(f) 

15/1fI2

Deriving the Low-Pass Filter. In our explicit expression for Kexp,
belpw, we shall use the following low-pass filter

;. M(f) = r.!. 
R(f) -(Ifllfc

l10 
R(f) +N2

(2.

Th~ exponential term is the optical MTF while the first term is a low-pass
filt~r that we derive next. The reader who is not interested in the details
of ihe derivation can skip this section without loss of continuity.

Jt is not clear in the retina what principle dictates the choice of the
low;~pass filter or how much of the details of the low-pass filter influence
the.final result. In the absence of any strong experimental hints, of the
typ~ that imply redundancy reduction, we shall try a simple information
th~:6retic principle to derive an M: We will insist ,that the filter M should
be ,chosen such that the filtered signal 0' = M . (L + n) carries as much
inf~rmation as possible about the ideal signal L subject to some~onstraint.
To .he more explicit, the amount of information carried by about L, is
the :mutual information 1(O' L). However, as is well known (for Land

statistically independent gaussian variables, see Shannon and Weaver
191~) 1(0' L) = lH(O'

) -

Noise Entropy), and thus if we maximize 1(0'
ke~ping fixed the entropy H(O' we achieve a form of noise suppression.

We can now formulate this as a variational principle. To simplify the
caltfU1ation we assume gaussian statistics for all the stochastic variables
inv9lved. The output-input relation including quantization units, 
tak~s the form 0' = M . (L + n) 

q. 

A standard calculation leads to

rM2(R+N'l)+~1(0 , L) = dflog
M2N2 + 

Similarly, one finds for the entropy H(O'

= - 

dfloglM2(R + N'l) 

+ ~).

The variational functional or energy for smoothing can then be written
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as E~MJ = 1(0' L) 17H(O'

), 

It is not difficult to show that the optimal
noise suppressing solution 8E IBM = 0 takes the form

1/2

17R+N2

with the parameter 17 '" ~lo in order to hold H(O' fixed with mean
luminance, Actually, below we will be working in the regime where the
quantization units are much smaller than the signal and noise powers
and hence we can safely drop the -1 term in M1 since the 117 term dom-
inates for small ~, We can also ignore any overall factors in M that are
independent of f, This then is the form that we exhibit in the first term
in equation 2,

4 Analyzing the Solution. Let us now analyze the form of the com-
plete solution 2,7, with M given in equation 2,8, In Figure 3 :we have
plotted Kexp (f) (curve a) for a typical set of parameters, We have also
plotted the filter without noise R(f)-1/2 (equation 2,4) (curve b) and M(f)
(equation 2,8) (curve c), There are two points to note: at low frequency
the kernel Kexp (f) (curve a) is identically performing decorrelation, and
thus its shape in that regime is completely determined by the statistics of
natural scenes: the physiological function~ and N drop out. At high

frequencies, on the other hand, the kernel coincides with the function M,
and the power spectrum of natural scenes R drops out.

We can also study the behavior of the kernel in (equation : 7) as a
function of mean luminosity 10, If one assumes that the dominant source
of noise is quantum noise, then the dependence of the noise parameter
on 10 is simply N2 = N,2 where N' is a constant independent of 10 and
independent of frequency (flat spectrum), This gives an interesting result.
At low frequency where Kexp goes like 1 I VR its 10 dependence will be
Kexp '" 1110 (recall R '" 15) and the system exhibits a Weber law\)ehavior
that is, its contrast sensitivity 10Kexp is independent of 10, Wh!le in the
other regime at high frequency - where the kernel asymptote~ M with
N2 ? R then Kexp '" 111~/2 which is a De Vries-Rose behavior 10Kexp '" 1~/2

This predicted transition from Weber to De Vries-Rose with in:creasing
frequency is in agreement with what is generally found (see Kelly 1972
Fig, 3),

Given the explicit expression in equation 2,7 and the choice of quan-
tum noise for N we can generate a set of kernels as a function of 10, The
resulting family is shown for primates in Figure 4, We need to empha-
size that there are no free parameters here which depend on 10, The only
variables that needed to be fixed were the numbers fe, 

p, 

and N' and
they are independent of 10, Also we work in units of synaptic noise no,
so the synaptic noise power N5 is set to one, We have superimposed
on this family the data from the experiments of Van Ness and Bouman
(1967) on human psychophysical contrast sensitivity, It does not take
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Figure 3: CUrve is the predicted retinal filter from equation 2,7 for a typical
set of parameters, while curve is R(f)-1/2, which is the pure whitening filter.
Finally, curve c is the low-pass filter M, The figure shows that at low frequen-
cies curves and coincide and thus the system is whitening, while at high
frequencies curves and c coincide and thus the retinal filter is determined by
the low-pass filter,

much imagination to see that the agreement is very reasonable especially
keeping in mind that this is not a fit but a parameter free prediction,

3 Discussion

One major aim of this paper has been to answer the question, what does
the retina know about its visual environment? Our initial answer comes
from noting that the experimental ganglion cell kernel whitens the Ifl-
spatial power spectrum of natural scenes found in completely indepen-
dent experiments by Field (1987), This shows that the retinal code has
been optimized assuming whitening as a design principle for an 
environment with a Ifl-2 spectrum, In other words, the retina knows at
least one statistical property of natural scenes: the spatial autocorrelator,
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Figure 4: The family of solid curves are the predicted retinal filters (equation 2.
at different 10 separated by one log units, assuming that the dominant source
of input noise is quantum noise (N2 rv 10). No other parameters depend on 10,

The fixed parameters are Ie = 22 c/deg, 1.4, = 2,7 X 105 NI 1.0. The
data are from human psychophysical contrast sensitivity measurements of Van
Ness and Bouman (1967).

But what is useful about whitening the input signal? One possible
answer is that whitening compresses the (photoreceptor) input signal so
that it can fit into a channel with a more limited dynamical range, or
c,!pacity. Such a limitation may be a physical one in the retina such as at
the bipolar cell input sYnapses or it may be in the ganglion cell output
cable, the optic nerve (see also Srinivisan et al. 1982). Another possible
explanation for the whitening is. Barlow s idea that a statistically inde-
pendent, or redundancy reduced representation is desirable as a cortical
strategy for processing sensory data. From this point of view, the reti-
nal filter is only performing the first step in reducing redundancy, by
reducing second-order statistics (correlation). With this explanation, the
capacity limitation is located further back in the brain, and may be best
understood as an effective capacity limit, which is due to a computational
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bottleneck, for example, the attentional bottleneck of f"V 40 bits/sec, Of
course, since redundancy reduction usually allows compression of a sig-
nal, there is no reason both explanations for whitening physical bot-
tleneck in the retina or computational bottleneck in cortex must be
mutually exclusive, Also, to paraphrase Linsker (1989), the brain may
create physiological capacity limitations at one stage in order to force an
encoding whose true utility is in its use as part of a larger strategy, such
as Barlow s redundancy reduction,

There is, however, some evidence favoring the cortical redundancy
reduction hypothesis: First, assuming a physiological bottleneck in the
retina implies that the output code has a fixed and limited number of
states available, and these are fewer than the number of states at the
input, If one assumes that all of these outputs states are being used max-
imally at all luminosities, this produces a dependence on Jo that does not
match experiment. One finds that such a capacity limitation constraint
predicts a Weber (K f"V Jo) 

type scaling with Jo at all frequencies so long as
the kernel is bandpass; this is contradicted by experiments that show a
significant decrease in contrast sensitivity (Derrington and Lennie 1982),
for example, at peak frequency, even while there is little change in the
shape of the kernel. Second, some animals show bandpass (whitening)
filtering even at very low luminosities where the input signal to noise is
such that no capacity limitation is likely, Third, the ganglion cell band-
pass characteristic is sharpened at later stages, such as in the LGN, and
in monkeys some cortical cells have receptive fields very much like those
of ganglion cells (Hubel and Wiesel 1974), Finally, some animals have
orientation selective cells already in their retinas, This, together with the
third point, suggests that whitening (giving bandpass filtering) is likely to
be a first stage in a strategy of visual processing which is continued in the
cortex, and which may also explain, for example, orientation selectivity,

To finally decide on the true purpose of the retinal whitening of nat-
ural scenes will require more experiments, In particular, to avoid some
assumptions, it would be best to experimentally measure the correlation
between ganglion cell outputs (also cortical cells) for an animal in its
natural environment. Because of the need to suppress noise, as shown
here, we would predict some correlation for nearby ganglion cells, but
a much smaller correlation length for ganglion cells than for the natural
luminance signal. Also, the stimulus must be the animal's natural envi-
ronment, or at least have a Ifl-2 spectrum, because of course any other
type of input correlation will show up as output correlation,

Beyond such questions about the purpose or presence of decorrela-
tion, we should stress that without considering the problem of noise one
cannot fully explain the form of the experimental ganglion cell kernel. In
fact, too much whitening of a signal that includes noise can be dangerous,
This is an obvious point that has not always been appreciated, We find
consideration of this need to suppress noise is the only other ingredient
needed in order to explain an abundance of experimental data, It gives
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an explanation of the relatively low peak frequency of the retinal filter
in bright light. It also leads to the prediction of a bandpass to lowpass
transition with decreasing mean stimulus luminance, In fact, our solu-
tions predict an approximately Weber behavior at low frequencies, and
assuming quantum noise, an approximately De Vries-Rose behavior at
high frequencies,

The same property of our solutions that leads to the observed behavior
with changing luminance also explains another set of experiments: a
similar bandpass to lowpass transition is observed when the temporal
frequency of the stimulus is increased, That is, the effect of lowering 
is predicted to be very close to the effect of raising temporal frequency,
A more complicated relationship between color processing and changes
in stimulus frequency is also predicted by our theory, as is the cone to
rod transition, So a very large class of experimental observations can
all be explained as the consequence of a single principle, They also, as
mentioned, probe more specific properties of an animal's environment; so
they further test the dependence of retinal processing on environment.
All of these space-time-color-Iuminance interactions are explored in a
separate paper (Atick et al. 1992),
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