
The Sparse Manifold Transform

Yubei Chen1,2 Dylan M Paiton1,3 Bruno A Olshausen1,3,4

1Redwood Center for Theoretical Neuroscience
2Department of Electrical Engineering and Computer Science

3Vision Science Graduate Group
4Helen Wills Neuroscience Institute & School of Optometry

University of California, Berkeley
Berkeley, CA 94720

yubeic@eecs.berkeley.edu

Abstract

We present a signal representation framework called the sparse manifold transform
that combines key ideas from sparse coding, manifold learning, and slow feature
analysis. It turns non-linear transformations in the primary sensory signal space
into linear interpolations in a representational embedding space while maintaining
approximate invertibility. The sparse manifold transform is an unsupervised and
generative framework that explicitly and simultaneously models the sparse dis-
creteness and low-dimensional manifold structure found in natural scenes. When
stacked, it also models hierarchical composition. We provide a theoretical descrip-
tion of the transform and demonstrate properties of the learned representation on
both synthetic data and natural videos.

1 Introduction

Inspired by Pattern Theory [40], we attempt to model three important and pervasive patterns in natural
signals: sparse discreteness, low dimensional manifold structure and hierarchical composition.
Each of these concepts have been individually explored in previous studies. For example, sparse
coding [43, 44] and ICA [5, 28] can learn sparse and discrete elements that make up natural signals.
Manifold learning [56, 48, 38, 4] was proposed to model and visualize low-dimensional continuous
transforms such as smooth 3D rotations or translations of a single discrete element. Deformable,
compositional models [60, 18] allow for a hierarchical composition of components into a more
abstract representation. We seek to model these three patterns jointly as they are almost always
entangled in real-world signals and their disentangling poses an unsolved challenge.

In this paper, we introduce an interpretable, generative and unsupervised learning model, the sparse
manifold transform (SMT), which has the potential to untangle all three patterns simultaneously and
explicitly. The SMT consists of two stages: dimensionality expansion using sparse coding followed
by contraction using manifold embedding. Our SMT implementation is to our knowledge, the first
model to bridge sparse coding and manifold learning. Furthermore, an SMT layer can be stacked to
produce an unsupervised hierarchical learning network.

The primary contribution of this paper is to establish a theoretical framework for the SMT by
reconciling and combining the formulations and concepts from sparse coding and manifold learning.
In the following sections we point out connections between three important unsupervised learning
methods: sparse coding, local linear embedding and slow feature analysis. We then develop a single
framework that utilizes insights from each method to describe our model. Although we focus here
on the application to image data, the concepts are general and may be applied to other types of data
such as audio signals and text. All experiments performed on natural scenes used the same dataset,
described in Supplement D.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

1.1 Sparse coding

Sparse coding attempts to approximate a data vector, x 2 IRn, as a sparse superposition of dictionary
elements �i:

x = � ↵ + ✏ (1)

where � 2 IRn⇥m is a matrix with columns �i, ↵ 2 IRm is a sparse vector of coefficients and ✏ is
a vector containing independent Gaussian noise samples, which are assumed to be small relative
to x. Typically m > n so that the representation is overcomplete. For a given dictionary, �, the
sparse code, ↵, of a data vector, x, can be computed in an online fashion by minimizing an energy
function composed of a quadratic penalty on reconstruction error plus an L1 sparseness penalty on ↵

(see Supplement A). The dictionary itself is adapted to the statistics of the data so as to maximize
the sparsity of ↵. The resulting dictionary often provides important insights about the structure of
the data. For natural images, the dictionary elements become ‘Gabor-like’—i.e., spatially localized,
oriented and bandpass—and form a tiling over different locations, orientations and scales due to the
natural transformations of objects in the world.

The sparse code of an image provides a representation that makes explicit the structure contained
in the image. However the dictionary is typically unordered, and so the sparse code will lose the
topological organization that was inherent in the image. The pioneering works of Hyvärinen and
Hoyer [27], Hyvärinen et al. [29] and Osindero et al. [45] addressed this problem by specifying a fixed
2D topology over the dictionary elements that groups them according to the co-occurrence statistics
of their coefficients. Other works learn the group structure from a statistical approach [37, 3, 32], but
do not make explicit the underlying topological structure. Some previous topological approaches
[34, 11, 10] used non-parametric methods to reveal the low-dimensional geometrical structure in local
image patches, which motivated us to look for the connection between sparse coding and geometry.
From this line of inquiry, we have developed what we believe to be the first mathematical formulation
for learning the general geometric embedding of dictionary elements when trained on natural scenes.

Another observation motivating this work is that the representation computed using overcomplete
sparse coding can exhibit large variability for time-varying inputs that themselves have low variability
from frame to frame [49]. While some amount of variability is to be expected as image features move
across different dictionary elements, the variation can appear unstructured without information about
the topological relationship of the dictionary. In section 3 and section 4, we show that considering the
joint spatio-temporal regularity in natural scenes can allow us to learn the dictionary’s group structure
and produce a representation with smooth variability from frame to frame (Figure 3).

1.2 Manifold Learning

In manifold learning, one assumes that the data occupy a low-dimensional, smooth manifold embed-
ded in the high-dimensional signal space. A smooth manifold is locally equivalent to a Euclidean
space and therefore each of the data points can be linearly reconstructed by using the neighboring data
points. The Locally Linear Embedding (LLE) algorithm [48] first finds the neighbors of each data
point in the whole dataset and then reconstructs each data point linearly from its neighbors. It then em-
beds the dataset into a low-dimensional Euclidean space by solving a generalized eigendecomposition
problem.

The first step of LLE has the same linear formulation as sparse coding (1), with � being the whole
dataset rather than a learned dictionary, i.e., � = X , where X is the data matrix. The coefficients, ↵,
correspond to the linear interpolation weights used to reconstruct a datapoint, x, from its K-nearest
neighbors, resulting in a K-sparse code. (In other work [17], ↵ is inferred by sparse approximation,
which provides better separation between manifolds nearby in the same space.) Importantly, once
the embedding of the dataset X ! Y is computed, the embedding of a new point x

NEW ! y
NEW

is obtained by a simple linear projection of its sparse coefficients. That is, if ↵
NEW is the K-sparse

code of x
NEW, then y

NEW = Y ↵
NEW. Viewed this way, the dictionary may be thought of as a discrete

sampling of a continuous manifold, and the sparse code of a data point provides the interpolation
coefficients for determining its coordinates on the manifold. However, using the entire dataset as the
dictionary is cumbersome and inefficient in practice.

Several authors [12, 53, 58] have realized that it is unnecessary to use the whole dataset as a dictionary.
A random subset of the data or a set of cluster centers can be good enough to preserve the manifold
structure, making learning more efficient. Going forward, we refer to these as landmarks. In Locally

2

Linear Landmarks (LLL) [58], the authors compute two linear interpolations for each data point x:

x = �LM ↵ + n (2)
x = �DATA � + n

0 (3)

where �LM is a dictionary of landmarks and �DATA is a dictionary composed of the whole dataset.
As in LLE, ↵ and � are coefficient vectors inferred using KNN solvers (where the � coefficient
corresponding to x is forced to be 0). We can substitute the solutions to equation (2) into �DATA,
giving �DATA ⇡ �LMA, where the j

th column of the matrix A is a unique vector ↵j . This leads to an
interpolation relationship:

�LM↵ ⇡ �LM A � (4)
The authors sought to embed the landmarks into a low dimensional Euclidean space using an
embedding matrix, PLM, such that the interpolation relationship in equation (4) still holds:

PLM↵ ⇡ PLM A � (5)

Where we use the same ↵ and � vectors that allowed for equality in equations (2) and (3). PLM is
an embedding matrix for �LM such that each of the columns of P represents an embedding of a
landmark. PLM can be derived by solving a generalized eigendecomposition problem [58].

The similarity between equation (1) and equation (2) provides an intuition to bring sparse coding and
manifold learning closer together. However, LLL still has a difficulty in that it requires a nearest
neighbor search. We posit that temporal information provides a more natural and efficient solution.

1.3 Slow Feature Analysis (SFA)

The general idea of imposing a ‘slowness prior’ was initially proposed by [20] and [59] to extract
invariant or slowly varying features from temporal sequences rather than using static orderless data
points. While it is still common practice in both sparse coding and manifold learning to collect data
in an orderless fashion, other work has used time-series data to learn spatiotemporal representations
[57, 41, 30] or to disentangle form and motion [6, 9, 13]. Specifically, the combination of topography
and temporal coherence in [30] provides a strong motivation for this work.

Here, we utilize temporal adjacency to determine the nearest neighbors in the embedding space (eq. 3)
by specifically minimizing the second-order temporal derivative, implying that video sequences form
linear trajectories in the manifold embedding space. A similar approach was recently used by
[23] to linearize transformations in natural video. This is a variation of ‘slowness’ that makes the
connection to manifold learning more explicit. It also connects to the ideas of manifold flattening [14]
or straightening [24] which are hypothesized to underly perceptual representations in the brain.

2 Functional Embedding: A Sensing Perspective

The SMT framework differs from the classical manifold learning approach in that it relies on the
concept of functional embedding as opposed to embedding individual data points. We explain this
concept here before turning to the sparse manifold transform in section 3.

In classical manifold learning [26], for a m-dimensional compact manifold, it is typical to solve
a generalized eigenvalue decomposition problem and preserve the 2nd to the (d + 1)th trailing
eigenvectors as the embedding matrix PC 2 IRd⇥N , where d is as small as possible (parsimonious)
such that the embedding preserves the topology of the manifold (usually, m d 2m due to the
strong Whitney embedding theorem[35]) and N is the number of data points or landmarks to embed.
It is conventional to view the columns of an embedding matrix, PC, as an embedding to an Euclidean
space, which is (at least approximately) topologically-equivalent to the data manifold. Each of the
rows of PC is treated as a coordinate of the underlying manifold. One may think of a point on the
manifold as a single, constant-amplitude delta function with the manifold as its domain. Classical
manifold embedding turns a non-linear transformation (i.e., a moving delta function on the manifold)
in the original signal space into a simple linear interpolation in the embedding space. This approach is
effective for visualizing data in a low-dimensional space and compactly representing the underlying
geometry, but less effective when the underlying function is not a single delta function.

In this work we seek to move beyond the single delta-function assumption, because natural images
are not well described as a single point on a continuous manifold of fixed dimensionality. For any

3

reasonably sized image region (e.g., a 16 ⇥ 16 pixel image patch), there could be multiple edges
moving in different directions, or the edge of one occluding surface may move over another, or
the overall appearance may change as features enter or exit the region. Such changes will cause
the manifold dimensionality to vary substantially, so that the signal structure is no longer well-
characterized as a manifold.

We propose instead to think of any given image patch as consisting of h discrete components
simultaneously moving over the same underlying manifold - i.e., as h delta functions, or an h-sparse
function on the smooth manifold. This idea is illustrated in figure 1. First, let us organize the
Gabor-like dictionary learned from natural scenes on a 4-dimensional manifold according to the
position (x, y), orientation (✓) and scale (�) of each dictionary element �i. Any given Gabor function
corresponds to a point with coordinates (x, y, ✓, �) on this manifold, and so the learned dictionary as
a whole may be conceptualized as a discrete tiling of the manifold. Then, the k-sparse code of an
image, ↵, can be viewed as a set of k delta functions on this manifold (illustrated as black arrows
in figure 1C). Hyvärinen has pointed out that when the dictionary is topologically organized in a
similar manner, the active coefficients ↵i tend to form clusters, or “bubbles,” over this domain [30].
Each of these clusters may be thought of as linearly approximating a “virtual Gabor" at the center of
the cluster (illustrated as red arrows in figure 1C), effectively performing a flexible “steering” of the
dictionary to describe discrete components in the image, similar to steerable filters [21, 55, 54, 47].
Assuming there are h such clusters, then the k-sparse code of the image can be thought of as a discrete
approximation of an underlying h-sparse function defined on the continuous manifold domain, where
h is generally greater than 1 but less than k.

. . .

x (R2)

xlocal(R2)

<latexit sha1_base64="oHTD1HcSCM9CIr32CIfwkUpYQZw=">AAAB+nicbVC7TsMwFL0pr1JeKYwsFhUSU5V0gbGChbFI9CG1UeU4TmvVjiPbAUWln8LCAEKsfAkbf4PbZoCWI1k6Pude3XtPmHKmjed9O6WNza3tnfJuZW//4PDIrR53tMwUoW0iuVS9EGvKWULbhhlOe6miWIScdsPJzdzvPlClmUzuTZ7SQOBRwmJGsLHS0K0KbL+SR8jI1FaP8qFb8+reAmid+AWpQYHW0P0aRJJkgiaGcKx13/dSE0yxMoxwOqsMMk1TTCZ4RPuWJlhQHUwXq8/QuVUiFEtlX2LQQv3dMcVC61yEtlJgM9ar3lz8z+tnJr4KpixJM0MTshwUZ9yeieY5oIgpSgzPLcFEMbsrImOsMDE2rYoNwV89eZ10GnXfq/t3jVrzuoijDKdwBhfgwyU04RZa0AYCj/AMr/DmPDkvzrvzsSwtOUXPCfyB8/kDpBeUOg==</latexit>

<latexit sha1_base64="sro7AUF6X7sk3u57/oe2B5z/C+g=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOJsmY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4N4w2mpTbtiFouheINFCh5OzGcxpHkrWh8O/NbT9xYodUDThIexnSoxEAwik5qdpOR6AW9csWv+nOQVRLkpAI56r3yV7evWRpzhUxSazuBn2CYUYOCST4tdVPLE8rGdMg7jioacxtm82un5MwpfTLQxpVCMld/T2Q0tnYSR64zpjiyy95M/M/rpDi4DjOhkhS5YotFg1QS1GT2OukLwxnKiSOUGeFuJWxEDWXoAiq5EILll1dJ86Ia+NXg/rJSu8njKMIJnMI5BHAFNbiDOjSAwSM8wyu8edp78d69j0VrwctnjuEPvM8fO0aO4w==</latexit> <latexit sha1_base64="sIjD/slOEMP2/Io5OOvKpdr1mOw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOa3XQoetVeqexX/DnIKglyUoYc9V7pq9vXLEu4QiaptZ3ATzGcUIOCST4tdjPLU8pGdMA7jiqacBtO5tdOyblT+iTWxpVCMld/T0xoYu04iVxnQnFol72Z+J/XyTC+DidCpRlyxRaL4kwS1GT2OukLwxnKsSOUGeFuJWxIDWXoAiq6EILll1dJs1oJ/Epwf1mu3eRxFOAUzuACAriCGtxBHRrA4BGe4RXePO29eO/ex6J1zctnTuAPvM8fPMqO5A==</latexit> <latexit sha1_base64="c0VYC88YWqUxnJl+4H2c+ZRBGjk=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0V9Bj04jGCeUCyhNlJbzJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsPbqd98Qm24kg92lGKY0L7kMWfUOqnRSQe8e9Etlf2KPwNZJkFOypCj1i19dXqKZQlKywQ1ph34qQ3HVFvOBE6KncxgStmQ9rHtqKQJmnA8u3ZCTp3SI7HSrqQlM/X3xJgmxoySyHUm1A7MojcV//PamY2vwzGXaWZRsvmiOBPEKjJ9nfS4RmbFyBHKNHe3EjagmjLrAiq6EILFl5dJ47wS+JXg/rJcvcnjKMAxnMAZBHAFVbiDGtSBwSM8wyu8ecp78d69j3nripfPHMEfeJ8/Pk6O5Q==</latexit> <latexit sha1_base64="y9c9CctakobiC0I5zVk/0SeEZGs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOZpMxszPLTK8QQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0O/NbT9xYodUDjlMeJnSgRCwYRSc1u+lQ9C575Ypf9ecgqyTISQVy1Hvlr25fsyzhCpmk1nYCP8VwQg0KJvm01M0sTykb0QHvOKpowm04mV87JWdO6ZNYG1cKyVz9PTGhibXjJHKdCcWhXfZm4n9eJ8P4OpwIlWbIFVssijNJUJPZ66QvDGcox45QZoS7lbAhNZShC6jkQgiWX14lzYtq4FeD+8tK7SaPowgncArnEMAV1OAO6tAABo/wDK/w5mnvxXv3PhatBS+fOYY/8D5/AD/SjuY=</latexit>

<latexit sha1_base64="sro7AUF6X7sk3u57/oe2B5z/C+g=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOJsmY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4N4w2mpTbtiFouheINFCh5OzGcxpHkrWh8O/NbT9xYodUDThIexnSoxEAwik5qdpOR6AW9csWv+nOQVRLkpAI56r3yV7evWRpzhUxSazuBn2CYUYOCST4tdVPLE8rGdMg7jioacxtm82un5MwpfTLQxpVCMld/T2Q0tnYSR64zpjiyy95M/M/rpDi4DjOhkhS5YotFg1QS1GT2OukLwxnKiSOUGeFuJWxEDWXoAiq5EILll1dJ86Ia+NXg/rJSu8njKMIJnMI5BHAFNbiDOjSAwSM8wyu8edp78d69j0VrwctnjuEPvM8fO0aO4w==</latexit>

<latexit sha1_base64="sIjD/slOEMP2/Io5OOvKpdr1mOw=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6DHoxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOa3XQoetVeqexX/DnIKglyUoYc9V7pq9vXLEu4QiaptZ3ATzGcUIOCST4tdjPLU8pGdMA7jiqacBtO5tdOyblT+iTWxpVCMld/T0xoYu04iVxnQnFol72Z+J/XyTC+DidCpRlyxRaL4kwS1GT2OukLwxnKsSOUGeFuJWxIDWXoAiq6EILll1dJs1oJ/Epwf1mu3eRxFOAUzuACAriCGtxBHRrA4BGe4RXePO29eO/ex6J1zctnTuAPvM8fPMqO5A==</latexit>

<latexit sha1_base64="c0VYC88YWqUxnJl+4H2c+ZRBGjk=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0V9Bj04jGCeUCyhNlJbzJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsPbqd98Qm24kg92lGKY0L7kMWfUOqnRSQe8e9Etlf2KPwNZJkFOypCj1i19dXqKZQlKywQ1ph34qQ3HVFvOBE6KncxgStmQ9rHtqKQJmnA8u3ZCTp3SI7HSrqQlM/X3xJgmxoySyHUm1A7MojcV//PamY2vwzGXaWZRsvmiOBPEKjJ9nfS4RmbFyBHKNHe3EjagmjLrAiq6EILFl5dJ47wS+JXg/rJcvcnjKMAxnMAZBHAFVbiDGtSBwSM8wyu8ecp78d69j3nripfPHMEfeJ8/Pk6O5Q==</latexit>

<latexit sha1_base64="y9c9CctakobiC0I5zVk/0SeEZGs=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOZpMxszPLTK8QQv7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0O/NbT9xYodUDjlMeJnSgRCwYRSc1u+lQ9C575Ypf9ecgqyTISQVy1Hvlr25fsyzhCpmk1nYCP8VwQg0KJvm01M0sTykb0QHvOKpowm04mV87JWdO6ZNYG1cKyVz9PTGhibXjJHKdCcWhXfZm4n9eJ8P4OpwIlWbIFVssijNJUJPZ66QvDGcox45QZoS7lbAhNZShC6jkQgiWX14lzYtq4FeD+8tK7SaPowgncArnEMAV1OAO6tAABo/wDK/w5mnvxXv3PhatBS+fOYY/8D5/AD/SjuY=</latexit>

<latexit sha1_base64="sro7AUF6X7sk3u57/oe2B5z/C+g=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOJsmY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSqSw6PvfXmFtfWNzq7hd2tnd2z8oHx41rU4N4w2mpTbtiFouheINFCh5OzGcxpHkrWh8O/NbT9xYodUDThIexnSoxEAwik5qdpOR6AW9csWv+nOQVRLkpAI56r3yV7evWRpzhUxSazuBn2CYUYOCST4tdVPLE8rGdMg7jioacxtm82un5MwpfTLQxpVCMld/T2Q0tnYSR64zpjiyy95M/M/rpDi4DjOhkhS5YotFg1QS1GT2OukLwxnKiSOUGeFuJWxEDWXoAiq5EILll1dJ86Ia+NXg/rJSu8njKMIJnMI5BHAFNbiDOjSAwSM8wyu8edp78d69j0VrwctnjuEPvM8fO0aO4w==</latexit> <latexit sha1_base64="c0VYC88YWqUxnJl+4H2c+ZRBGjk=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0V9Bj04jGCeUCyhNlJbzJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWaYZ0poXQrogYFl1i33ApspRppEglsRsPbqd98Qm24kg92lGKY0L7kMWfUOqnRSQe8e9Etlf2KPwNZJkFOypCj1i19dXqKZQlKywQ1ph34qQ3HVFvOBE6KncxgStmQ9rHtqKQJmnA8u3ZCTp3SI7HSrqQlM/X3xJgmxoySyHUm1A7MojcV//PamY2vwzGXaWZRsvmiOBPEKjJ9nfS4RmbFyBHKNHe3EjagmjLrAiq6EILFl5dJ47wS+JXg/rJcvcnjKMAxnMAZBHAFVbiDGtSBwSM8wyu8ecp78d69j3nripfPHMEfeJ8/Pk6O5Q==</latexit>

<latexit sha1_base64="FETFNKQA6hGzpT4LPGcQzJpaoEU=">AAAB+3icbVDLSgNBEOz1GeMrxqOXwSB4Cru56DHoxWME84BkCbOT2WTIvJiZFUPIr3jxoIhXf8Sbf+Mk2YMmFjQUVd10dyWaM+vC8DvY2Nza3tkt7BX3Dw6Pjksn5ZZVmSG0SRRXppNgSzmTtOmY47SjDcUi4bSdjG/nfvuRGsuUfHATTWOBh5KljGDnpX6pbDU2liKihFaWLcVKWA0XQOskykkFcjT6pa/eQJFMUOkIx9Z2o1C7eIqNY4TTWbGXWaoxGeMh7XoqsaA2ni5un6ELrwxQqowv6dBC/T0xxcLaiUh8p8BuZFe9ufif181ceh1PmdSZo5IsF6UZR06heRBowAwljk88wcT4zwkiI2wwcT6uog8hWn15nbRq1SisRve1Sv0mj6MAZ3AOlxDBFdThDhrQBAJP8Ayv8BbMgpfgPfhYtm4E+cwp/EHw+QOLMZS/</latexit>

Figure 1: Dictionary elements learned from natural signals with sparse coding may be conceptualized
as landmarks on a smooth manifold. A) A function defined on R2 (e.g. a gray-scale natural image) and
one local component from its reconstruction are represented by the black and red curves, respectively.
B) The signal is encoded using sparse inference with a learned dictionary, �, resulting in a k-sparse
vector (also a function) ↵, which is defined on an orderless discrete set {1, · · · , N}. C) ↵ can be
viewed as a discrete k-sparse approximation to the true h-sparse function, ↵TRUE(M), defined on the
smooth manifold (k = 8 and h = 3 in this example). Each dictionary element in � corresponds to
a landmark (black dot) on the smooth manifold, M . Red arrows indicate the underlying h-sparse
function, while black arrows indicate the k non-zero coefficients of � used to interpolate the red
arrows. D) Since � only contains a finite number of landmarks, we must interpolate (i.e. “steer”)
among a few dictionary elements to reconstruct each of the true image components.

An h-sparse function would not be recoverable from the d-dimensional projection employed in the
classical approach because the embedding is premised on there being only a single delta function
on the manifold. Hence the inverse will not be uniquely defined. Here we utilize a more general
functional embedding concept that allows for better recovery capacity. A functional embedding of the
landmarks is to take the first f trailing eigenvectors from the generalized eigendecomposition solution

4

as the embedding matrix P 2 IRf⇥N , where f is larger than d such that the h-sparse function can be
recovered from the linear projection. Empirically1 we use f = O(h log(N)).

To illustrate the distinction between the classical view of a data manifold and the additional properties
gained by a functional embedding, let us consider a simple example of a function over the 2D unit disc.
Assume we are given 300 landmarks on this disc as a dictionary �LM 2 IR2⇥300. We then generate
many short sequences of a point x moving along a straight line on the unit disc, with random starting
locations and velocities. At each time, t, we use a nearest neighbor (KNN) solver to find a local linear
interpolation of the point’s location from the landmarks, that is xt = �LM ↵t, with ↵t 2 IR300 and
↵t ⌫ 0 (the choice of sparse solver does not impact the demonstration). Now we seek to find an
embedding matrix, P , which projects the ↵t into an f -dimensional space via �t = P ↵t such that
the trajectories in �t are as straight as possible, thus reflecting their true underlying geometry. This
is achieved by performing an optimization that minimizes the second temporal derivative of �t, as
specified in equation (8) below.

Figure 2A shows the rows of P resulting from this optimization using f = 21. Interestingly, they
resemble Zernike polynomials on the unit-disc. We can think of these as functionals that "sense"
sparse functions on the underlying manifold. Each row p

0
i 2 IR300 (here the prime sign denotes a row

of the matrix P) projects a discrete k-sparse approximation ↵ of the underlying h-sparse function to
a real number, �i. We define the full set of these linear projections � = P ↵ as a "manifold sensing"
of ↵.

When there is only a single delta-function on the manifold, the second and third rows of P , which
form simple linear ramp functions in two orthogonal directions, are sufficient to fully represent its
position. These two rows would constitute PC 2 IR2⇥300 as an embedding solution in the classical
manifold learning approach, since a unit disk is diffeomorphic to IR2 and can be embedded in a 2
dimensional space. The resulting embedding �2, �3 closely resembles the 2-D unit disk manifold and
allows for recovery of a one-sparse function, as shown in Figure 2B.

Figure 2: Demonstration of functional embedding on the unit disc. A) The rows of P , visualized
here on the ground-truth unit disc. Each disc shows the weights in a row of P by coloring the
landmarks according to the corresponding value in that row of P . The color scale for each row is
individually normalized to emphasize its structure. The pyramidal arrangement of rows is chosen
to highlight their strong resemblance to the Zernike polynomials. B) (Top) The classic manifold
embedding perspective allows for low-dimensional data visualization using PC, which in this case is
given by the second and third rows of P (shown in dashed box in panel A). Each blue dot shows the
2D projection of a landmark using PC. Boundary effects cause the landmarks to cluster toward the
perimeter. (Bottom) A 1-sparse function is recoverable when projected to the embedding space by PC.
C) (Top) A 4-sparse function (red arrows) and its discrete k-sparse approximation, ↵ (black arrows)
on the unit disc. (Bottom) The recovery, ↵REC, (black arrows) is computed by solving the optimization
problem in equation (6). The estimate of the underlying function (red arrows) was computed by
taking a normalized local mean of the recovered k-sparse approximations for a visualization purpose.

Recovering more than a one-sparse function requires using additional rows of P with higher spatial-
frequencies on the manifold, which together provide higher sensing capacity. Figure 2C demonstrates

1This choice is inspired by the result from compressive sensing[15], though here h is different from k.

5

recovery of an underlying 4-sparse function on the manifold using all 21 functionals, from p
0
1 to p

0
21.

From this representation, we can recover an estimate of ↵ with positive-only sparse inference:

↵REC = g(�) ⌘ argmin
↵

k� � P ↵k2
F + �z

T
↵, s.t. ↵ ⌫ 0, (6)

where z = [kp1k2, · · · , kpNk2]
T and pj 2 IR21 is the j

th column of P . Note that although ↵REC is
not an exact recovery of ↵, the 4-sparse structure is still well preserved, up to a local shift in the
locations of the delta functions. We conjecture this will lead to a recovery that is perceptually similar
for an image signal.

The functional embedding concept can be generalized beyond functionals defined on a single manifold
and will still apply when the underlying geometrical domain is a union of several different manifolds.
A thorough analysis of the capacity of this sensing method is beyond the scope of this paper, although
we recognize it as an interesting research topic for model-based compressive sensing.

3 The Sparse Manifold Transform

The Sparse Manifold Transform (SMT) consists of a non-linear sparse coding expansion followed
by a linear manifold sensing compression (dimension reduction). The manifold sensing step acts to
linearly pool the sparse codes, ↵, with a matrix, P , that is learned using the functional embedding
concept (sec. 2) in order to straighten trajectories arising from video (or other dynamical) data.

The SMT framework makes three basic assumptions:

1. The dictionary � learned by sparse coding has an organization that is a discrete sampling of
a low-dimensional, smooth manifold, M (Fig. 1).

2. The resulting sparse code ↵ is a discrete k-sparse approximation of an underlying h-sparse
function defined on M . There exists a functional manifold embedding, ⌧ : � ,! P , that
maps each of the dictionary elements to a new vector, pj = ⌧(�j), where pj is the j

th

column of P s.t. both the topology of M and h-sparse function’s structure are preserved.
3. A continuous temporal transformation in the input (e.g., from natural movies) lead to a

linear flow on M and also in the geometrical embedding space.

In an image, the elements of the underlying h-sparse function correspond to discrete components
such as edges, corners, blobs or other features that are undergoing some simple set of transformations.
Since there are only a finite number of learned dictionary elements tiling the underlying manifold, they
must cooperate (or ‘steer’) to represent each of these components as they appear along a continuum.

The desired property of linear flow in the geometric embedding space may be stated mathematically
as

P↵t ⇡ 1
2P↵t�1 + 1

2P↵t+1. (7)
where ↵t denotes the sparse coefficient vector at time t. Here we exploit the temporal continuity
inherent in the data to solve the otherwise cumbersome nearest-neighbor search required of LLE or
LLL. The embedding matrix P satisfying (7) may be derived by minimizing an objective function
that encourages the second-order temporal derivative of P ↵ to be zero:

min
P

kPADk2
F , s.t. PV P

T = I (8)

where A is the coefficient matrix whose columns are the coefficient vectors, ↵t, in temporal order, and
D is the second-order differential operator matrix, with Dt�1,t = �0.5, Dt,t = 1, Dt+1,t = �0.5
and D⌧,t = 0 otherwise. V is a positive-definite matrix for normalization, I is the identity matrix and
k • kF indicates the matrix Frobenius norm. We choose V to be the covariance matrix of ↵ and thus
the optimization constraint makes the rows of P orthogonal in whitened sparse coefficient vector
space. Note that this formulation is qualitatively similar to applying SFA to sparse coefficients, but
using the second-order derivative instead of the first-order derivative.

The solution to this generalized eigen-decomposition problem is given [58] by P = V
� 1

2 U , where
U is a matrix of f trailing eigenvectors (i.e. eigenvectors with the smallest eigenvalues) of the matrix
V

� 1
2 ADD

T
A

T
V

� 1
2 . Some drawbacks of this analytic solution are that: 1) there is an unnecessary

ordering among different dimensions, 2) the learned functional embedding tends to be global, which

6

has support as large as the whole manifold and 3) the solution is not online and does not allow other
constraints to be posed. In order to solve these issues, we modify the formulation slightly with a
sparse regularization term on P and develop an online SGD (Stochastic Gradient Descent) solution,
which is detailed in the Supplement C.

To summarize, the SMT is performed on an input signal x by first computing a higher-dimensional
representation ↵ via sparse inference with a learned dictionary, �, and second computing a contracted
code by sensing a manifold representation, � = P ↵ with a learned pooling matrix, P .

4 Results

Straightening of video sequences. We applied the SMT optimization procedure on sequences
of whitened 20 ⇥ 20 pixel image patches extracted from natural videos. We first learned a 10⇥
overcomplete spatial dictionary � 2 IR400⇥4000 and coded each frame xt as a 4000-dimensional
sparse coefficient vector ↵t. We then derived an embedding matrix P 2 IR200⇥4000 by solving
equation 8. Figure 3 shows that while the sparse code ↵t exhibits high variability from frame to
frame, the embedded representation �t = P ↵t changes in a more linear or smooth manner. It should
be emphasized that finding such a smooth linear projection (embedding) is highly non-trivial, and
is possible if and only if the sparse codes change in a locally linear manner in response to smooth
transformations in the image. If the sparse code were to change in an erratic or random manner
under these transformations, any linear projection would be non-smooth in time. Furthermore, we
show that this embedding does not constitute a trivial temporal smoothing, as we can recover a
good approximation of the image sequence via x̂t = � g(�t), where g(�) is the inverse embedding
function (6). We can also use the functional embedding to regularize sparse inference, as detailed in
Supplement B, which further increases the smoothness of both ↵ and �.

Figure 3: SMT encoding of a 80 frame image sequence. A) Rescaled activations for 80 randomly
selected ↵ units. Each row depicts the temporal sequence of a different unit. B) The activity of 80
randomly selected � units. C) Frame samples from the 90fps video input (top) and reconstructions
computed from the ↵REC recovered from the sequence of � values (bottom).

Affinity Groups and Dictionary Topology. Once a functional embedding is learned for the
dictionary elements, we can compute the cosine similarity between their embedding vectors,
cos(pj , pk) =

pT
j pk

kpjk2kpkk2
, to find the neighbors, or affinity group, of each dictionary element

in the embedding space. In Figure 4A we show the affinity groups for a set of randomly sampled
elements from the overcomplete dictionary learned from natural videos. As one can see, the topology
of the embedding learned from the SMT reflects the structural similarity of the dictionary elements
according to the properties of position, orientation, and scale. Figure 4B shows that the nearest
neighbors of each dictionary element in the embedding space are more ’semantically similar’ than
the nearest neighbors of the element in the pixel space. To measure the similarity, we chose the top
500 most well-fit dictionary elements and computed their lengths and orientations. For each of these
elements, we find the top 9 nearest neighbors in both the embedding space and in pixel space and
then compute the average difference in length (� Length) and orientation (� Angle). The results
confirm that the embedding space is succeeding in grouping dictionary elements according to their
structural similarity, presumably due to the continuous geometric transformations occurring in image
sequences.

Computing the cosine similarity can be thought of as a hypersphere normalization on the embedding
matrix P . In other words, if the embedding is normalized to be approximately on a hypersphere,

7

�

�

�

3L
[H
OV

/HQJWK

�(�

��

��

'
HJ
UH
HV

$QJOH

�3�(�3

Figure 4: A) Affinity groups learned using the SMT reveal the topological ordering of a sparse coding
dictionary. Each box depicts as a needle plot the affinity group of a randomly selected dictionary
element and its top 40 affinity neighbors. The length, position, and orientation of each needle reflect
those properties of the dictionary element in the affinity group (see Supplement E for details). The
color shade indicates the normalized strength of the cosine similarity between the dictionary elements.
B) The properties of length and orientation (angle) are more similar among nearest neighbors in the
embedding space (E) as compared to the pixel space (P).

the cosine distance is almost equivalent to the Gramian matrix, P
T
P . Taking this perspective,

the learned geometric embedding and affinity groups can explain the dictionary grouping results
shown in previous work [25]. In that work, the layer 1 outputs are pooled by an affinity matrix
given by P = E

T
E, where E is the eigenvector matrix computed from the correlations among

layer 1 outputs. This PCA-based method can be considered an embedding that uses only spatial
correlation information, while the SMT model uses both spatial correlation and temporal interpolation
information.

Hierarchical Composition. A SMT layer is composed of two sublayers: a sparse coding sublayer
that models sparse discreteness, and a manifold embedding sublayer that models simple geometrical
transforms. It is possible to stack multiple SMT layers to form a hierarchical architecture, which
addresses the third pattern from Mumford’s theory: hierarchical composition. It also provides a way
to progressively flatten image manifolds, as proposed by DiCarlo & Cox [14]. Here we demonstrate
this process with a two-layer SMT model (Figure 5A) and we visualize the learned representations.
The network is trained in a layer-by-layer fashion on a natural video dataset as above.

Figure 5: SMT layers can be stacked to learn a hierarchical representation. A) The network architec-
ture. Each layer contains a sparse coding sublayer (red) and a manifold sensing sublayer (green). B)
Example dictionary element groups for �(1) (left) and �(2) (right). C) Each row shows an example of
interpolation by combining layer 3 dictionary elements. From left to right, the first two columns are
visualizations of two different layer-3 dictionary elements, each obtained by setting a single element
of ↵

(3) to one and the rest to zero. The third column is an image generated by setting both elements
of ↵

(3) to 0.5 simultaneously. The fourth column is a linear interpolation in image space between the
first two images, for comparison. D) Information is approximately preserved at higher layers. From
left to right: The input image and the reconstructions from ↵

(1), ↵
(2) and ↵

(3), respectively. The
rows in C) and D) are unique examples. See section 2 for visualization details.

We can produce reconstructions and dictionary visualizations from any layer by repeatedly using
the inverse operator, g(�). Formally, we define ↵

(l)
REC = g

(l)(�(l)), where l is the layer number. For
example, the inverse transform from ↵

(2) to the image space will be xREC = C�(1)
g
(1)(�(2)

↵
(2)),

where C is an unwhitening matrix. We can use this inverse transform to visualize any single dictionary
element by setting ↵

(l) to a 1-hot vector. Using this method of visualization, Figure 5B shows a
comparison of some of the dictionary elements learned at layers 1 and 2. We can see that lower layer

8

elements combine together to form more global and abstract dictionary elements in higher layers, e.g.
layer-2 units tend to be more curved, many of them are corners, textures or larger blobs.

Another important property that emerges at higher levels of the network is that dictionary elements are
steerable over a larger range, since they are learned from progressively more linearized representations.
To demonstrate this, we trained a three-layer network and performed linear interpolation between two
third-layer dictionary elements, resulting in a non-linear interpolation in the image space that shifts
features far beyond what simple linear interpolation in the image space would accomplish (Figure
5C). A thorough visualization of the dictionary elements and groups is provided in the Supplement F.

5 Discussion

A key new perspective introduced in this work is to view both the signals (such as images) and their
sparse representations as functions defined on a manifold domain. A gray-scale image is a function
defined on a 2D plane, tiled by pixels. Here we propose that the dictionary elements should be viewed
as the new ‘pixels’ and their coefficients are the corresponding new ‘pixel values’. The pooling
functions can be viewed as low pass filters defined on this new manifold domain. This perspective is
strongly connected to the recent development in both signal processing on irregular domains [52] and
geometric deep learning [7].

Previous approaches have learned the group structure of dictionary elements mainly from a statistical
perspective [27, 29, 45, 32, 37, 39]. Additional unsupervised learning models [51, 46, 33, 62] combine
sparse discreteness with hierarchical structure, but do not explicitly model the low-dimensional
manifold structure of inputs. Our contribution here is to approach the problem from a geometric
perspective to learn a topological embedding of the dictionary elements.

The functional embedding framework provides a new perspective on the pooling functions commonly
used in convnets. In particular, it provides a principled framework for learning the pooling operators
at each stage of representation based on the underlying geometry of the data, rather than being
imposed in a 2D topology a priori as was done previously to learn linearized representations from
video [23]. This could facilitate the learning of higher-order invariances, as well as equivariant
representations [50], at higher stages. In addition, since the pooling is approximately invertible
due to the underlying sparsity, it is possible to have bidirectional flow of information between
stages of representation to allow for hierarchical inference [36]. The invertibility of SMT is due
to the underlying sparsity of the signal, and is related to prior works on the invertibility of deep
networks[22, 8, 61, 16]. Understanding this relationship may bring further insights to these models.

Acknowledgments

We thank Joan Bruna, Fritz Sommer, Ryan Zarcone, Alex Anderson, Brian Cheung and Charles Frye
for many fruitful discussions; Karl Zipser for sharing computing resources; Eero Simoncelli and Chris
Rozell for pointing us to some valuable references. This work is supported by NSF-IIS-1718991,
NSF-DGE-1106400, and NIH/NEI T32 EY007043.

References
[1] Joseph J Atick and A Norman Redlich. Towards a theory of early visual processing. Neural

Computation, 2(3):308–320, 1990.

[2] Joseph J Atick and A Norman Redlich. What does the retina know about natural scenes? Neural
computation, 4(2):196–210, 1992.

[3] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. Density modeling of images using a
generalized normalization transformation. arXiv preprint arXiv:1511.06281, 2015.

[4] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding
and clustering. In Advances in neural information processing systems, pages 585–591, 2002.

[5] Anthony J Bell and Terrence J Sejnowski. An information-maximization approach to blind
separation and blind deconvolution. Neural computation, 7(6):1129–1159, 1995.

9

[6] Pietro Berkes, Richard E Turner, and Maneesh Sahani. A structured model of video reproduces
primary visual cortical organisation. PLoS computational biology, 5(9):e1000495, 2009.

[7] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34
(4):18–42, 2017.

[8] Joan Bruna, Arthur Szlam, and Yann LeCun. Signal recovery from pooling representations.
arXiv preprint arXiv:1311.4025, 2013.

[9] Charles F Cadieu and Bruno A Olshausen. Learning intermediate-level representations of form
and motion from natural movies. Neural computation, 24(4):827–866, 2012.

[10] Gunnar Carlsson, Tigran Ishkhanov, Vin De Silva, and Afra Zomorodian. On the local behavior
of spaces of natural images. International journal of computer vision, 76(1):1–12, 2008.

[11] Vin De Silva and Gunnar E Carlsson. Topological estimation using witness complexes. SPBG,
4:157–166, 2004.

[12] Vin De Silva and Joshua B Tenenbaum. Sparse multidimensional scaling using landmark points.
Technical report, Technical report, Stanford University, 2004.

[13] Emily Denton and Vighnesh Birodkar. Unsupervised learning of disentangled representations
from video. In Advances in Neural Information Processing Systems, pages 4417–4426, 2017.

[14] James J DiCarlo and David D Cox. Untangling invariant object recognition. Trends in cognitive
sciences, 11(8):333–341, 2007.

[15] David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):
1289–1306, 2006.

[16] Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4829–4837, 2016.

[17] Ehsan Elhamifar and René Vidal. Sparse manifold clustering and embedding. In Advances in
neural information processing systems, pages 55–63, 2011.

[18] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object detection
with discriminatively trained part-based models. IEEE transactions on pattern analysis and
machine intelligence, 32(9):1627–1645, 2010.

[19] David J Field. Relations between the statistics of natural images and the response properties of
cortical cells. Josa a, 4(12):2379–2394, 1987.

[20] Peter Földiák. Learning invariance from transformation sequences. Neural Computation, 3(2):
194–200, 1991.

[21] William T Freeman, Edward H Adelson, et al. The design and use of steerable filters. IEEE
Transactions on Pattern analysis and machine intelligence, 13(9):891–906, 1991.

[22] Anna C Gilbert, Yi Zhang, Kibok Lee, Yuting Zhang, and Honglak Lee. Towards understanding
the invertibility of convolutional neural networks. arXiv preprint arXiv:1705.08664, 2017.

[23] Ross Goroshin, Michael F Mathieu, and Yann LeCun. Learning to linearize under uncertainty.
In Advances in Neural Information Processing Systems, pages 1234–1242, 2015.

[24] OJ Henaff, RLT Goris, and Simoncelli EP. Perceptual straightening of natural videos. In
Computational and Systems Neuroscience, 2018.

[25] Haruo Hosoya and Aapo Hyvärinen. Learning visual spatial pooling by strong pca dimension
reduction. Neural computation, 2016.

[26] Xiaoming Huo, Xuelei Ni, and Andrew K Smith. A survey of manifold-based learning methods.
Recent advances in data mining of enterprise data, pages 691–745, 2007.

10

[27] Aapo Hyvärinen and Patrik Hoyer. Emergence of phase-and shift-invariant features by decom-
position of natural images into independent feature subspaces. Neural computation, 12(7):
1705–1720, 2000.

[28] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and applications.
Neural networks, 13(4):411–430, 2000.

[29] Aapo Hyvärinen, Patrik O Hoyer, and Mika Inki. Topographic independent component analysis.
Neural computation, 13(7):1527–1558, 2001.

[30] Aapo Hyvärinen, Jarmo Hurri, and Jaakko Väyrynen. Bubbles: a unifying framework for
low-level statistical properties of natural image sequences. JOSA A, 20(7):1237–1252, 2003.

[31] Juha Karhunen, Erkki Oja, Liuyue Wang, Ricardo Vigario, and Jyrki Joutsensalo. A class of
neural networks for independent component analysis. IEEE Transactions on Neural Networks,
8(3):486–504, 1997.

[32] Urs Köster and Aapo Hyvärinen. A two-layer model of natural stimuli estimated with score
matching. Neural Computation, 22(9):2308–2333, 2010.

[33] Quoc V Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S Corrado,
Jeff Dean, and Andrew Y Ng. Building high-level features using large scale unsupervised
learning. In Proceedings of the 29th International Coference on International Conference on
Machine Learning, pages 507–514. Omnipress, 2012.

[34] Ann B Lee, Kim S Pedersen, and David Mumford. The nonlinear statistics of high-contrast
patches in natural images. International Journal of Computer Vision, 54(1):83–103, 2003.

[35] John Lee. Introduction to smooth manifolds. Springer, New York London, 2012. ISBN
978-1-4419-9982-5.

[36] Tai Sing Lee and David Mumford. Hierarchical bayesian inference in the visual cortex. JOSA
A, 20(7):1434–1448, 2003.

[37] Siwei Lyu and Eero P Simoncelli. Nonlinear image representation using divisive normalization.
In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages
1–8. IEEE, 2008.

[38] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(Nov):2579–2605, 2008.

[39] Jesús Malo and Juan Gutiérrez. V1 non-linear properties emerge from local-to-global non-linear
ica. Network: Computation in Neural Systems, 17(1):85–102, 2006.

[40] David Mumford and Agnès Desolneux. Pattern theory: the stochastic analysis of real-world
signals. CRC Press, 2010.

[41] Bruno A Olshausen. Learning sparse, overcomplete representations of time-varying natural
images. In Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference
on, volume 1, pages I–41. IEEE, 2003.

[42] Bruno A Olshausen. Highly overcomplete sparse coding. In Human Vision and Electronic
Imaging XVIII, volume 8651, page 86510S. International Society for Optics and Photonics,
2013.

[43] Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607, 1996.

[44] Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311–3325, 1997.

[45] Simon Osindero, Max Welling, and Geoffrey E Hinton. Topographic product models applied to
natural scene statistics. Neural Computation, 18(2):381–414, 2006.

11

[46] Dylan M Paiton, Sheng Lundquist, William Shainin, Xinhua Zhang, Peter Schultz, and Garrett
Kenyon. A deconvolutional competitive algorithm for building sparse hierarchical representa-
tions. In Proceedings of the 9th EAI International Conference on Bio-inspired Information and
Communications Technologies, pages 535–542. ICST, 2016.

[47] Pietro Perona. Deformable kernels for early vision. IEEE Transactions on pattern analysis and
machine intelligence, 17(5):488–499, 1995.

[48] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear
embedding. science, 290(5500):2323–2326, 2000.

[49] Christopher J Rozell, Don H Johnson, Richard G Baraniuk, and Bruno A Olshausen. Sparse
coding via thresholding and local competition in neural circuits. Neural computation, 20(10):
2526–2563, 2008.

[50] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In
Advances in Neural Information Processing Systems, pages 3859–3869, 2017.

[51] Honghao Shan and Garrison Cottrell. Efficient visual coding: From retina to v2. arXiv preprint
arXiv:1312.6077, 2013.

[52] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains. IEEE Signal Processing Magazine, 30(3):83–98, 2013.

[53] Jorge Silva, Jorge Marques, and João Lemos. Selecting landmark points for sparse manifold
learning. In Advances in neural information processing systems, pages 1241–1248, 2006.

[54] Eero P Simoncelli and William T Freeman. The steerable pyramid: A flexible architecture for
multi-scale derivative computation. In Proceedings of the International Conference on Image
Processing, volume 3, pages 444–447. IEEE, 1995.

[55] Eero P Simoncelli, William T Freeman, Edward H Adelson, and David J Heeger. Shiftable
multiscale transforms. IEEE transactions on Information Theory, 38(2):587–607, 1992.

[56] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

[57] J Hans van Hateren and Dan L Ruderman. Independent component analysis of natural im-
age sequences yields spatio-temporal filters similar to simple cells in primary visual cortex.
Proceedings of the Royal Society of London B: Biological Sciences, 265(1412):2315–2320,
1998.

[58] Max Vladymyrov and Miguel Á Carreira-Perpinán. Locally linear landmarks for large-scale
manifold learning. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 256–271. Springer, 2013.

[59] Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsupervised learning of
invariances. Neural computation, 14(4):715–770, 2002.

[60] Ying Nian Wu, Zhangzhang Si, Haifeng Gong, and Song-Chun Zhu. Learning active basis
model for object detection and recognition. International journal of computer vision, 90(2):
198–235, 2010.

[61] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833. Springer, 2014.

[62] Matthew D Zeiler, Graham W Taylor, and Rob Fergus. Adaptive deconvolutional networks
for mid and high level feature learning. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 2018–2025. IEEE, 2011.

12

