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The opacity of typical objects in the world results in occlusion, an important property of natural scenes
that makes inference of the full three-dimensional structure of the world challenging. The relationship between
occlusion and low-level image statistics has been hotly debated in the literature, and extensive simulations
have been used to determine whether occlusion is responsible for the ubiquitously observed power-law power
spectra of natural images. To deepen our understanding of this problem, we have analytically computed the
two- and four-point functions of a generalized “dead leaves” model of natural images with parameterized object
transparency. Surprisingly, transparency alters these functions only by a multiplicative constant, so long as object
diameters follow a power-law distribution. For other object size distributions, transparency more substantially
affects the low-level image statistics. We propose that the universality of power-law power spectra for both natural
scenes and radiological medical images, formed by the transmission of x-rays through partially transparent tissue,

stems from power-law object size distributions, independent of object opacity.
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I. INTRODUCTION

Natural images are surprisingly statistically uniform. The
autocorrelation function, a measure of how similar nearby
pixels tend to be, is virtually universal for natural images
[1-7] (Fig. 1). This is typically quantified by measuring
image power spectra (Fourier transform of the autocorrelation
function), which are well described by scale-invariant power-
law functions with power P and spatial frequency k related
by P(k) ox k=%, with exponents o &~ 2. The exponents « vary
slightly from image to image, and there are small differences in
average exponent « between terrestrial [2,4,7] and aquatic [8]
environments, and between natural and man-made ones [6].

Intriguingly, even radiological images like mammograms
have power-law power spectra [9,10], typically with larger o
values, despite the fact that the physics of image formation
are very different for radiological and natural images. In
natural images, formed by reflection of light off of surfaces,
objects tend to be opaque, and thus they occlude one another,
whereas in mammograms, formed by the transmission of
x-rays through breast tissue, objects are more transmissive
and do not completely occlude one another. The statistics of
radiological images have received less attention and are less
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well understood. Interestingly, however, the powers « typically
vary between mammogram images of patients with low versus
high risk of developing breast cancer [10] and vary as a
function of the density of the breast tissue [11], highlighting
the potential clinical importance of these image statistics.

The statistical regularity of natural scenes implies that
engineers can design, and evolution might have selected for,
coding schemes that exploit this structure [5,12]. Indeed, the
peripheral mammalian visual system appears to exploit this
homogeneity by using simple filters to decorrelate the incom-
ing signal [13—15] and more complex feature dictionaries to
efficiently encode the decorrelated signal [5,16,17].

Using the intuition that the environment is composed of
distinct objects, Ruderman studied a “dead leaves” model
[18,19] for natural scenes, in which images are created by
sequentially placing opaque, potentially overlapping circles of
random brightness in random locations on a two-dimensional
image plane [20] [Fig. 2(a)]. Ruderman modeled correlations
between pixels by assuming a different correlation function
for points falling within a visible circle than for points falling
in different visible circles. Using analytical calculations he
demonstrated that, so long as the diameters s of the circles
follow a power-law distribution with probabilities p(s)
570G+ the images exhibit power-law correlation functions,
C(q) < g7 ", where g is the separation between pixels, and
power-law power spectra, P(k) oc k=~ If the circle sizes
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FIG. 1. (Color online) Natural images have nearly identical scale-
invariant power spectra. Even very different natural images (a), (b)
have similar rotation-averaged power spectra that each follow a power
law (c). Line colors in panel ¢ match the borders of corresponding
panels a and b. The upper curve in panel ¢ corresponds to the image
in panel a, while the lower one corresponds to b.

are drawn from other distributions, Ruderman’s analytical
calculations suggest that the power spectra that could be made
to differ from a power law, contrary to the old notion [21] that
the 1/k? power spectra result from the mere presence of edges,
each of which has a 1/k> one-dimensional power spectrum
(cf. Balboa et al. [22]). More recently, Balboa et al. [22]
simulated the analytical examples presented by Ruderman
[20], including images with the exponential distribution of
object sizes that was claimed [20] to yield non-power-law
power spectra. They found that these images had nearly
power-law power spectra, and subsequently they reiterated the
previous claim that occlusion, and not object size distributions,
are the cause of power-law power spectra in natural images.

This “edges versus size distributions” debate was subse-
quently resolved when Hsiao and Milane demonstrated, via
numerical simulations, that dead leaf models with partially
transparent objects (and thus only partial occlusion) whose
sizes follow a power-law distribution yield power-law power
spectra, and that dead leaf models with opaque objects from
other size distributions can have non power-law power spectra
[23]. In other words, occlusion is neither necessary, nor
sufficient, to yield power-law image power spectra. In the
same paper, Hsiao and Milane computed the power spectrum
of a simplified ensemble of images formed by summing the
intensities of different randomly placed disks. This model was
simpler than the images with partially occluding leaves that
they simulated. The linearity of this model makes it relatively
straightforward to compute the Fourier transform of the model
images, and thus to estimate the power spectra.

Thus, to date, the two-point statistics of dead leaf image
models have been analytically calculated both for fully opaque
leaves [20] and for fully transmissive leaves [23]. What
remains is to solve for the two-point function of images
with partial occlusion, which will deepen our understanding
of how opacity and image statistics interrelate along this
continuum of object properties. Thus motivated, we studied
a generalized dead leaves model, in which the leaves have
variable transparency. While general feature probabilities have
been solved exactly for the fully opaque dead leaves model
[24], our transparent generalization requires other methods
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FIG. 2. (Color online) For power-law object size distributions, the
two-point statistics of opaque and transmissive dead leaves images
differ by a multiplicative constant. (a) A representative image from
the opaque (@ = 0) dead leaves model with circle diameters drawn
from the distribution p(s) o< s732 for s > sy = 1 pixel and circle
brightnesses drawn uniformly within b € [—1,1]. (b) When the circles
are partially transparent (a = 0.25 for all circles), but all other
parameters are the same, previously occluded circles are partially
visible. (c) A higher level of transparency (a = 0.75) results in an
image that begins to approximate Gaussian pink noise, as expected
from the central limit theorem [24]. (d) Autocorrelation functions of
dead leaves image ensembles of different opacity levels differ only
by a multiplicative constant for power-law object size distributions.
The two-point functions are power-law functions of distance, with
power ~ — 0.2, in good agreement with our analytical calculation.
(e) Similarly the power spectra of these image ensembles are roughly
power-law functions and are all the same up to a multiplicative
constant. The ratio of the opaque and most transparent power
spectra is nearly flat. At relatively high spatial frequencies (above
~20 cycles/image), corresponding to small length scales, the g > s¢
approximation in our analytical calculation fails, and slight deviations
from power-law power spectra can be observed, as can deviations
from constancy in the ratio.

and has not previously been systematically explored. We
show herein that, so long as leaf sizes follow a power-law
distribution, transparency results in an overall multiplicative
factor in the two- and four-point functions but does not change
their functional (power-law) form. For other size distributions,
transparency does change the form of the autocorrelation
function, suggesting that power-law size distributions unify
the observed power spectra of natural and radiological images.

II. ANALYTICAL CALCULATION OF THE TWO-POINT
FUNCTION IN THE TRANSMISSIVE DEAD LEAVES
MODEL

We begin by analytically computing the two-point functions
of images in our “transmissive dead leaves” environment. For
image pixels values I(X), the two-point function is given by
C(xX,x")y = (I(X)I(x")) = C(]x — X'|), where the angle brack-
ets denote averaging over images drawn from this ensemble
and the second step stems from the fact that, since our model
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world is invariant under both translations and rotations, the
two-point function depends only on the distance |X — X¥'| = ¢
between sample points.

The image is formed by randomly placing a circle whose
diameter s is drawn from some distribution, with brightness
value b, and transparency a, on a surface of diameter L. The
brightnesses b will be drawn from a zero-mean distribution,
and the transparencies a € [0, 1] can also be random. A value
a = 1 specifies a fully transparent (invisible) circle, while a
value of a = 0 specifies a fully opaque circle, as in Ruderman’s
model [20]. When a new circle is added, the pixel value
I(X) at a point X that falls within the circle undergoes the
transformation

I(X) > (1 —a)b+al(X). (1)

Pixels not lying under the circle are unaffected by its addition.
This process is continued ad infinitum to create model images
(Fig. 2).

We will compute (I(xX)?) and C(q) recursively by noting
that adding another leaf to an image creates a new image
from the same transmissive dead leaves ensemble, and thus
the (average) statistical properties must remain unchanged by
this transformation [20].

Using Eq. (1), we can compute the pixel variance

(IP(X)) = (1 — Po)(I*(X)) + Punllal(X) + (1 — a)b]?)

(b (1 —a)) )
@ ?
where P, is the probability that the point in question falls
within the newly added circle. The quantity Pj,, and thus the
distribution of circle sizes, does not affect the pixel variance.
It will, however, affect the spatial properties of the image,
including C(g).

To compute C(q), consider how the pixel values of a pair
of points with separation ¢ are affected by the addition of a
new leaf. After adding the leaf, either one, both, or neither
of the sample points lie under the leaf, resulting in three
different possible modifications to the pixel values [Eq. (1)].
These outcomes occur with probabilities Pi(q), P»(g), or
Py(g), respectively, which we will later compute. Equating
the two-point functions before and after the addition of a new
leaf, we obtain

C(q) = Po(q)C(q) + Pi(g){[al(¥) + (1 — a)blI (X))
+ Pa(g){[al(X) + (1 — a)bllal (x") + (1 — a)b]).
3)

Recalling the definition of the autocorrelation function and the
normalization Py(q) + Pi(g) + P»(q) = 1, we find

_ (B = a)’) Pa(q)
Pi(g)(1 —a) + Px(g)(1 —a?)’

The quantities (b?), (a®), and (a) depend on the distributions
of circle brightnesses and opacities.

To calculate P;(q), we first define P* = (s?)/L?, which is
the probability that any given point in the image falls within
a newly deposited leaf. Here L is the diameter of the circular
image area, s is the diameter of the newly added circle, and we
assume (s?) < L2. The probability P;(g) that either point, but
not both, falls within the circle is then P;(g) = 2[P* — P»(q)],

= (I*(X)) =

C(q) “4)

PHYSICAL REVIEW E 86, 066112 (2012)

where the factor of 2 comes in because there are two such
points to consider.

To determine the probability P»(g), note that, for a circle
of diameter s, given that one particular point X is within the
circle (which occurs with probability s?/L?), the probability
that another point, a distance g away, is also within the
circle, is given by Ref. [20] g(¢g/s € [0,1]) = %[cos’l(q/s) —

(g/s)v/1 —(q/s)?], and thus

o0 G2
Pr(q) = / 8 @/9ps)ds. 5)
0

For a power-law size distribution p(s) = (A/so)(s/s0)~ %,
where o > 3, A is a unitless normalization constant, and s¢
is the small-size cutoff, the change of variables u = s/q in the
above integral yields

BN TAR R .
Pgy=al )\ g(1/uwyu="" du. (6)
S0 1

Define the integral to be B(«). For pixel separations much
larger than the small-size cutoff of our leaf diameter distribu-
tion, g >> s¢ [in which case P* = 0%(%0)2 > P(q)], Eq. (4)
becomes

Clg)

_ B@)(@ =3)(p*) (1 —a)) ( q )-(a—s> o
B 2(1 —a) 50 s

yielding an P(k)
Wk’(s’“) in which the opacity affects the power
spectrum only as a multiplicative prefactor. When a =0
for all circles (opaque limit), our result is equal to that of
Ruderman [20], as it must be. Also note that, as one might
expect, the two-point function does not depend on the size L
of the image surface.

To demonstrate that leaf opacity can affect the functional
form of the two-point function, we repeat the above calcu-
lations but now have all leaves be the same size s*. The
size distribution is thus p(s) = §(s — s*), in which case the
correlation function is

image power spectrum [20]

P = a))glg/s")
2l —a) = (1 +a)*)glq/s*)’

which depends nontrivially on a: for g > s*,g(q/s*) =0
and the correlation function vanishes, so the large-g limit in
which Eq. (7) was derived is irrelevant for § function size
distributions. Furthermore, even for fully opaque leaves, it is
clear that this correlation function, which is identically zero for
q > s*,1is not described by a power-law function of distance.
A comparison of Egs. (2) and (7) shows that the pixel
variance, and the image autocorrelation function, are multi-
plied by different opacity dependent prefactors. For ¢ = 0,
the variance and the two-point function are equal, so the fact
that for g > sy, they scale differently with changing opacity
highlights that there is a qualitative change in the two-point
function near the g ~ so boundary. For natural images, the
minimum object size is much smaller than our cameras can
resolve, so this boundary is never encountered in practice.
Furthermore, this comparison demonstrates that not all image
statistics vary in the same way with changing leaf opacity.

Cs(q) = (®)
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III. ANALYTICAL CALCULATION OF THE FOUR-POINT
FUNCTION FOR COLLINEAR POINTS IN THE
TRANSMISSIVE DEAD LEAVES MODEL

As we have seen, the form of the two-point function
is independent of leaf opacity for power-law object size
distributions. At the same time, the images generated with
different leaf opacities (Fig. 2) are visibly different, so there
must be some difference in the image statistics (aside from
the overall pixel variance) from ensembles with different
object opacities. To understand this difference, we consider
higher-order statistics beyond the two-point function. If the
leaf brightnesses (b) are symmetrically distributed about
zero, then the three-point function will vanish, and so the
next possible candidate beyond the two-point function is the
four-point function.

In this section, we will compute the four-point function
CSMR, X, X", X") = (IO T(X)I(X")I(X")) for equidistant

CM(g) =

PHYSICAL REVIEW E 86, 066112 (2012)
collinear points: |X —X'| = |X¥' —X"| = |Xx" —X"| =¢q and
|x — x| = |X' — X"'| = 2q, for the dead leaves model with
power-law leaf size distribution. We chose this arrangement
of points because it considerably simplifies the analysis of
the four-point function, for reasons that will become apparent
during the calculation. Nevertheless, the calculation itself is
still somewhat tedious, so some readers may wish to skip to
the result at the end of this section.

As in the case of the two-point function described above,
since our image ensemble is invariant under translations and
rotations, the result depends only on the pixel spacing ¢:
C&N(%, X, X", X") = C(g). We apply the same recursive
logic that we used for computing the two-point function in
order to infer the four-point function, and start by enumerating
all of the possible modifications to the four-point function upon
the addition of a new circle. We will number the points from
left to right. Thus,

P @)C @) + PG @) lal () + (1 — )b I GG GE™) + Psgi@)(I(Dal () + (1 — a)plI G)IE™))

+ PN (DGl R") + (1 — )bl E")) + PN (IEIE)Eal @) + (1 — a)b])
+ P3N g)(lal (%) + (1 — a)bllal (') + (1 — a)b]I (") (X))
+ PN U (B)lal &) + (1 — a)bl[al G") + (1 — a)b] I (F"))
+ PSP UGIGEalR) + (1 — a)blal G") + (1 — a)b])
+ PO @) [al () + (1 — a)bllal &) + (1 — a)bllal (R") + (1 — a)b1I ("))
+ V(U @[al @) + (1 — a)bllal ") + (1 — a)bllal G") + (1 — a)b])
+ P s(@){[al(F) + (1 — a)bllal &) + (1 — a)bl[al (F") + (1 — a)bl[al 3") + (1 — a)b]), ©)

where P;"H is the probability that none of the four collinear
points fall under the newly deposited circle, P9 is the
probability that only the ith point falls under the newly
deposited circle, Pc‘j’ll is that probability that only the ith and
jth collinear points fall under the newly deposited circle, and
so on. Because the points are collinear, it is impossible for
non-neighboring pixels to fall under a given circle unless all of
the pixels between them also fall under that circle. Hence, there
are no terms like Pf%“ or Pf%"4 in the above equation, since
they would require there to be “gaps” between neighboring
pixels. Alternatively, one can include those terms but note that
the probabilities associated with them are zero.

To simplify Eq. (9) to the point that we can easily solve for
Cs(g), we will first expand and simplify all of the average
products (-), then compute all of the probabilities P{", and
finally assemble all of these pieces.

A. Expanding and simplifying the average pixel-value products

Since the circle brightnesses b are zero-mean and indepen-
dently drawn, each of the terms in which a single pixel is
modified [the second through fifth terms in Eq. (9)] reduces to
(a) Pfgu C$°"(g). Similarly, expanding the terms in which two
points fall under the circle [the sixth through eighth terms in

Eq. (9)], recalling that (b) = 0, and performing a bit of algebra,
each of those terms can be simplified to

PN [(@*)C5M (g) + (1 — a)*) () Ca(lk — mlg)].  (10)

where k # m, k,m € {1,2,3,4}\{i,j}, Ca(-) is the two-point
function that we calculated in the previous section [Egs. (4) and
(7) for power-law object size distributions], and we now denote
it with a subscript 2 to avoid confusion with the four-point
function.

Assuming that the circle brightnesses are symmetrically
distributed about zero (and thus (b3) = 0), the Pf‘ﬂ}( terms in
which three points fall under the circle reduce to .

PSS @)[(@)CM (@) + (a(l — a)*) (b?)
x [Ca(q) + C2(2g) + C2(39)]]. (11)

Finally, the last term in Eq. (9), in which all four points fall
under the new circle, simplifies to

PO 4@ [(aC5M (@) + (a*(1 — a)*) ()
x [3C2(q) + 2C2(29) + C:3)] + (1 — )Y (pH)]. (12)
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B. Computing the probabilities P‘C.;’"

We now require the probabilities Pso!!, Pﬁ‘;", Pff;“, Pff’ZH,
P59, P9Y, and Pf9 ,. The remaining probabilities in Eq. (9)
are equivalent to these because of the symmetry of the
arrangement of points (and of the image ensemble).

Because all intervening pixels must lie under the circle if
the bounding ones do, P{3'; ,(¢) = P»(3q), where Py(-) is the
probability that two pixels of a given separation lie under the
same circle and is calculated in the previous section [Eq. (5)
for power-law distributions of circle sizes]. We will use similar
arguments to obtain the other six probability functions that we
require.

The “triplet” probability Pf‘il}3 (g) is thus given by the
probability that three of the (adjoining) pixels fall under
the circle, minus the probability that all four pixels fall
under it: Pﬁozl}3 = P»(2g) — P»(3q). And by the same logic,
P9 = Py(q) — P2(29).

For the “inner” pairs, we compute the probability of the two
“inner” points falling under the circle minus the probability
that those two points and any adjoining ones all fall under the
circle. Thus,

P5S'(q) = Pa(q) — P{%5 — P53y — Pi%,
= pi%”(g) = Py(q) — 2P(2q) + Px(3q).

Similarly, Pﬁ‘;}'(q) = P* — P»(q), where P* = (sz)/L2 is

the probability of any given point falling under the newly
deposited circle, and

P (@) = P* = Pf3N@) — P33'(@) — Pi%5(@)
- P3%4(@) — P{%s.4(@)

13)

= P5%'(q) = P* — 2P:(q) + P>(2q). (1
Finally,
Py =1-) PN — Y P9
i i,j#i
- > PE@ - PP @)
i,j#ik#i, ] (15)

= Pelg) =1 —4P* +3Py().

C. Assembling the pieces to find C”"'(g)

Before substituting all of our results into Eq. (9) and solving
for C(g), it will be useful to first consider the ¢ > so
limit, in which we derived the two-point function. In that limit

[Eq. (6)],

2 —(ax—3)
So q
Py(q) = AB(O!)(Z) <£> <1 (16)

Czquare(q) —
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and

2 2
Crlq) = B(a)(e —3){(b")(d —a) )(
2(1 —a)
so only the lowest-order terms in these quantities need to
be considered. Because of the power-law nature of these
functions, C»(2q) and P»(2q) have the same dependence on
distance g as do the C»(g) and P»(g) terms, but are smaller by
a factor of 27~ and similarly for the f(3¢)-type terms.
Substituting all of the products and probabilities derived
in the preceding subsections into Eq. (9), keeping only the
lowest-order terms in (g /so)~®~>, which dominate for g >
50, and solving for C°!(¢), we find that

B(a)(ax — 3)<b4><(1 _ a)4> 3q —(@—3) s
4(1 —a) (_> - (18)

Thus, the four-point function for this arrangement of points
(in the g > s¢ limit) has the same power-law form as does
the two-point function [Eq. (7)], and it also only depends on
opacity by a multiplicative prefactor. Given that this (collinear)
arrangement of points is so similar to the arrangement of points
in the two-point function (two points will always be collinear),
this result is perhaps unsurprising. To test the generality of this
result, we will compute the four-point function for a square
arrangement of points in the next section.

4
50

—(a=3)
) <1, A7)

Cl(g) ~

S0

IV. ANALYTICAL CALCULATION OF THE FOUR-POINT
FUNCTION FOR A SQUARE ARRANGEMENT
OF POINTS IN THE TRANSMISSIVE
DEAD LEAVES MODEL

In this section we calculate the four-point function for our
transmissive dead leaves ensemble, for the case in which the
four points lie on the vertices of a square with edge length ¢.
Similar to the collinear arrangement of points, the symmetry
in this arrangement will greatly simplify our calculations and,
since it has nontrivial geometry when compared to the collinear
arrangement, there is a possibility for interesting features to
arise in this four-point function that are not apparent in either
the two-point function, or the four-point function for collinear
points.

We will label these points 1, 2, 3, 4, going clockwise,
and beginning in the upper left-hand corner. Similar to the
calculation for the collinear case, we first list all of the possible
modifications to the four-point function, and the probabilities
with which they occur. We will then simplify this expression,
calculate the relevant probabilities, and use recursion to solve
for the four-point function. Similar to the previous calculations,
the translation and rotation invariance of our image ensemble
means that this four-point function will depend only on the
edge length of the square: C,"“(X},X2,%3,%4) = C,M""(q).

Enumerating all possible modifications caused by the
addition of a new circle, we find that

P (@M (@) + 4P (@) al (R) + (1= )bl G) I (33) I () + 4P15 (@) {[al () + (1 — a)b]

x [al(%2) 4+ (1 = a)b) I (3)I (Xa)) +4 P55 (@){[al(X1) + (1 —a)bllal (32) + (1 — a)bllal (X3) + (1 — a)blI (X))
+ P55@([al ) + (1 = @bllal (%) + (1 — a)bl[al (33) + (1 — a)bl[al (34) + (1 — a)b]), 19)
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where P;4""“(¢) is the probability that none of the four corners

of the square fall under the newly deposited circle, Po " i

the probability that only the ith corner falls under the newly
deposited circle, Pfquare is that probability that only the ith
and jth corners fall under the newly deposited circle, and so
on. The symmetries in the square configuration (all edges are
equivalent, and all corners are equivalent) allow us to collapse

the (equivalent) P;;™** terms, and similarly for the P

squdre

terms and the P terms. We further note that terms like

PHYSICAL REVIEW E 86, 066112 (2012)

PiE™ and Py%™, which contain opposite corners of the

circle, are omitted because it is impossible for a circle to cover
diagonally opposite corners of the square without covering at
least one other corner. The factors of four in the above equation
come in because there are four corners to a square, and four

edges to a square, and (g) = four different ways to choose

groupings of three of the four corners.
We can expand and simplify the averages of the products
of the pixel values, as in the previous section, to find

C;""(q) = Py ()M (@) + Ha) PyY ™ (@) CiM ™ (q) + 4P} ™ (@)[(a®) C1 (@) + (1 — a)*) (b)) Ca(q)]
+ 4P (@) CM (@) + 2(a(l — a)(B*)Ca(g) + (a(1 — a)’) (b*) Ca(v/2)]
+ PITU@[(@) M (q) + (@*(1 — a)*) (b)) (ACalg) + 2C2(v2g) + (1 — a)*) (bY)]. (20)

where the function C;(-) is the two-point function we discuss
in Eq. (7).

psquare

A. Computing the probabilities P,

To finish our calculation of the four-point function for
square geometries, we require the probabilities Psquare( ),

square(q) Psquare(q) Pliqzuz;re(q) and P;?ZLT;I:Z( )

For the calculation of Pf qzugri(q), we first note that, given
that one of the corners of the square falls under a newly
deposited circle (with diameter s), the probability that all four
points fall under it is g4(g/s € [0,1/+/2]) = Acos (g /s) —
(/%) +(q/s) = (q/$)V'1 —(q/$)*].

Using the same logic (and variable substitution) as in
Eq. (6), we find that

oo 2
P 5alg )—/0 L2g4(6]/8)p(S)ds 2D

2 —(a—3)
—A( 0) (1) Bio),  (22)
L S0

where By(a) = [ 75 ga(1/uyu®~* du.

To derive Plsflzlfgre(q), we seek the probability that three of
the points, but not all four, lie under the newly deposited circle.
If the two diagonal points are under the circle, so will at
least one of the corners, and thus P;%5°(q) = [P2(v/2¢) —

squdre

P53.4(q)1/2, where Py(x) is the probability that two points
a distance x apart lie under a newly deposited circle, and is
calculated in Egs. (5) and (6).

The “doublet” probability quuare(q) is the probability
that two, but not three or four, of the points fall under the
circle and thus is given by Py3*(q) = P,(q) — ;%5 (q) —

P (@) — P35 = Pa@) — PA(v29).

The “singlet” probability P;%““(¢) is the probability that

one, but not more, of the pomts fall under the circle, and
is thus grven by quuare(q) _p qquare(q) _ square( ) —

psduare psauare square psauare
1qz3 (q) — 1q3,4 (q) — P1,q2,4 (q) — 1?2,3,4((’1),Whefe P* =

(s2)/L? is the probability that a newly deposited circle covers

any given point, and is calculated in the previous sections.
Simplifying this expression using our previously derived
results, we find that P"5"*(¢) = P* — 2Py(q) + %Pz(ﬁq) +
1P§quare( )

1,2,3,4\9)- . )

Finally, the probability that none of the points falls

under a newly deposrted circle is given by P,""(¢q) =

square square square
Z P Zr, JF#i P; i,j -

square qquareZl'Hél'k#l'j bk
P1234 = l 4P*+4P2(q)— Pl"2’3’4(q).

B. Combining the pieces to find qullare @)

As in our calculation of the four-point function for collinear
points, we again consider the g /so > 1 limit, in which we need
only consider the lowest-order terms in (g /so)~~?. In that

limit, we find that
4 —(@=3)
a) )(1> . (23)
50

Bay(@)(@ = 3)(b*)((1
4(1 —a)

Like the other n-point functions computed thus far, the
four-point function for square geometries is a power law
with power —(o — 3), and it depends on opacity only as a
multiplicative prefactor. We note that, for « = 3.2, B(x) ~
4.014, while B4() ~ 3.581, where these values come from
numerical integration using Simpson’s method. These values
are similar in magnitude, and thus the four-point function is
not inherently much smaller than the two-point function.

Finally, we note that the two- and four-point functions
depend differently on object opacity, and thus the visible
difference in the different image ensembles likely arises from
the relative amplitudes of these (power-law) functions, and not
any difference in their functional forms.

" (q) ~

V. NUMERICAL ANALYSIS OF THE TRANSMISSIVE
FALLEN-LEAF IMAGES

To confirm our analytical calculations of the two-point
functions, we simulated 500-frame ensembles of 256 x 256
pixel images, using the procedure described in Eq. (1):
Circles of random size (following a power-law distribution
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p(s) o< 5732 above the cutoff of sy = 1 pixel), brightness, and
position were iteratively placed on the image frame to build up
the images. For each frame, 10° circles were deposited, which
is the number required to cover the image surface ~100 times.

To avoid edge effects, circle centers were allowed to fall
up to 256 + s/2 pixels away from the center of the image
frame, where s is the circle diameter in pixels. We used a
large maximum circle size, sp.x = 108 pixels, because prior
work [25] on dead leaves models found that the functional
form of the measured autocorrelation function approaches
the analytically calculated curve only in the sp,x — oo limit.
The heavy tail of the power-law distribution contains a non-
negligible number of very large leaves, which contribute to the
long-range correlations in the images.

We then measured the difference functions D(g) =
([1(X) — I(X)|*) = 2(1(X)*) — 2C(q) for the image ensem-
bles. D(q) is clearly related to the autocorrelation func-
tion C(gq), but is easier to measure [20] as it is unaf-
fected by the mean values of the individual images. We fit
the measured difference functions to power-law functions
of the form D(q) =n x g* + v, as is suggested by our
analytical calculations [Eq. (7)]. The best-fit parameters
(n,u,v) for the image ensembles with a = {0,0.25,0.5,0.75}
were (—0.48 £0.01,—0.24 +0.04,0.69 + 0.03), (—0.32 £
0.01,—0.23 +0.03,0.41 + 0.02), (—0.191 £ 0.004,—0.22 £
0.03,0.23 £0.01), (—0.086 £ 0.002,—-0.21 £ 0.02,0.098 £
0.005), respectively, where the uncertainties represent 95%
confidence intervals. These values are in good agreement
with the analytical calculations that predict u© = —0.2 for all
ensembles, and v = {0.66,0.396,0.22,0.094} for the ensem-
bles with a = {0,0.25,0.5,0.75}, respectively. The correlation
functions shown [Fig. 2(d)] are the measured difference
functions subtracted from the constants v measured in the
fit: C(qg) =[v — D(g)]/2. These correlation functions are
power-law functions of distance (linear on the log-log plot)
and differ by a multiplicative constant. Similarly, the power
spectra of the image ensembles [Fig. 2(e)] differ only by a
multiplicative constant for low spatial frequencies, where the
q > so approximation holds.

Figure 3 demonstrates that the two-point function is affected
substantially by leaf opacity for é function size distributions. In
particular, the modulation depth of the “ripples” in the power
spectra depend on the leaf opacity, and thus the opacity does
not modify the power spectra simply by a multiplicative factor.
The procedures used to generate the data shown in Fig. 3 were
the same as for the power-law object size distribution, except
for the different distribution of object sizes.

VI. A MORE REALISTIC MODEL OF RADIOLOGICAL
IMAGES

Our transmissive dead leaves model is not a perfect model
for radiological images. Image formation in mammograms
and other projectional radiographs results from the partial
blockage of a roughly uniform illumination of x-rays due to
local regions of dense tissue, unlike our dead leaves model.
Moreover, imaged tissue is typically much thinner than the path
length required to fully block the x-rays throughout the image,
unlike the effectively infinite optical depth of our “additive”
transparent dead leaves model [Eq. (1)].

PHYSICAL REVIEW E 86, 066112 (2012)

o
g . = a=0
| R S - a=025
o . + a=0.5
§0.25 '_. « a=0.75
"o02p ’
Gy ..
O 0.15
5 A *,
E 0.1 A Y “’" ‘-_‘
° 3
5 0.05] N
8
=1 0 ——
< 1 .10 25 50 100 200
Distance (pixels)
(d)
10° = -
107 —
o, -2 NN
3107 " Fres,
5 e ey
2107 oy
£ A
2107 P,
W
_sf{ +a=0 .
10 ") +a=0.75
_ofl—ratio (a=0.75 vs. a=0)

10 25 50 100
Spatial Frequency (cycles / image)

FIG. 3. (Color online) For § function object size distributions,
opaque and transmissive dead leaves images yield different two-point
statistics. (a), (b) Sample images in which the leaves are all the
same size (s* = 25 pixels), from opaque (a¢ = 0, a) and transmissive
(a = 0.75, b) ensembles. (c) The autocorrelation functions of these
image ensembles do not follow power laws, and they differ from
one another. (d) Their power spectra also differ nontrivially: The ratio
between the power spectra is not constant. The ripples are at multiples
of the 256/25 = 10 cycles/image frequency imposed by the uniform
circle size.

It is thus natural to ask whether our conclusions about vari-
able object opacity generalize to these types of images. Analyt-
ically computing the two-point statistics for this radiographic
model is more involved than for the infinite depth models,
since recursion is more complex in this case. For this reason,
we chose to verify via simulation that the qualitative results
from our analytical calculations hold for these types of images.

Figure 4(a) shows a typical image from a shadowing dead
leaves model with finite optical depth and the same power-law
leaf size distribution as in the previous models. To generate
these model images, a uniform background illumination (of
1) was imposed across the whole image. Randomly sized and
located circles were then deposited onto the image plane, with
each leaf multiplying the brightness of the pixels it subtends
by a factor drawn uniformly within [0.5,1]. The circle sizes
were drawn from the same power-law distribution as in the
previous simulations, and the simulation code was thus very
similar.

For an ensemble of these “radiographic” images, the
empirically measured two-point function [Fig. 4(b)] and power
spectrum [Fig. 4(c)] exhibit the same power laws as we found
for our previous models (Figs. 2 and 3), suggesting that our
calculation holds more generally than for the specific model
for which we performed the analytical calculations.

Intuitively, one might expect the same scale-invariant two-
point function for this model as for the previous one since no
new length scale has been introduced.
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FIG. 4. A shadowing dead leaves model with finite optical depth also exhibits scale-invariant two-point statistics for power-law object
size distributions. (a) An example image from a dead leaves model with the same power-law distributed leaf sizes as in Fig. 2, in which each
leaf leaves a shadow by multiplying the brightness of the pixels it subtends by a factor no greater than one, drawn uniformly within [0.5,1].
Unlike the previous models, each pixel starts out at full brightness, and only a finite number of circles is added to generate the image. The
autocorrelation function (b) and power spectrum (c) of this ensemble show scale invariance (for relatively low frequencies, which corresponds

to g > s¢), just like the previous models.

VII. CONCLUSIONS

For the special case of power-law object size distributions,
object opacity does not affect the form of either the two-
or four-point functions, or the power spectrum of images:
It is manifest only by a multiplicative constant in these
power-law functions. Ours is the first analytic calculation that
demonstrates these facts and thus deepens our understanding
of image statistics.

For object size distributions other than power law, object
opacity can (potentially dramatically) alter the low-level image
statistics. Occlusion is important for natural image formation,
but we find that it does not change the form of the power
spectrum. Since images formed by opaque leaves that are
all the same size have oscillatory, non-power-law, power
spectra (Fig. 3), and transmissive leaves can yield power-
law power spectra (Figs. 2 and 4), occlusion is likely not

responsible for scale invariance of images. We propose that
the universality of power-law power spectra in both occlusive
imaging environments, such as natural photographic images,
and transmissive ones, such as mammography, is likely due to
power-law object size distributions in both settings.
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