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Abstract

We propose a new method for modeling the temporal correlation in videos, based on local
transforms realized by Lie group operators. A large class of transforms can be theoretically
described by these operators; however, we propose to learn from natural movies a subset of
transforms that are statistically relevant for video representation. The proposed transformation
modeling is further exploited to remove inter-view redundancy, i.e., as the prediction step of
video encoding. Since the Lie group transformation coefficients are continuous, a quantization
step is necessary for each transform. Therefore, we derive theoretical bounds on the distortion
due to coefficient quantization. The experimental results demonstrate that the new prediction
method with learned transforms leads to better rate-distortion performance at higher bit-rates,
and competitive performance at lower bit-rates, compared to the standard prediction based on
block-based motion estimation.

I. INTRODUCTION

Temporal correlations in dynamic scenes introduce an enormous amount of redundancy
within natural movies, which plays a crucial role in video compression and video analysis.
Even though the temporal correlation in 3D scenes arises from 3D rigid or non-rigid
motions, which translate into affine, perspective or more complicated transforms on
the image plane, video compression techniques remain limited to block-based motion
estimation that exploits only correlation due to translational motion. More complicated
transformation models such as those incorporating perspective or affine affine transfor-
mations stay limited to global predictive coding (e.g., background warping) [1], object
and region-based coding [2], or motion refinement [3]. One of the main reasons for this
is that the bit-rate overhead for encoding the transform parameters becomes prohibitive
when the size of the blocks decreases. However, previous work has considered only
hand-designed transforms, described by a fixed set of parameters. Such transforms are
undoubtedly general enough to include many examples in data, but they might not all have
equal statistical importance for video representation. Accordingly, if one could encode
videos using only the spatial transforms that are statistically dominant, instead of using
the full set of transforms, one could expect gains in rate-distortion performance in video
compression.
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The idea of learning a Lie, or continuous transformation, group representation of the
dynamics which occur in the visual world was first introduced by Rao et al [4]. A large
class of visual transformations, including all the affine transformations, intensity changes
due to changes in lighting, contrast changes and spatially localized versions of all the
preceding, can be described simply using Lie group operators. Although directly training
such a model is of prohibitive computational complexity, one can efficiently learn Lie
operators by re-parameterizing them in terms of their eigenvectors and eigenvalues, as
we have previously shown in [5]. By additionally introducing transformation specific
blurring operators, we can robustly infer transformations between frames of video in a
multi-scale fashion using the learned operators.

We propose to learn Lie group transforms from natural movies and to exploit them
for modeling inter-frame correlation within the prediction step of a hybrid video coding
scheme. Each block in a prediction frame is approximated by a cascade of Lie operators
applied to the corresponding region and its immediate surround in the reference frame. We
derive bounds on distortion due to coefficient quantization. To the best of our knowledge,
the proposed scheme represents the first predictive video coder based on transformations
learned directly from visual data. Experimental results show that the prediction with the
simplest transforms, that are translations, provide better rate-distortion performance by
up to 1 dB at higher bit-rates compared to block-based motion estimation. Moreover,
predictions with additional learned transforms, which represent more complex motion
structures, offer even better quality of the predicted frame without requiring a large
coding overhead.

The paper is structured as follows. In Section II, we briefly overview the theory of
modeling the dynamics in visual scenes by Lie group operators, and describe an efficient
method for learning those transforms from natural videos. In Section III we describe
the proposed coding scheme and provide a distortion analysis for quantization of the
coefficients for learned transformations. We give the experimental results in Section IV,
and conclude the paper in Section V.

II. LEARNING LIE GROUP TRANSFORMATIONS

Consider the class of continuous transformations described by the first order differ-
ential equation [4]

∂x (s)

∂s
= A x (s) , (1)

whose solution is
x (s) = eAsx (0) = T (s)x (0) . (2)

Here A ∈ "N×N is an infinitesimal transformation operator and the generator of the Lie
group; s ∈ " is a coefficient which modulates the amount of transformation; T (s) = eAs

is a matrix exponential defined by its Taylor expansion and x (s) ∈ "N×1 is the signal
x (0) transformed by A to a degree controlled by s.

The transformations of this form can be used to model the changes between adjacent
frames x(t),x(t+1) ∈ "N×1 in video. We first overview the case of a single transform and
then generalize to multiple ones. The goal of modeling the dynamics of video by Lie
group operators is to find the model parameters A (adapted over an ensemble of video



image sequences) and coefficients s(t−1) (inferred for each pair of frames) that minimize
the reconstruction error

Er =
∑

t

∣∣∣∣x(t+1) − T
(
s(t)

)
x(t)

∣∣∣∣2
2
. (3)

Estimating model parameters A is usually achieved by learning from a large batch
of data samples. In order to derive a learning rule for A, it is necessary to compute
the gradient ∂eAs

∂A . This can be done efficiently if A is rewritten in terms of its eigen-
decomposition A = UΛU−1 and learning is instead performed directly in terms of
U and Λ.1 U ∈ CN×N is a complex matrix consisting of the eigenvectors of A, and
Λ ∈ CN×N is a complex diagonal matrix holding the eigenvalues of A. The matrices
must be complex in order to facilitate periodic transformations, such as rotation. Recall
also that the eigenvectors U of a matrix A need not be orthonormal. The benefit of this
representation is that

eUΛU−1s = I + UΛU−1s +
1

2
UΛU−1UΛU−1s2 + . . . = UesΛU−1 (4)

where the matrix exponential of a diagonal matrix is simply the element-wise exponential
of its diagonal entries. This representation therefore replaces the full matrix exponential
by two matrix multiplications and an element-wise exponential, and thus greatly facilitates
learning.

Unfortunately, the reconstruction error described by Eq. 3 is typically highly non-
convex in s and contains many local minima. To overcome this problem, we propose
an alternative transformation, motivated by image matching algorithms [6]–[9], which
adaptively smooths the error function in terms of the transformation coefficient. This is
achieved by averaging over a range of transformations using a Gaussian distribution for
the coefficient values

T (µ, σ) =

∫ ∞

−∞
T (s)

1√
2πσ

e
||s−µ||2

2σ2 ds = UeµΛe
1
2
Λ2σ2

U−1 (5)

and replacing T (s) with T (µ, σ) in Eq. 3. The error is now minimized with respect
to both µ and σ. Increasing σ blurs the signal along the transformation direction given
by A = UΛU−1, allowing local minima to be escaped. In the case of translation, for
instance, this averaging over a range of transformations blurs the image along the direction
of translation. During simultaneous inference of µ and σ, images are matched first at a
coarse scale, and the match refines as the blurring of the image decreases.

The model presented above can be extended to multiple transformations by concate-
nating transformations in the following way:

Tn̄ (µ, σ) = T1 (µ1, σ1)T2 (µ2, σ2) ... =
n∏

k=1

Tk (µk, σk) (6)

Tk (µk, σk) = Uke
µkΛke

1
2Λ2

kσ2
kU−1

k (7)

where k indexes the transformation and n̄ indicates a concatenation of transformations
with indexes 1, .., n. Note that the transformations Tk (µk, σk) do not commute in general,

1This change of form enforces the restriction that A be diagonalizable. By construction, the A matrices learned with
this algorithm are diagonalizable. A large variety of transformations, including all affine transforms, can be represented
in this form.
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Fig. 1. Predictive hybrid video coder based on Lie Group transforms.

and thus the ordering of the terms in the product must be maintained. Also note that,
again due to the lack of commutativity, transformation operators concatenated in this
way may no longer form a Lie group, although they still allow a rich description of the
transformations in natural scenes.

Finally, the full model’s objective function is

E =
∑

t

∣∣∣∣x(t+1) −Tn̄ (µ, σ)x(t)
∣∣∣∣2

2
+ ηn

∑

t,k

µk

∣∣∣
∣∣∣Ake

µk
2 Akx(t)

∣∣∣
∣∣∣
2
+ ησ

∑

t,k

(σk)
2, (8)

where the final two regularization terms, described in more detail in [5], encourage the
transformations to find the most direct path between initial and final frames, and speed
convergence of the operators.

Learning of U and Λ can be performed via a variational Expectation-Maximization
strategy, where the training data consists of a set of image patches from adjacent frames
in natural video. A rescaling process is necessary to remove degeneracies between Uk

and U−1
k . A more detailed description of the optimization scheme, along with derivatives

of the energy function E, can be found in [5].

III. LEARNED LIE GROUP TRANSFORMATIONS FOR PREDICTIVE VIDEO CODING

The model described in the previous section offers an efficient way to learn statistically
important transformations that occur in natural videos. Such transforms can be beneficial
in designing the prediction step in standard hybrid video coders. The block-based motion
estimation and compensation, used in todays video coders, can be replaced by the estima-
tion of Lie group transformation coefficients, as shown in Figure 1. For each block, the
encoder finds parameters (µk, σk), k = 1, ..., n, which minimize the objective function
E,where n is the total number of considered transforms. This is done within the block
denoted as LGI, which stands for Lie Group Inference. LGT stands for the Lie Group
Transform given by x(t+1) = Tn̄(µ, σ)x(t). Since the Lie transformation coefficients (µ, σ)
are continuous, we first have to quantize them and analyze the distortion introduced by
the quantization.

A. Quantization of coefficients: distortion analysis

The total distortion between the original patch and the decoded patch is:

Dtot = ‖x(t+1) − x̂(t+1)‖2 ≤ ‖x(t+1) − x̃(t+1)‖2 + ‖x̃(t+1) − x̂(t+1)‖2 = Da + Dq, (9)



where Da is the distortion due to the approximation error in the inference process, Dq is
the distortion due to quantization of the transform coefficients µ and σ; x̂(t+1) = T̂n̄x(t)

and x̃(t+1) = Tn̄x(t). For algebraic clarity, we will develop the distortion-quantization
relationship for µ only. However, a relationship can be derived for σ2 as well by following
a nearly identical derivation. Let us denote the vector of coefficients µk, where k = 1, ..., n
represents the transformation index, as µ. Accordingly, its quantized version is denoted
as µ̂, and the vector of quantization errors is ∆µ. T̂n̄ is thus the transform using the
quantized coefficient µ̂, T̂n̄ = Tn̄(µ̂, σ). Substituting this back into Eq. 9, we get

Dq = ‖Tn̄x
(t) − T̂n̄x

(t)‖2 = ‖(Tn̄ − T̂n̄)x(t)‖2 = (x(t))
T
∆Tn̄

T∆Tn̄x
(t). (10)

Using the form of the transform given in Eq. 6, we obtain

∆Tn̄ =
n∏

k=1

Uke
µkΛke

1
2Λ2

kσ2
kU−1

k −
n∏

k=1

Uke
µ̂kΛke

1
2Λ2

kσ2
kU−1

k . (11)

Writing eµ̂kΛk as a Taylor expansion around eµkΛk , we have

eµ̂kΛk = eµkΛk + ∆µkΛke
µkΛk + ... . (12)

Since the errors ∆µk, k = 1, ..., n, are typically small, especially in medium and high
bit-rate regimes, we can approximate ∆Tn̄ using the zeroth and first order terms. We
substitute Eq. 12 back into Eq. 11, expand the product, drop the higher order terms in
∆µ, and obtain

∆Tn̄ =
n∏

k=1

Uke
µkΛke

1
2Λ2

kσ2
kU−1

k −
n∏

k=1

Uk

[
eµkΛk + ∆µkΛke

µkΛk + ...
]
e

1
2Λ2

kσ2
kU−1

k (13)

=
n∏

k=1

Tk (µk, σk) −
n∏

k=1

Tk (µk, σk) (14)

−
n∑

l=1

(
l−1∏

k=1

Tk (µk, σk)

)

Ul∆µlΛle
µlΛle

1
2Λ2

l σ2
l U−1

l

(
n∏

k=l+1

Tk (µk, σk)

)

−
n∑

l=1

n∑

m=1

...

∆Tn̄ ≈
n∑

l=1

∆µlM
l (15)

Ml = −
(

l−1∏

k=1

Tk (µk, σk)

)

UlΛle
µlΛle

1
2Λ2

l σ2
l U−1

l

(
n∏

k=l+1

Tk (µk, σk)

)

. (16)

This gives us a quadratic form for the quantization distortion Dq,

Dq ≈ ∆µTQ∆µ, (17)

where the coupling matrix Q is quadratic in x(t), i.e.

Qkl = x(t)T
(
MkT

Ml
)

x(t). (18)



IV. EXPERIMENTAL RESULTS

A. Implementation of learning Lie group transformations

Transformation models were trained on video clips extracted from BBC’s documentary
series Animal World. They can be obtained from Hans Van Hateren’s repository at
http://hlab.phys.rug.nl/vidlib. The video clips contain footage of animals dwelling in
grassland and rivers. The video contains many types of motion, including camera panning,
tracking, object motion, and occlusion.

The training data was 17 × 17 pixel image patch pairs cropped randomly from con-
secutive video frames. A 4 pixel buffer was applied during learning, meaning that the
mean squared reconstruction error (the first term in Eq. 8) was evaluated only within the
central 9 × 9 region of the images. The rest of the patch represents the search window.
Hence, the model can use information inside the buffer region to reconstruct the central
region, without penalizing reconstruction error in the buffer region. This setup is used to
provide a search region of 9× 9 pixels in the reference frame for the 9× 9 image patch.

We trained models with a number of additional operators, alongside hard-coded hor-
izontal and vertical translation operators (easily described in analytic form). We chose
to hard-code translation partly because it has been shown to account for a majority
of the transformation in natural video [10]–[12]. Additionally it allows us to make a
meaningful comparison of the proposed video coding scheme based on translations +
learned transformations against standard video prediction that uses motion estimation
based purely on translations. In a separate test we trained 15 transformations starting from
random initial conditions on the same data set. Several of those transformations learned
translation along multiple directions, reinforcing the idea that translation is a reasonable
operator to hard code. The remainder became intensity scaling, contrast scaling, and
spatially localized translation operators, as well as a few operators which defy simple
interpretation.

B. Evaluation of the proposed prediction model
To test the performance of different learned models, 2000 image patch pairs were

extracted randomly from sequences in Animal World that were not used during training.
We first evaluated the Peak-Signal to Noise Ratio (PSNR) between the second patch in a
chosen pair and its prediction from the first patch, using different prediction models: 1)
block-based motion estimation using exhaustive search with single, half and quarter pixel
accuracy; and 2) Lie group transformations with two continuous translation operators
and 1, 2, 3 and 4 learned transformation operators. Figure 2 shows the average PSNR
comparison for all these models. The continuous translation model outperforms exhaustive
search methods even at quarter pixel resolution. This is expected, since the continuous
transformation coefficients have double precision, unlike motion vectors with limited
(quarter-pixel at most) precision. It is also important to note that the PSNR increases
when the σ variable is introduced in the inference of the Lie group transformations (note
the difference between the fourth and the fifth bar in Figure 2). Recall that σ smoothes the
image patch in an operator specific fashion - in this case along the direction of translation.
It therefore allows the higher spatial frequencies in the horizontal or vertical direction to
be attenuated in the transformed patch when this will lead to a better reconstruction.

The most important observation is that the PSNR of the prediction increases as a
function of the number of transformations used for prediction. This is an important result,
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Fig. 2. PSNR of the reconstruction of 2000 image patch pairs extracted from natural video. The first 3 bars correspond
to exhaustive search rigid translation model at full pixel, half pixel and quarter pixel resolution. The rest of the 6 bars
correspond to continuous transformation models with different numbers of operators.

which shows that even though simple translations account for most of the correlations in
video, there is still a significant amount of redundancy left to exploit using more complex,
adapted models. However, we still need to evaluate the coding cost introduced by the
learned transformations, which is done in the next section.

C. Rate-distortion performance of the proposed prediction model

The coding costs for different learned models were evaluated on the first 40 frames of
the Foreman sequence. We used the structure I-P-I-P-... . The transformation coefficients
were quantized with Lloyd-Max quantizers, which were optimized for distributions of the
corresponding coefficients (σ, µ). The bound on the bit-rate for the quantized coefficients
was evaluated using the second order conditional entropy, where the quantized coefficients
were organized in a raster scan fashion. Specifically, the entropy of the current symbol
was computed conditioned on the previous symbol in the symbol stream. We did not
implement a specific entropy encoder in order to see the best case performance of all
prediction methods.

Figure 3 shows the average number of bits per pixel required to code the motion model
for a given PSNR. The PSNR is obtained by averaging over the P-frames for the first
40 frames of the Foreman sequence. The quantization for µ ranges from 2 to 8 bits
and the quantization for σ ranges from 1 to 6 bits. The rate-distortion curves represents
the outer-hull of the all combinations of these parameter settings. Therefore, these plots
correspond to the case where the strategy for bit-allocation among parameters is achieved
by exhaustive search of the parameter space.

The most striking result is that the bit cost per pixel of our analytically coded continu-
ous translation model is lower than the traditional exhaustive search motion estimation at
rates above 0.06 bits per pixel, even though our model has four parameters per block. This
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Fig. 3. The coding cost of different motion models versus the PSNR of model reconstruction. This plot is obtained
by averaging over the P-frames of the first 40 frames of Foreman.

suggests that the inferred coefficients are more consistent between neighboring blocks,
which leads to smaller second order entropy and more efficient encoding. This probably
means that the motion field defined by the inferred continuous translation coefficients
is more spatially regular, where the regularization comes from the smoothing operator
introduced in the model. The most complex models that incorporates one and two learned
transforms in additional to the translation operators (green and cyan curve) outperform
the other models at higher rates.

D. Performance of the hybrid video coder

Finally, we have evaluated the coding performance of a full hybrid video coder using
learned transformation models. The transformation model coefficients of the P-frames
are quantized and coded as described in the previous section. The DCT coefficients of
the transformation compensated residual are quantized uniformly and their coding cost
is computed with empirical entropy.

In the hybrid coding scheme, there is a trade off between the coding cost for the
motion model and the coding cost for the residual. In general, better motion models lead
to lower energy in the motion compensated residual and to lower coding cost for the
residual. On the other hand, a more complex motion model with a larger number of
coefficients is more expensive to code. Figure 5 shows the rate distortion of the first 40
frames of Foreman coding with different motion models. For each of the motion models,
we vary the number of quantization bins for µ, σ and the DCT coefficients of the residual.
The curves shows the outer hull of the rate distortion of each model. The continuous
translation model introduced in this paper outperforms the traditional subpixel exhaustive
search motion model at higher bit-rates by up to 1dB, while it performs competitively at
lower bit rates.



The coding cost increases as the motion model becomes more complex than continuous
translation (i.e., when including more learned transformations). We believe this to be
largely caused by two factors. First, the quantization based on Lloyd-Max optimization
is suboptimal because the image distortion is not equal to the coefficient distortion, as
shown in Section III-A. Second, the residue after transform compensation has different
statistics than in the case of translations only, which suggests that a different residual
encoding strategy might prove useful. Figure 4 shows the power spectrums of the residue
after applying different prediction models. Those models with additional learned operators
have less power at low frequencies, suggesting that a DCT basis may not be well suited
to them. These are important questions to address for the complete coder design, and
we believe that more advanced quantizer and encoder models will lead to even better
rate-distortion performance than the continuous translation model.

Fig. 4. The 2d power spectrum of the motion compensated residual of frame 14 of Foreman. Low frequencies lie in
the center of the image, and the DC component has been removed.

V. CONCLUSION

We have proposed a method for learning transformation operators in natural movies,
which are then exploited for removing the inter-view redundancy in a predictive video
coding scheme. The efficiency of the learned models has been evaluated with respect to
the quality of the prediction and the rate-distortion efficiency of a hybrid video coding
scheme. We have shown that the coder based on learned transformations outperforms the
standard coder based on prediction with the exhaustive search motion estimation model
at rates above 0.06 bpp. These results suggest that the proposed method has potential
for designing video coders that are able to efficiently compress data characterized by a
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wide variability of transformation structures. Likewise, learning transforms in multi-view
video data offers an interesting perspective on the problem of exploiting temporal and
inter-camera redundancy in multi-view video coding, where simple translational models
are not sufficient to model the correlation inherent to multi-view geometry.
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