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Inhibitory circuits for visual processing in thalamus
Xin Wang1, Friedrich T Sommer2 and Judith A Hirsch3
Synapses made by local interneurons dominate the intrinsic

circuitry of the mammalian visual thalamus and influence all

signals traveling from the eye to cortex. Here we draw on

physiological and computational analyses of receptive fields in

the cat’s lateral geniculate nucleus to describe how inhibition

helps to enhance selectivity for stimulus features in space and

time and to improve the efficiency of the neural code. Further, we

explore specialized synaptic attributes of relay cells and

interneurons and discuss how these might be adapted to

preserve the temporal precision of retinal spike trains and thereby

maximize the rate of information transmitted downstream.
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Introduction
Spikes traveling from retina to the thalamus excite both

relay cells, which project to cortex, and local inhibitory

interneurons at the same time. Even though relay cells in

the lateral geniculate nucleus outnumber interneurons

three to one [1], they are only sparsely interconnected

[2�]. By contrast, interneurons densely innervate relay

cells and each other [3–7]. Further, relay cells send

collaterals to the overlying thalamic reticular nucleus, a

sheet of inhibitory cells that project to the geniculate in

return [2�,8–10]. Hence all retinal information trans-

mitted to cortex is influenced by a feedforward and a

feedback inhibitory pathway [11]. Here we focus on the

role of thalamic inhibition in different aspects of visual

processing as well as the structure and synaptic physi-

ology of local inhibitory circuits. For accounts of thalamic

inhibition in sleep see [12] and in development [13,14].
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Spatial and temporal arrangement of excitation and

inhibition within the receptive field: push–pull

The receptive fields of relay cells and interneurons have

the same qualitative shape, comprising two concentrically

arranged subregions (a center and a surround) that have

the opposite preference for luminance contrast, On or Off

[15�,16�]. Further, there is a push–pull relationship (see

Glossary) between stimuli of the reverse sign within each

subfield [15�,16�,17] (Figure 1a). For example, in On

subregions, bright light excites whereas dark stimuli

inhibit, and vice versa for Off subregions (Figure 1b,

top). Moreover, simple computational models made using

the spatiotemporal receptive fields of interneurons or

relay cells suggest that responses of both types of neurons

are roughly linear [15�].

We do not wish to imply that push and pull are mirror

images of one another; they are not. The centers of the

excitatory and inhibitory receptive fields are displaced by

distances comparable to the spacing between presynaptic

On and Off center ganglion cells [16�,17,18]. Also, inter-

neurons probably have larger receptive fields than relay

cells since they pool more retinal input [19,20] and may

be fewer in number than ganglion cells [21].

Push–pull operates in time as well as space; excitation and

inhibition are recruited sequentially when luminance

contrast reverses as the image over the receptive field

changes [15�,16�,17,22] (Figure 1b, middle). There is a

variation of the standard temporal pattern of push–pull; a

population of ‘lagged’ cells whose responses involve an

inhibitory dip before excitation [23,24] (Figure 1b, bot-

tom); lagged cells might be involved in establishing

direction selectivity in cortex [25].

A universal role for push–pull in neural circuits is to

extend the dynamic range of response (Figure 1c), and

to restore linearity of response following rectification

through the synapse [26�]. In the geniculate, these actions

are supplemented by push–pull in interneurons, which

are thus able to inhibit and to disinhibit their targets [15�].

Sensitivity to visual features is enhanced by inhibition

Ideas for the value of push–pull in vision arose from studies

of retina [27], but also apply to thalamus. When Kuffler [27]

and Wiesel [28] mapped retinal receptive fields they found

that the center and surround had an antagonistic affect on

each other when illuminated together — cells responded

vigorously to discs confined to the center but poorly to a

larger stimulus that spilled into the surround. This subfield

antagonism reflects the influence of the pull in one sub-

region on the push in the other [28]. Thus, by virtue of the
www.sciencedirect.com
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Glossary

Push–pull excitation and inhibition: This term refers to an

arrangement, within an On or an Off subregion of the receptive field, in

which stimuli of the preferred contrast elicit excitation and stimuli of

the opposite contrast evoke inhibition. For example, a bright stimulus

confined to an On subregion excites whereas a dark stimulus shown in

the same place inhibits. If the bright stimulus in the On subregion is

enlarged to cover the adjacent Off subregion as well, it recruits push

and pull at the same time to produce a lesser response. This

interaction between push and pull leads to a mutually antagonist

relationship between subregions in the receptive field.

Same-sign excitation and inhibition: This term refers to an

arrangement in which a stimulus of the optimal sign and size evokes

both excitation and inhibition within a single subregion. For example, a

bright stimulus shown within an On subregion evokes both excitation

and inhibition. This term does not speak to the relative timing of the

excitation or inhibition. In lagged cells, same-sign inhibition precedes

excitation whereas it is presumably delayed relative to excitation at

the triad. Same-sign inhibition differs from subfield antagonism

because it arises within a single subregion.
geometry of the receptive field and interactions between

push–pull across subregions, ganglion cells become sensi-

tive to local contrast. These features of the receptive field

have been formalized mathematically as a difference of

Gaussians [29]. Filtering the image through this function

essentially forms the second (spatial) derivative, or Lapla-

cian, of the image, a transformation that enhances contrast

borders.

Studies using the framework of generalized linear models

to analyze retinal and thalamic spike trains are consistent

with a role for push–pull inhibition generated de novo in
Figure 1
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thalamus. [30�] (Figure 2a). The models suggest that

excitatory stimuli that extend beyond the center into

the surround recruit inhibition. This suppression can

be explained by subfield antagonism mediated through

the surrounds of (opposite-sign) local interneurons that

supply the pull (Figure 2b) and/or input from the reticular

nucleus [31]. Last, potential contributions of inhibition to

various types of gain control and adaptation [32,33] have

yet to be investigated.

Inhibition contributes to efficient coding in thalamus

Barlow considered the retinal receptive field from an

alternative vantage point, information theory [34]. From

this perspective, processes like subfield antagonism that

weaken responses to spatially uniform patterns reduce

redundant information about the stimulus and improve

the efficiency of the neural code. Barlow’s ideas have

gained increasing attention because of observations about

the statistics of natural images and about differences in

the amount of information encoded by single retinal

versus thalamic spikes.

Mathematical analyses show that visual patterns in the

environment are, themselves, highly redundant [35]. This

can be described intuitively; neighboring points in an

image often have similar intensities, forming large regions

of homogeneous contrast and, thus, extensive spatial

correlations. More formally, the structure of the visual

world has 1/f statistics, which means that the power

spectrum of a given natural image is skewed toward
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How feedforward inhibition influences thalamic output. (a) Schematic of a generalized linear model used to describe retinothalamic visual processing

[30�]. Here a general linear model with excitatory inputs is expanded to include an inhibitory pathway (dashed line), RGC (retinal ganglion cell) LGN

(lateral geniculate nucleus). (b) The inhibitory component improves the predictive power of the model when the stimulus covers both the center and

surround of the receptive field [30�]. (c) A temporal delay between excitation and inhibition increases the temporal precision of thalamic spike trains

[39�]. (d) Feedforward inhibition evoked by natural movies is able to drive relay cells between tonic (top) and burst (bottom) modes [16�] via a push–pull

mechanism.
low spatial frequencies [35,36]. Since, as above, the

receptive field essentially computes the second derivative

of the image, higher frequencies (e.g. edges) are

enhanced and redundancy in the stimulus is reduced.

As a consequence of spatial correlations and smooth move-

ment within the environment, there are also temporal

correlations in natural stimuli; luminance values at any

given point remain similar for long times [35]. For neurons

with push–pull, changes in stimulus polarity over time

elicit commensurate reversals in the sign of the synaptic

response [15�,22,26�] (Figure 1b, middle). Stimuli with

pronounced transitions from the nonpreferred to the pre-

ferred sign drive relay cells best [16�,22], presumably

because the pull readies the membrane to fire, analogous

to anode break excitation first described by Hodgkin

and Huxley [37]. This selection for biphasic stimuli
Current Opinion in Neurobiology 2011, 21:726–733 
corresponds to forming the first (temporal) derivative of

the image, thus reducing redundancy of signals with 1/f
temporal structure such as natural stimuli [38].

Recent computational analyses of thalamic spike trains

provide evidence for a second type of inhibition different

from push–pull that is evoked by optimal stimuli but is

delayed relative to excitation [39�] — delayed same-sign

inhibition (see Glossary). Since the authors did not com-

pare presynaptic and postsynaptic spike trains, it is not

clear whether this form of suppression originates in retina

[40�], thalamus or both. Like sequential push–pull,

delayed same-sign-inhibition can mediate preference

for the temporal derivative of the stimulus (Figure 2c).

Further, delayed inhibition of any sort increases response

precision by shortening the time window in which spikes

can fire [39�].
www.sciencedirect.com
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A separate line of support for efficient coding in thalamus

comes from analyses of simultaneous recordings from

ganglion and relay cells. These experiments show that

only a fraction of presynaptic impulses trigger the post-

synaptic cell, such that each thalamic action potential

contains more information than a retinal one [15�,41,42].

This process of down-sampling across the synapse

reduces redundancy in information transmitted about

slowly changing signals such as natural stimuli. In

addition to inhibition [30�,39�,43] processes such as

temporal summation [44–46] help increase the economy

of the neural code.

Natural stimuli recruit inhibition that drives the

membrane between tonic and burst firing

So far, we have only discussed synaptic contributions to

sensory integration. However, inhibition also influences

neural responses by interacting with membrane

dynamics. Relay cells fire either tonic trains or rapid

bursts of spikes. Cells fire in tonic mode when the

membrane is depolarized, as during waking. Bursts are

produced when the membrane voltage is low, as during

sleep; these events are generated by T-type calcium

channels that cannot respond to fresh excitatory input

unless de-inactivated by strong hyperpolarization [47].

Mounting evidence suggests that bursts play an active

role in vision [47,48], not only sleep, and are predictably

driven by natural stimuli [16�,49,50]. This matters

because bursts preferentially excite cortex [45,51] and

also because they can convey information separate from

that encoded by single impulses [49,52].

Intracellular studies have illustrated how moving natural

scenes drive the membrane from tonic to burst mode

[16�]. Namely, spatiotemporal correlations in the visual

environment lead to instances in which a stimulus of the

nonpreferred sign lingers over the receptive field, evoking

prolonged inhibition that de-inactivates T-channels.

When the stimulus shifts to the preferred sign, retinal

input triggers a burst (Figure 2d). Reconstruction of the

receptive fields for the inhibition and excitation evoked

by moving scenes suggests that the transitions between

firing modes rely on push–pull interactions in large part.

Specifically, the receptive fields for both excitation and

inhibition overlap and are circular, consistent with exci-

tation from retina and inhibition supplied by local inter-

neurons, for example Figure 1a.

Connections of interneurons and of relay cells

The inhibitory cells in the geniculate are unusual in many

regards; for example both their axons and dendrites form

contacts with postsynaptic targets. The axonal synapses

are made with all types of relay cells (X, Y and W) and

with interneurons [3–5]. The axonal connections can, in

principle, serve multiple purposes. They might contact

targets with the opposite selectivity for luminance con-

trast to mediate push–pull. Alternatively they might link
www.sciencedirect.com 
to cells with the same stimulus preference to supply

same-sign inhibition, such as seen in lagged cells.

Dendrodendritic contacts allow cells to communicate

even in the absence of action potentials [53�]. They often

involve triads [53�], structures in which a retinal bouton

synapses with the apposed dendrites of a relay cell and of

an interneuron that synapses onto the relay cell in turn

[53�]. Triads typically involve X cells, although dendro-

dendritic synapses onto interneurons or other types of

relay cells are present but less frequent [7,20,54]. Further,

there is evidence that collaterals of relay cells synapse in

the geniculate [55,56], sometimes through triadic

synapses [2�] where the terminal of a relay cell substitutes

for a retinal bouton; these profiles concentrate at inter-

laminar zones [2�] and might promote synchrony or

oscillations [2�,56].

Triads are unlikely to mediate push–pull since common

input yokes inhibition to excitation, but are suited for

same-sign inhibition. One might hope that comparing X

with Y or W cells would give insight into the role of triads;

however, differences among relay cells seem inherited

from retina. Also the time courses of retinogeniculate

EPSPs seem similar across relay cells in vivo [16�,44,46].

Work in vitro, however, shows that activation of a single

retinal input produces an EPSP immediately followed by

an IPSP in some cells [57], consistent with triadic or other

mechanisms of same-sign inhibition. Thus, the purpose

of triads remains unresolved, with a leading hypothesis

suggesting a role in gain control [53�]. Notably the rodent

somatosensory thalamus lacks interneurons [58]. Perhaps

this species difference can be exploited to form new

hypotheses about roles of interneurons in general and

triads in particular.

Neurons in the reticular nucleus connect with each other

via electrical [59] or conventional GABAergic synapses

[60–62] and project selectively to relay cells in a topo-

graphic fashion [8,10]. Since reticular cells have varied

preferences for the stimulus, ranging from On, On–Off to

Off, their contributions to visual processing are probably

diverse [10], but remain poorly understood. There is,

however, compelling evidence that the reticular nucleus

modulates relay cells as a function of spatial attention

[63], presumably through descending cortical pathways.

Whether attention regulates local interneurons, which

also receive cortical feedback [64,65] and other sources

of modulatory input [11], is unknown.

Patterns of synaptic inputs to relay cells and

interneurons and the transmission of information

Even though relay cells and interneurons have similar

receptive fields, recent evidence suggests that they use

different but complementary forms of synaptic integ-

ration to process retinal input during vision [15�]. The

push in relay cells is generated by series of large, peaked
Current Opinion in Neurobiology 2011, 21:726–733
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EPSPs while the pull is seamlessly graded — under

standard conditions single IPSPs are not visible. On

the contrary, the push in interneurons is smooth and

the pull is jagged, formed by trains of unitary IPSPs

(Figure 3a).

The large, sharp EPSPs originate in retina and evoke

spikes from relay cells with millisecond precision [66,67].

Simulations with conductance based models of relay cells

indicate that the shape of these EPSPs promotes the

rapid and reliable generation of thalamic spikes and thus

the ability to transmit information at fine temporal resol-

ution [15�]. The simulations further suggest that smooth

inhibition does not interfere with this tight coupling

between ganglion and relay cells. By contrast, replacing

smooth with jagged inhibition reduces the amount of
Figure 3
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information relayed to cortex across all time scales

(Figure 3b).

The graded inhibition that relay cells receive, that seems

optimal for transmitting information downstream, is

likely formed by several mechanisms. For example,

retinal input to interneurons often targets distal, electro-

nically remote dendrites [53�]. Studies in vitro show that

retinal drive activates L-type calcium currents [68,69�]
that transmit depolarization to the soma and evoke spikes

at variable delay [69�]. Also, synapses between retina and

interneurons include metabotropic glutamate receptors

that might contribute lasting excitation [70]. Thus,

EPSPs from ganglion cells might be variously blurred

by slow synaptic potentials, passive attenuation and/or

intrinsic regenerative currents, thereby decoupling the
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timing of presynaptic (retinal) and postsynaptic (inter-

neuronal) spikes. Remarkably, work completed over 40

years ago supports this idea of jittered transmission.

Cross-correlations made from spike trains of ganglion

cells and putative interneurons are broader than those

for relay cells [31]. Thus, convergent inhibitory inputs to a

relay cell [14,71,72] could arrive asynchronously and

average to form smooth pull. It is unclear how the jagged

pull in interneurons is formed. One clue is that the

frequency of the individual IPSPs matches retinal firing

rates; it is possible that they are generated by dendroden-

dritic synapses between On and Off center interneurons

[15�]. Why should the pull in interneurons retain the

high-frequency structure of retinal spike trains; perhaps

to disinhibit relay cells on the timescale of single EPSPs.

Comparison between the lateral geniculate nucleus and

cortical layer 4

In cat, thalamic afferents project to simple cells in cortex.

Like relay cells, simple cells have receptive fields built of

segregated On and Off subregions [73] with push–pull

[74,75]. Unlike the concentric arrangement in retina and

thalamus, however, cortical subfields are elongated and

lie side by side, a change in geometry that confers

selectivity to oriented contours. The circuits that con-

struct push–pull in relay cells and cortical simple cells

share commonalities. For example, the push can be

explained by feedforward drive and the pull by inter-

neurons with receptive fields opposite in sign but similar

in shape to those of their postsynaptic partners [76].

There is a salient difference between the thalamus and

cortex, however. In the cat’s cortex, the shapes of synaptic

responses recorded from excitatory and inhibitory cells

are similar, formed by graded excitation and inhibition

[76–78] (see [79,80] for review of cortical inhibition in

various species and modalities and [81,82] for studies of

rodent cortex, which seems to lack true simple cells).

While there are many subtle variations in the synaptic

physiology of excitatory and inhibitory cortical neurons

(e.g. [83]), the dramatic differences between the

responses of relay cells and neighboring interneurons

seem unique to the demands of thalamic processing.

Conclusions
This review focused on inhibition in the visual thalamus,

with the aim of integrating perspectives from compu-

tation to synaptic physiology. The center-surround struc-

ture of receptive fields in the lateral geniculate, coupled

with the push–pull arrangement of excitation and inhi-

bition within subregions extends the dynamic range of

response, enhances selectivity to luminance contrast in

space and time, and serves to reduce redundant infor-

mation about the stimulus, thereby improving the effi-

ciency of the neural code. Further, the synaptic

physiology of interneurons and relay cells is highly

specialized and operates in concert to preserve the

amount of information encoded at fine time scales and
www.sciencedirect.com 
improves the overall rate of information transmitted

downstream.
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