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The neural code that represents the world is transformed at each stage of a sensory pathway. These transformations enable downstream
neurons to recode information they receive from earlier stages. Using the retinothalamic synapse as a model system, we developed a
theoretical framework to identify stimulus features that are inherited, gained, or lost across stages. Specifically, we observed that thalamic
spikes encode novel, emergent, temporal features not conveyed by single retinal spikes. Furthermore, we found that thalamic spikes are
not only more informative than retinal ones, as expected, but also more independent. Next, we asked how thalamic spikes gain sensitivity
to the emergent features. Explicitly, we found that the emergent features are encoded by retinal spike pairs and then recoded into
independent thalamic spikes. Finally, we built a model of synaptic transmission that reproduced our observations. Thus, our results
established a link between synaptic mechanisms and the recoding of sensory information.

Introduction
The world we see is represented time and again in the hierarchical
stages of visual system (Van Essen et al., 1992). Each of these
representations is defined by the activities of neuronal popula-
tions. How neurons encode sensory information and the ways in
which neural strategies for coding change across synapses are
central problems in systems neuroscience.

We addressed these questions using the connection between
the retina and lateral geniculate nucleus (LGN) of the thalamus as
a model system for several reasons. First, it is the earliest site in
the visual pathway where sensory information is transmitted
across a synapse between spiking neurons. Second, the synapse
is experimentally accessible; spike trains of connected retinal
[retinal ganglion cells (RGCs)] and thalamic cells can be re-
corded simultaneously with extracellular (Bishop et al., 1958;
Hubel and Wiesel, 1961; Cleland et al., 1971; Kaplan and Shapley,
1984; Mastronarde, 1987; Sincich et al., 2007) or intracellular
techniques (Wang et al., 2007; Koepsell et al., 2009). Third,
neural responses in the early visual pathway are somewhat
simple and can be well characterized with standard models
(Carandini et al., 2005).

Our approach combined experiment with theory. We re-
corded from connected retinal and thalamic neurons using cell-
attached or whole-cell patch recordings and used information

theory to compare presynaptic and postsynaptic spike trains. Just
as information theory has been used to analyze the communica-
tion of messages in telephone lines, it can be used to understand
how neurons encode sensory information at single stages in the
visual system (Rieke et al., 1997; Borst and Theunissen, 1999).

To learn how information is communicated from one stage in
the hierarchy to the next, we identified differences between the
features that presynaptic and postsynaptic spikes encoded. For
this purpose, we developed a novel “joint encoding model” that
subsumed stimulus features encoded by the presynaptic and
postsynaptic neurons. Using the model, we separated thalamic
features that were merely inherited from retinal spikes from those
that emerged, or were “gained” by thalamic spikes as a result of
synaptic transmission.

Our results revealed different strategies of neural coding in
retina and thalamus and gave insight into underlying synaptic
mechanisms. Previous work had shown that information can be
conveyed by correlations (or patterns) in spike trains, in addition
to single independent spikes (Brenner et al., 2000). By estimating
the amount of information encoded in retina, we found that pairs
conveyed significantly more information than independent
spikes. Each thalamic spike not only encoded more information
than a retinal spike (Sincich et al., 2009) but, critically, encoded
information more independently. Furthermore, the joint encod-
ing model allowed us to identify specific features that were en-
coded by pairwise correlations in the retinal spike train and then
recoded into independent spikes in the thalamus. Finally, we
built a mechanistic model [using time-dependent changes in the
efficacy of retinal inputs (Usrey et al., 1998; Carandini et al., 2007;
Casti et al., 2008)] that explained our experimental observations.

In sum, our work demonstrates how a correlation code be-
tween spike pairs in an early stage of a sensory pathway can be
transformed into a more efficient (i.e., independent-spike code)
in the next stage by means of a simple synaptic mechanism.
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Materials and Methods
Recording. In vivo patch recordings, in cell-attached or whole-cell mode,
were made from adult cats anesthetized with propofol and sufenta
(Hirsch et al., 1998; Martinez et al., 2005; Wang et al., 2007) and were
digitized at 10 or 25 kHz.

Stimulation. Visual stimuli were displayed on a cathode ray tube mon-
itor with a monochrome phosphor (x� � 0.42, y� � 0.53; CIE 1931)
placed at 915 mm from the eyes; the luminance ranged from 0 to 110
cd/m 2 and the video refresh rate was 144 Hz. The stimuli were Gaussian
white noise with a mean and SD of 55 and 18.33 cd/m 2; luminance values
outside the dynamic range were truncated. The stimulus update rate was
72 or 48 Hz and typical sequences lasted �10 min. For some cases, 50 or
60 repetitions of a different stimulus sequence (10 –20 s in duration) that
had the same statistics as the original sequence was used for cross-
validation of models. The spatial arrangement of the stimulus was either
a checkerboard or a target pattern of concentric rings centered on the
receptive field (see Fig. 2 A); both stimuli yielded receptive fields with the
same temporal structure (see supplement H, available at www.jneurosci.
org as supplemental material). In addition, we often used alternating
sinusoidal gratings (Hochstein and Shapley, 1976) to classify neurons as
X or Y.

Joint relevant subspace. We used spike-triggered average and covari-
ance (STA/STC) (Schwartz et al., 2006) as well as information-
theoretic STA and STC (iSTAC) analysis (Pillow and Simoncelli,
2006) to identify the “relevant subspace” (or feature space) that drives
neural responses (for details, see supplement B, available at www.
jneurosci.org as supplemental material). Note that we use the term
“feature” in reference to the stimulus subspace rather than properties
of the neural response. We chose a 250 ms temporal window for the
spike-triggered analyses and used appropriate spatial windows for
each case.

The relevant subspaces for the retinal and thalamic neurons were
essentially one-dimensional; STA analysis could be used to recover
the relevant feature space efficiently (see supplement G, available at
www.jneurosci.org as supplemental material). The features we ob-
tained from these analyses were normalized to unity modulus. Thus,
the projection of the stimuli (which were Gaussian distributed and
had unity covariance) onto the feature subspace were Gaussian dis-
tributed with unity covariance.

To extend the relevant subspace of a single neuron to the “joint
relevant subspace” of a synaptically connected pair, we used the fol-
lowing procedure. First, we identified the relevant subspace of the
presynaptic neuron and then added the relevant filters for the
postsynaptic neuron that were orthogonalized to the presynaptic sub-
space. Note that we executed the analysis in a nested, sequential man-
ner (Pillow and Simoncelli, 2006) instead of separately (Sincich et al.,
2009) for the presynaptic and postsynaptic neurons. Using this
scheme, we were able to assess the significance of the features we
identified by bootstrap resampling.

Spatiotemporal feature analysis. The spatial and temporal components
of the relevant filters were obtained by least-squared difference factoriza-
tion. The spatial and temporal extents of visual features were computed
as the average radii weighted by filter power. Specifically, the temporal
extent is as follows:

t� �
�t� f�t��2 dt

�� f�t��2 dt
,

where f(t) is the temporal filter. And likewise, the one-dimensional spa-
tial extent is as follows:

x� �
�x� f� x��2 dx

�� f� x��2 dx
,

where f(x) is the spatial filter. For the two-dimensional checkerboard
stimulus, the spatial extent is as follows:

x� �
���x � x0�� f�x��2 d2x

��� f�x��2 d2x
,

where

x0 �
��x� f�x��2 d2x

��� f�x��2 d2x
.

Information-theoretic analysis. Information about the stimulus s con-
veyed by single spikes can be estimated using the following formula
(Brenner et al., 2000):

I�spike; s� � 	
p[s�spike]

p[s]
log2

p[s�spike]

p[s]

s .

To quantify information about particular stimulus features that single
spikes covey, we used the following formula:

IB[spike; s] � 	
p[x�spike]

p[x]
log2

p[x�spike]

p[x]

x ,

where x(t) � s(t) � B is the stimulus projection on a stimulus subspace B.
The prior p[x] was Gaussian distributed because the stimulus was

Gaussian white noise. In practice, we approximated the posterior
p[x�spike] as a Gaussian whose mean was the STA and whose covariance
was the STC. Under such approximations, the formula is simplified to
the following:

ÎB[spike; s] �
1

2ln2 � tr(�0
�1 �) � ln

���
��0�

� (� � �0)
T �0

�1 (� � �0) � N� ,

where (�0, �0) and (�, �) are the mean and covariance of the prior and
posterior, and N is the dimensionality of the relevant subspace B. The
Gaussian posterior approximation fit the RGC–LGN data well (we will
illustrate both the nonparametric estimations of distributions and the
Gaussian approximations throughout this paper). Note that, in our case,
ÎB[spike; s] is a lower bound for the single-spike information I[spike; s]
as follows:

ÎB[spike; s] � IB[spike; s] � I[spike; s] .

The first inequality holds if the prior is Gaussian (as for our experi-
ments) and the terms are equal when the posterior is also Gaussian.
The second relationship always holds because B is a subspace of the
stimulus space. We assessed the tightness of the lower bound using
methods described in supplement E (available at www.jneurosci.org
as supplemental material).

Of course, the accuracy of the estimates was limited by the amount
of data available (i.e., how densely the distributions were sampled).
We evaluated the variance of the estimation as follows. First, we as-
sessed accuracy by comparing estimates made with progressively
smaller datasets. Next, we computed the SD based on the inverse-
square-root law of the deviation as a function of the amount of data
(Brenner et al., 2000).

We estimated the information conveyed by spike pairs by treating
these as compound events. The event “pair(�) at t” is equivalent to the
coincidence of a “spike at t” and another “spike at t � �.” The spike
pair information with respect to a certain subspace B was estimated as
follows:

IB[pair(�); s] � 	
p[x1, x2�pair(�)]

p[x1, x2]
log2

p[x1, x2�pair(�)]

p[x1, x2]

x1, x2

,

where x1(t) � s(t) � B and x2(t) � s(t � �) � B were arguments of two-
dimensional probability distributions. Gaussian approximations were
also used to estimate efficiently the spike pair information. We then used
the concept of “synergy” (Brenner et al., 2000) to assess the role of pair-
wise correlations in encoding the feature space B as follows:

SynB(�) � IB[pair(�); s] � 2IB[spike(�); s]
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SynB(�)% �
SynB(�)

2IB[spike; s]

 100.

Positive synergy indicates that a spike pair conveys more information
than is encoded independently by the two component spikes. Con-
versely, negative synergy indicates that correlations between spikes intro-
duce redundancy in the neural code. Finally, zero synergy indicates that
all information is conveyed by independent spikes (higher order corre-
lations among spikes excluded). These analyses were performed at the
temporal resolution set by the stimulus update rate (for assessments of
information rates made for fine timescales, see supplement E, available at
www.jneurosci.org as supplemental material).

Model of retinothalamic transmission. One can describe retinothalamic
transmission of spike trains as a binary parsing process (each spike either
relayed or not) by making two biologically realistic assumptions. The
first assumption is that each thalamic spike is causally associated with a
single retinal spike, and the second is that the latency between the two
spikes is negligible (typically shorter than 0.5 ms by our measures). Con-
trol studies that we performed suggested that both of these assumptions
are reasonable (see supplement C, available at www.jneurosci.org as sup-

plemental material). Thus, we built models of
retinothalamic transmission as “binary parsing”
processes (see Fig. 6A), as follows. Let the retinal
spike train be denoted {ti}, and the binary “re-
layed” state {�i}. The resulting simplified model
of retinothalamic spike transmission is then a
map of {ti} to {�i}. With the additional assump-
tion that �i does not depend on its own history
{�i, �i � 1, . . .}, the output of the model {�i} is
then an instance of a stochastic variable with the
binary-transfer probability distribution as
follows:

P��i�ti, ti�1, · · ·�,

which forms the deterministic component of
the model. Note that the relayed probability
P(�i � 1�ti, ti�1, . . .) averaged over the subin-
dex i is also known as the efficacy, which is
defined as the probability that a given presyn-
aptic spike pattern {ti, ti�1, . . .} elicits a
postsynaptic spike (Usrey et al., 1998). The
transfer probability distribution can be written
as conditioned on interspike intervals
P(�i�ti�ti�1, ti�1 � ti �2, . . .).

We constructed two versions of the model.
The first, the “null” model, contained a
transfer-probability distribution that did not

depend on spike history: P��i � 1� �
r�LGN

r�RGC

and P��i � 0� � 1 �
r�LGN

r�RGC
(r�RGC and r�LGN

being the average firing rates of the presyn-
aptic and postsynaptic neurons); this essen-
tially rescales retinal firing rate to match the
postsynaptic firing rate. The second, the in-
terspike interval model, used a transfer-
probability distribution conditioned only on
the interspike interval that immediately pre-
ceded the retinal spike, P(�i�ti � ti�1); this
was empirically estimated as the efficacy of
the preceding interspike interval (see Fig.
6 B). We also evaluated second-order inter-
spike interval models P(�i�ti � ti�1, ti�1 �
ti�2) for a control study (results not shown).
Both models were cross-validated.

Results
Our sample includes 26 retinal and tha-
lamic neuronal pairs in 12 adult cats; all

records were obtained by using patch recordings in cell-attached
or whole-cell mode (Wang et al., 2007). Figure 1A shows an
example of a cell-attached recording from an X-cell in the LGN.
The trace includes two classes of stereotyped events, action potentials
and “S-potentials,” extracellularly recorded retinogeniculate EPSPs
(Hubel and Wiesel, 1961; Bishop et al., 1962; Kaplan and Shapley,
1984). By using a custom method to sort these events (Wang et al.,
2007), we were able to recover the spike trains of the thalamic relay
cell and the presynaptic RGC (Fig. 1B).

The joint encoding model
Variations of the linear-nonlinear (LN) model (Carandini et al.,
2005) are often used to characterize the encoding of sensory in-
formation in the early visual pathway. The linear components of
the model are filters that map the high-dimensional spatiotem-
poral stimulus onto the low-dimensional subspace to which a
neuron is sensitive (in essence, the receptive field). This subspace
is usually referred to as the “feature space” or the “relevant subspace”
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Figure 1. Identification of the joint relevant subspace across the retinothalamic synapse. A, “Cell-attached” recording from the
LGN and the detected retinal (blue) and thalamic (red) spike trains. B, Clusters of sorted retinal and thalamic spikes are discrete
from each other and noise. C, Schematic diagrams of separate linear-nonlinear-Poisson encoding models for RGC and LGN neurons.
D, A diagram of the joint feature space of the retinal and thalamic neurons with presynaptic (solid blue), postsynaptic (solid red),
gained (dashed red), and lost (dashed blue) features represented as vectors. E, A schematic diagram of the joint encoding model
and its use of the joint relevant subspace of both RGC and LGN neurons. F, Joint feature space for an X-cell pair; the presynaptic and
postsynaptic relevant subspaces are both one-dimensional. The raw (black), RGC-spike-triggered (blue), and LGN-spike-triggered
(red) stimulus ensembles are illustrated as scatterplots and marginal histograms (above and right); the ovals and smooth lines
represent the Gaussian approximations of the distributions. The luminance values are dimensionless, unity Gaussian distributions.
Conventions here apply to all remaining figures.
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(Agüera y Arcas and Fairhall, 2003;
Sharpee et al., 2004; Bialek and de Ruyter
van Steveninck, 2005). Furthermore, the
nonlinear components of the model de-
termine how neural responses are gener-
ated from the output of the filters.

If one wanted to explore neural coding
across a retinothalamic synapse, it would
seem straightforward to compare individual
models for the presynaptic (RGC) and
the postsynaptic (LGN) neurons (Fig. 1C).
However, each single model treats the pre-
synaptic and postsynaptic feature space
separately. Thus, this strategy fails to de-
scribe how features are transformed across
the synapse. Rather, it is necessary to use a
common feature space to explore how neu-
rons on both sides of the synapse process
specific features. Therefore, we developed a
novel joint encoding model whose linear
filters subsume the feature spaces of the pre-
synaptic and postsynaptic neuron. We sche-
matize the presynaptic and postsynaptic
feature spaces as vectors (solid blue and
solid red, respectively) in Figure 1D. The
joint relevant subspace is the plane spanned
by the presynaptic and postsynaptic sub-
spaces (Fig. 1D); it has higher dimensions
than either the presynaptic or the postsyn-
aptic feature spaces unless they are identical.
Moreover, the orthogonal complements of
the presynaptic and postsynaptic subspaces
(Fig. 1D, dashed lines) identify the features
that emerge, or are “gained,” and those that
vanish, or are “lost,” across the synapse.

The joint model can be built with any set
of linear filters that form a basis of the joint
relevant subspace. In practice, we used the
presynaptic and the gained feature (Fig. 1E).
We obtained these filters from the simulta-
neously recorded retinal and thalamic spike
trains by using conventional spike-triggered
average/covariance (Schwartz et al., 2006)
in addition to information-theoretic ap-
proaches (Pillow and Simoncelli, 2006)
(for details, see supplement B, available at www.jneurosci.org as
supplemental material). In our case, the presynaptic and postsyn-
aptic feature spaces were basically one-dimensional and were not
identical; thus, they formed a two-dimensional joint feature
space. Figure 1F depicts the distributions of the presynaptic and
postsynaptic spike-triggered stimulus ensembles in the joint-
encoding model for an X-cell pair. The arrows mark the presynaptic,
postsynaptic, gained, and lost features of the subspace. Note that the
distributions of the presynaptic and postsynaptic spike-triggered
stimulus ensembles are significantly different from each other (blue
vs red), suggesting that the feature sensitivity within the joint rele-
vant subspace is altered across the retinothalamic synapse.

Temporal, but not spatial, features emerge across the
retinothalamic synapse
Next, we quantified the difference between the visual features
encoded by retinal versus thalamic spikes. We used two types of
spatiotemporal Gaussian noise patterns as stimuli (Fig. 2A); these

were the commonly used checkerboard or a target pattern that
was centered on the receptive field (see Materials and Methods).
The presynaptic and gained features of the X-cell pair in Figure
1A are illustrated in Figure 2B (the stimulus was the target pattern).
As for all retinothalamic cell pairs, both the presynaptic and the
gained features were mostly space–time separable (Jones and
Palmer, 1987; Wolfe and Palmer, 1998); the separated spatial and
temporal components (lines plotted in Fig. 2B) accounted for
89 � 7% (for the presynaptic) and 72 � 14% (for the gained) of
total variance (n � 26). [The residual variance might be ac-
counted for, in part, by the modest space–time inseparable com-
ponent of the receptive field (e.g., the slight delay of the surround
relative to the center) and noise.]

The main differences between the retinal and thalamic fea-
tures were temporal rather than spatial, as follows. Qualitatively,
the presynaptic and the gained features resembled each other in
space but not time (Fig. 2B). Quantitatively, the spatial features
were very similar, whereas the temporal ones were nearly orthog-
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onal, as measured by Pearson’s r 2 (Fig. 2C). The features differed
not only in shape but also in size, or extent [Fig. 2D,E, shows data
for the population (n � 26)]. The spatial and temporal extents
(see Materials and Methods) of the presynaptic and gained fea-
tures are depicted as plots of cumulative energy over time, scaled
so that the extents for the presynaptic features equaled 1. There
was little change in the spatial extents of the two features, across
the synapse (Fig. 2D); by contrast, the temporal extents changed
significantly (Fig. 2E). Importantly, the cumulative energy
stretched farther back in time for the gained than for the presyn-

aptic features, which suggests that tha-
lamic spikes are more sensitive to the
history of the stimulus than are retinal
ones. In addition, the variance in tempo-
ral extent was much higher for the gained
than for the presynaptic feature (Fig. 2G).
These results held for both the X and Y
pathways. Thus, the retinothalamic syn-
apse seems to create temporal diversity in
the thalamus.

Specific stimulus features can be
conveyed by thalamic and retinal spikes
with more or with less efficiency
So far, we have described the differences
between visual features that are repre-
sented on either side of the retinothalamic
synapse. Next, we asked how much infor-
mation each retinal or thalamic spike en-
coded about particular stimulus features:
the larger the amount of information that
a single spike conveys about a given fea-
ture, the greater the efficiency of the code
for that feature.

By using an LN encoding model fitted
to the data, we established a lower bound
on the amount of information conveyed
by single spikes (see Materials and Meth-
ods). Then, using the joint-encoding
model, we estimated the total information
about the entire relevant subspace that
single spikes encoded; this analysis was
done for all RGC–LGN pairs (Fig. 3A).
Consistent with a recent study (Sincich et
al., 2009; Uglesich et al., 2009), single
spikes in the thalamus were more infor-
mative than those in the retina.

We then compared the amounts of in-
formation that retinal and thalamic spikes
conveyed about specific features in the
joint relevant subspace. We illustrate the
result of the analysis with an RGC–LGN
X-cell pair that we will continue to use as
an example in the remaining figures. The
two-dimensional joint subspace for the
example pair is depicted in Figure 3B
(same as in Fig. 1F). Here, each direction
represents a distinct stimulus feature, as
illustrated by eight example features (only
the temporal components are plotted
since the spatial were nearly identical).
The efficiency with which the presynaptic
and the postsynaptic spikes encoded these

stimulus features is displayed in Figure 3C as a polar plot of the
amount of information each spike conveyed. Although, on aver-
age, each thalamic spike was more informative about the whole
subspace than a retinal spike (thick circles in pale blue and red),
the relative information about specific features differed (blue and
red dumbbell-shaped curves). For some features (Fig. 3C, un-
shaded sectors), the postsynaptic spike was more informative,
whereas for other features (Fig. 3C, gray sectors), the presynaptic
spike was more informative. Finally, we compared the amount of
information encoded by retinal and thalamic spikes for four
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pale pink and blue circles, which mark the single-spike information about the total joint feature space. Last, the gray sectors
indicate the subset of features about which a thalamic spike conveyed less information that a retinal one. D, Marginal distributions
of the raw, RGC-spike-triggered and LGN-spike-triggered stimulus ensembles along the presynaptic, gained, postsynaptic, and lost
features. E, The presynaptic, gained, postsynaptic, and lost temporal features. F, The presynaptic and postsynaptic single-spike
information about the presynaptic, gained, postsynaptic, and lost features; the horizontal lines mark the information for the joint
feature space.
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characteristic features: presynaptic, postsynaptic, gained, and lost
(Fig. 3E). Marginal distributions of the raw, presynaptic, and
postsynaptic spike-triggered stimulus ensembles along these fea-
tures are plotted in Figure 3D; the more the spike-triggered dis-
tributions (colored) differ from the raw stimulus distribution
(black), the more information is conveyed by spike rate. The
information that the presynaptic and postsynaptic spikes convey
about each of these four features is quantified in Figure 3F. The
average thalamic action potential was more informative about
the presynaptic feature than the average retinal spike, suggesting
a thalamic refinement of the retinal code. In addition, the tha-
lamic spike encoded information about the gained feature,
whereas the retinal spike did not, revealing a marked change in
feature selectivity across the synapse.

Even though our analysis suggests that single spikes in the
thalamus convey more information than those in the retina, this
improved efficiency did not necessarily hold for all encoded fea-
tures. Rather, some features were encoded more efficiently in the
thalamus than in the retina and others less. We next explore the
mechanisms by which the thalamic spikes become more infor-
mative about certain features, such as the gained feature.

Thalamic spikes encode information more independently
than retinal spikes
Thus far, we have described the efficiency with which individual
spikes on either side of the retinothalamic synapse encode visual
information. We now move forward to quantify information that
is encoded in temporal patterns of spikes (Brenner et al., 2000).
Correlated activity, such as spike pairs, can convey stimulus in-
formation that is not encoded by single spikes. To explore the
possibility of a correlation code in the retina or the LGN, we
estimated the specific information about the joint relevant sub-
space transmitted by pairs of spikes with various interspike times.
We also quantified the corresponding synergy (see Materials and
Methods), a metric that addresses how independently each spike
in a pair encodes information. For this type of analysis, a spike
pair is defined as two spikes with a specific temporal offset, re-
gardless of other spikes occurring before, after, or in between
(Brenner et al., 2000). This temporal offset is named interspike
time in contrast to the term interspike interval, a term often to
name the delay between two adjacent successive spikes.

Synergy is zero if the spikes encode information indepen-
dently, whereas positive and negative synergy indicates cooper-
ativity or redundancy of the pair code, respectively. The
percentage of synergy as a function of interspike time for the
sample cell pair is shown in Figure 4A. Presynaptic spikes with
short interspike times showed significantly positive synergy,
whereas the postsynaptic synergy did not depart from zero. This
suggests that the thalamic spikes encode information about the
joint feature space independently, whereas the retinal ones are
cooperative.

To compare presynaptic versus postsynaptic synergy directly
for all cell pairs, we plotted the thalamic against the retinal syn-
ergy at different (color-coded) interspike times (Fig. 4B). If the
synergy had been the same for the retinal and thalamic spike
trains, the points would have fallen along the diagonal. However,
many points clustered near or along the horizontal axis, indicat-
ing that the postsynaptic synergy was essentially zero, that is,
thalamic spikes were independent. By contrast, the presynaptic
synergy was often positive, that is, the retinal spikes were syner-
gistic. We also display the presynaptic and postsynaptic synergy
as a function of interspike time separately, for every RGC and
relay cell (Fig. 4C,D, gray lines, respectively), with the means and

SDs overlaid as a thick blue (for RGC) or red (for LGN) line. Like
the example depicted in Figure 4A, nearly all retinal spike trains
had positive synergy for short interspike times; thalamic spike
trains, however, had synergy near zero. In aggregate, these results
suggest that spikes in the thalamus encode the joint relevant sub-
space more independently than do those in the retina.

The retinothalamic synapse transforms a correlation code to a
single-spike code
The previous analysis showed that synergistic encoding of infor-
mation by correlation between spikes is more prominent in reti-
nal than in thalamic spike trains. This observation suggests that
there is a channel through which information about the gained
feature is transmitted across the retinothalamic synapse. Specifi-
cally, we tested the hypothesis that the thalamus is able to extract
information about the gained feature from correlations between
retinal spikes, even though such information is not conveyed by
single retinal spikes (Fig. 3C).

To test this hypothesis, we estimated how much information
pairwise correlations between retinal spikes encoded about specific
features (Fig. 5A). For most of the cell pairs, we found significant
positive synergy for both the presynaptic and the gained feature. In
particular, the synergy for the gained feature was positive at particu-
lar interspike times (Fig. 5A, middle). The synergy for a control,
“irrelevant” feature was not significant (Fig. 5A, right); this feature
was randomly generated and forced to be orthogonal to the relevant
subspace (Fig. 5B, inset, right). Furthermore, plots of the amount of
information conveyed by single (gray lines) and paired (blue, red
and orange lines) retinal spikes (Fig. 5B) show that pairs with short
interspike times convey significant amounts of information about
the gained feature, whereas single spikes convey none.

This finding is also reflected by the marginal distributions of
the raw, retinal and thalamic spike-triggered stimulus ensembles
and the retinal spike pair-triggered ensembles, illustrated in Fig-
ure 5C (similar to Figs. 1F, 3D) and Figure 5D, respectively. The
distributions of the retinal (single) spike-triggered ensemble and
the raw stimulus ensemble were identical with each other when
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projected onto the gained feature (Fig. 5C, middle). However, the
distribution of the retinal spike pair-triggered ensemble (for in-
terspike times between 0 and 50 ms) differed significantly from
that of the raw ensemble when projected on the gained feature
(Fig. 5D, middle). Thus, retinal ganglion cells indeed encode in-
formation about the gained feature, but in pairwise correlations
rather than single, independent spikes.

Paired-spike enhancement as a mechanism for
retinothalamic recoding
What synaptic processes could explain how information available
in pairwise correlations between retinal spikes might be read out
and recoded as single spikes in the thalamus? Past work points to
the mechanism of “paired-spike enhancement” (Usrey et al.,
1998). This term describes the experimental observation that
short interspike intervals in the presynaptic spike train increase
the efficacy of synaptic transmission (Usrey et al., 1998), pre-

sumably as the result of temporal summa-
tion of retinogeniculate EPSPs (Carandini
et al., 2007; Casti et al., 2008). The efficacy
is defined as the fraction of presynaptic
spikes that are relayed by the postsynaptic
neuron.

We built mechanistic models to deter-
mine whether paired-spike enhancement
could account for recoding at the reti-
nothalamic synapse. To build the models,
we assumed that transmission across the
retinothalamic synapse falls into three
conceptual categories (Levine and Cleland,
2001): (1) retinal spikes that fail to be
relayed, (2) retinal spikes that are success-
fully relayed, and (3) anonymous tha-
lamic spikes without a retinal trigger. We
disregarded the third case (see controls in
supplement C, available at www.jneurosci.
org as supplemental material) because
there are very few anonymous spikes (Sin-
cich et al., 2007); typically, these are pro-
duced during bursts (Wang et al., 2007),
which occur reliably but rarely during vi-
sion (Guido and Weyand, 1995; Usrey et
al., 1999) and are better driven by natural-
istic stimuli than by noise (Lesica and
Stanley, 2004; Denning and Reinagel,
2005). Thus, we were able to model trans-
mission as a binary selection (i.e., relayed
or not) of the retinal spike train (Fig. 6A)
(for details, see Materials and Methods).

We used two models to simulate syn-
aptic transmission, the “null” model and
the interspike interval model. In the null
model, the relayed retinal spikes are ran-
domly selected based on the efficacy of
single spikes. By contrast, the interspike
interval model used the efficacy of the in-
terval between preceding spikes, as illus-
trated the sample cell pair in Figure 6B
(see Materials and Methods).

As expected, the interspike interval
model matched the actual instantaneous
firing rate better than the null model did
(example in Fig. 6C,D). Surprisingly, this

model, despite its simplicity, was also able to reproduce three of
our major observations. By contrast, the null model predicted
none. The observations are as follows: (1) the thalamic spike
became more selective to the presynaptic feature than the retinal
spike and developed selectivity to the gained feature (compare
Fig. 6E,F with Figs. 1F, 3C); (2) thalamic spikes were more in-
formative than the retinal impulses (compare Fig. 6F with Fig.
3C); (3) thalamic spikes with short interspike times encoded in-
formation more independently than retinal action potentials
(compare Fig. 6G with Fig. 5A, bottom).

The observation that the interspike interval model alone was
able to describe the experimental findings held for our dataset.
Only this model was able to reproduce the increase in the infor-
mation content of each postsynaptic spike (Fig. 7A) [albeit the
increase in information the model achieved was smaller than that
observed empirically (Fig. 7B)]. The interspike interval model
also predicted the enhanced selectivity to the presynaptic feature
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precisely (Fig. 7C) and captured the emer-
gent selectivity to the gained feature in
large measure (Fig. 7D) (for reasons that
might explain the quantitative disparity
between modeled and real results, see Dis-
cussion). Last, the interspike interval
model correctly predicted that the synergy
of thalamic spike pairs is near zero for all
interspike times, whereas the null model
did not (Fig. 7E,F). Thus, our results sug-
gest that paired-spike enhancement can
explain recoding across the retinotha-
lamic synapse.

Discussion
Here, we addressed the basic question of
how the representation of a stimulus
changes across a synapse by recording
from connected retinal and thalamic neu-
rons during vision. First, we used a novel
computational approach that permitted
identification of visual features that tha-
lamic spikes detect but that presynaptic
retinal spikes do not. We then asked how
the thalamus gained selectivity to these
emergent features by assessing informa-
tion encoded by temporal correlations
of retinal spikes rather than single action
potentials. This analysis revealed that
the gained or emergent features were
conveyed by pairwise correlations within
retinal spike trains. Finally, we used com-
putational models to show how the mech-
anism of paired-spike facilitation (or
enhancement) could explain the transfor-
mation from a pairwise to a single spike
code. Our work provides a first biological
example of the transformation of a corre-
lation code into an independent code
across a synapse through which sensory
information flows from the periphery to
the brain.

Resolving visual features encoded by
synaptically connected neurons
Classical linear-nonlinear models provide
a means to identify the particular features
of the stimulus that a single neuron en-
codes (Carandini et al., 2005). Two linear-
nonlinear models can be used to describe
separately the features encoded by two
different neurons (Sincich et al., 2009).
However, if one wants to understand how
information about various features prop-
agates from one cell to the next—which
features are inherited, gained, or lost—a
single model that encompasses the re-
sponses of both neurons is needed. Thus,
we built a linear-nonlinear joint encoding
model that subsumes the features (rele-
vant subspaces) that the presynaptic and
postsynaptic spikes encode (see Materials
and Methods). This framework revealed
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that thalamic neurons inherited selectivity for the spatial features
encoded by their retinal inputs, but gained sensitivity to different
temporal features, consistent with recent work (Sincich et al.,
2009).

Comparing the efficiency with which spikes encode
information in the retina and thalamus
We compared how efficiently thalamic and retinal spikes en-
coded visual information in general as well as with respect to
specific features. For the general case, we estimated the mutual
information between single or paired spikes and the stimulus
(Brenner et al., 2000). The results showed that relay cells encode
visual information more efficiently and more independently than
do their retinal inputs. That is, each thalamic action potential
transmitted more information about the stimulus than each ret-
inal impulse, consistent with previous work (Sincich et al., 2009;
Uglesich et al., 2009). Moreover, in thalamus, each spike in a pair
encoded information independently, whereas in retina spike
pairs encoded more information than two separate spikes.

Critically, our joint encoding model allowed us to use infor-
mation theory to explore differences in the efficiency of the neu-
ral code with respect to individual features across the synapse.
The most dramatic difference in efficiency was for the gained
features that emerged in the geniculate. Specifically, thalamic
neurons transmitted a substantial amount of information about
these features, whereas their retinal inputs conveyed almost
none. Otherwise, remaining features were encoded either with
greater or lesser efficiency in thalamus than retina.

From a pairwise correlation code to an independent
spike code
How do retinal firing patterns transmit information about the
emergent (gained) features that single thalamic spikes convey?
Since retinal spikes encoded the relevant features synergistically,
we hypothesized that information about the gained feature might
be embedded in the structure of presynaptic firing patterns. As
predicted, we found that information about the emergent tha-
lamic features was encoded by pairwise correlations between ret-
inal impulses.

These results have bearing on the theoretical limit that the
“data processing inequality” (Cover and Thomas, 1991) imposes
on the amount of information per unit time that can be transmit-
ted across a synapse. It had been suggested that this limit is set by
the total amount of information the presynaptic neuron trans-
mits using single spikes (Sincich et al., 2009). However, if infor-
mation in correlations within the presynaptic spike train were
recoded postsynaptically as independent spikes, then the rate of
information transmitted by those postsynaptic impulses could
exceed that coded solely by independent presynaptic spikes with-
out violating the data processing inequality (see supplements D,
F, available at www.jneurosci.org as supplemental material).

Experimental caveats
Three main techniques are used to record simultaneously from
synaptically coupled neurons in retina and thalamus, each with
advantages and disadvantages. One approach involves cross-
correlation analysis of spikes recorded with separate electrodes
for retina and thalamus (Usrey et al., 1998). We adopted the
remaining methods; these use a single electrode to record retinal
inputs and thalamic spikes. One, an extracellular technique, de-
tects retinogeniculate EPSPs (“S-potentials”) large enough to be
sensed near the surface of the relay cell (Bishop et al., 1958, 1962;
Hubel and Wiesel, 1961; Kaplan and Shapley, 1984; Sincich et al.,
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2007, 2009). The other method, intracellular recording (Wang et
al., 2007), reveals additional inputs too small to generate “S-
potentials.” Unlike dual electrode recording, the single electrode
methods permit selection of the dominant retinal input and do
not rely on statistical inference to determine connectivity. How-
ever, single electrode recordings share a disadvantage. Since all
events are mixed in one signal, spikes might occlude the trigger-
ing EPSPs and seem to arise from an anonymous source. To ask
whether masked EPSPs could influence our result, we compared
results using the retinal train we detected to one in which an EPSP
was added for each anonymous spike (see supplement A, avail-
able at www.jneurosci.org as supplemental material). Both sets of
results were the same.

Mechanistic models of retinothalamic processing
Past work used computational models to show how physiological
processes, such as postsynaptic depression (Goldman et al.,
2002), can remove temporal correlations from the neural code.
To explore how a correlation code might be transformed to a
single spike code, we built a simple model based on a mechanism
that is important for relaying spikes across the synapse (Usrey et
al., 1998; Carandini et al., 2007; Casti et al., 2008). The mecha-
nism is paired-spike enhancement (as the interval between two
inputs shortens, the probability of evoking a postsynaptic spike
increases). The model reproduced our main results. Specifically,
the model captured the conversion of a correlation code in retina
to an independent code in thalamus for the gained feature, pre-
served the features that thalamus inherited from retina, and ac-
counted for the increase in the efficiency of thalamic spikes. Thus,
a simple mechanism was able to account for our main results.
Still, the amount of information about the gained feature the
model predicted was less than the actual, even if higher order
statistics of retinal spike trains were taken into account. The per-
formance of the model might be improved by including addi-
tional biological components like cortical feedback, additional
retinal inputs, or local inhibition. The first two options seem the
least plausible of the three. Current evidence does not support a
strong role for cortical feedback; ablating visual cortex does not
seem to influence size of thalamic receptive fields (Cudeiro and
Sillito, 1996), although it does affect spike timing (Wörgötter et
al., 1998). Also, the gained feature is temporal not spatial, so
undetected retinal inputs probably cannot explain the difference
between the simulated and actual results, as follows. If the sensi-
tivity to the gained feature did not result from retinothalamic
processing per se, but reflected input from additional retinal in-
puts that were not detected, then spatial features should be trans-
formed in thalamus. This is because the receptive fields of
neighboring ganglion cells are displaced (Wässle et al., 1981;
Peichl and Wässle, 1983) (a case in which we identified spike
trains from two ganglion cells supports this assumption; see sup-
plement A, available at www.jneurosci.org as supplemental ma-
terial). By contrast, previous theoretical studies support a role for
local inhibition; these suggest that intrathalamic inhibition influ-
ences the temporal precision of thalamic responses (Butts et al.,
2007) and helps encode visual information (Babadi et al., 2007).

Functional roles for emergent temporal features in
the thalamus
Numerous studies have shown that thalamic responses vary
widely and often outlast retinal responses by long times (Mastro-
narde, 1987; Wolfe and Palmer, 1998). This widespread distribu-
tion of spike latency with respect to the stimulus is thought to
serve different functional roles. For example, a leading model of

direction selectivity in cortex depends on convergent input from
relay cells with staggered timings (Wolfe and Palmer, 1998). Our
results suggest that the recoding of visual features by means of
paired-spike enhancement at the retinogeniculate synapse might
contribute to temporal diversity in thalamus.

Recoding of sensory representations
The representation of sensory information is continuously trans-
formed by neural circuits. Past studies of the somatosensory sys-
tem (Ahissar and Arieli, 2001; Arabzadeh et al., 2006) had
suggested that temporal patterns of firing in the periphery might
be transformed to rate codes at later stages of processing. To our
knowledge, our work provides the first biological example of how
information about a sensory feature is encoded by temporal cor-
relations in the presynaptic spike train and then recoded (with
enhanced efficiency) by independent postsynaptic spikes. This
transition from correlation to rate coding might be iterated
downstream in the cortex, continuing to increase the efficiency
and independence of the neural code. We hope that our approach
of using a model that combines presynaptic and postsynaptic
encoding will be useful for exploring diverse regions of the brain.
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