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Learning Joint Intensity-Depth
Sparse Representations

Ivana Tošić and Sarah Drewes

Abstract— This paper presents a method for learning over-
complete dictionaries of atoms composed of two modalities that
describe a 3D scene: 1) image intensity and 2) scene depth.
We propose a novel joint basis pursuit (JBP) algorithm that
finds related sparse features in two modalities using conic
programming and we integrate it into a two-step dictionary
learning algorithm. The JBP differs from related convex algo-
rithms because it finds joint sparsity models with different atoms
and different coefficient values for intensity and depth. This is
crucial for recovering generative models where the same sparse
underlying causes (3D features) give rise to different signals
(intensity and depth). We give a bound for recovery error of
sparse coefficients obtained by JBP, and show numerically that
JBP is superior to the group lasso algorithm. When applied to
the Middlebury depth-intensity database, our learning algorithm
converges to a set of related features, such as pairs of depth and
intensity edges or image textures and depth slants. Finally, we
show that JBP outperforms state of the art methods on depth
inpainting for time-of-flight and Microsoft Kinect 3D data.

Index Terms— Sparse approximations, dictionary learning,
hybrid image-depth sensors.

I. INTRODUCTION

HYBRID image-depth sensors have recently gained a lot
of popularity in many vision applications. Time of flight

cameras [1], [2] provide real-time depth maps at moderate
spatial resolutions, aligned with the image data of the same
scene. Microsoft Kinect [3] also provides real-time depth maps
that can be registered with color data in order to provide
3D scene representation. Since captured images and depth data
are caused by the presence of same objects in a 3D scene,
they represent two modalities of the same phenomena and
are thus correlated. This correlation can be advantageously
used for denoising corrupted or inpainting missing information
in captured depth maps. Such algorithms are of significant
importance to technologies relying on image-depth sensors for
3D scene reconstruction or visualization [3], [4], where depth
maps are usually noisy, unreliable or of poor spatial resolution.
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Solving inverse problems such as denoising or inpainting
usually involves using prior information about data. Sparse pri-
ors over coefficients in learned linear generative models have
been recently applied to these problems with large success
[5]–[7]. A similar approach has been proposed for learn-
ing sparse models of depth only, showing state-of-the-art
performance in depth map denoising and offering a gen-
eral tool for improving existing depth estimation algo-
rithms [8]. However, learning sparse generative models for
joint representation of depth and intensity images has not
been addressed yet. Correlation between intensity and depth
has been exploited for a long time in computer vision
tasks such as depth from stereo [9]. Unlike most of these
approaches that use hand designed priors, such as rela-
tion of depth and image smoothness, here we try to learn
such features from the data. Learning such models from
natural 3D data is of great importance for many applica-
tions involving 3D scene reconstruction, representation and
compression.

This paper proposes a method for learning joint depth
and intensity sparse generative models. Each of these two
modalities is represented using overcomplete linear decom-
positions, resulting in two sets of coefficients. These two
sets are coupled via a set of hidden variables, where each
variable multiplies exactly one coefficient in each modality.
Consequently, imposing a sparse prior on this set of coupling
variables results in a common sparse support for intensity and
depth. Each of these hidden variables can be interpreted as a
presence of a depth-intensity feature pair arising from the same
underlying cause in a 3D scene. To infer these hidden variables
under a sparse prior, we propose a convex, second order cone
program named Joint Basis Pursuit (JBP). Compared to Group
Lasso (GL) [10], [11], which is commonly used for coupling
sparse variables, JBP gives significantly smaller coefficient
recovery error. In addition, we bound theoretically this error
by exploiting the restricted isometry property (RIP) [12] of
the model. Finally, we propose an intensity-depth dictionary
learning algorithm based on the new model and JBP. We show
its superiority to GL in model recovery experiments using
synthetic data, as well as in inpainting experiments using real
time-of-flight and Kinect 3D data.

We first explain in Section II why existing models are not
sufficient for intensity-depth representation. Section III intro-
duces the proposed intensity-depth generative model. Inference
of its hidden variables is achieved via the new JBP algorithm
presented in Section IV, while learning of model parameters
is explained in Section V. Section VI gives relations of the
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Fig. 1. Examples of two typical image-depth features in 3D scenes.
(a) Example 1: 3D edge, (b) Example 2: slanted texture.

proposed JBP to prior art. Experimental results are presented
in Section VII.

II. WHY AREN’T EXISTING MODELS ENOUGH?

To model the joint sparsity in intensity and depth, one
might think that simple, existing models would suffice. For
example, an intuitive approach would be to simply merge
depth and image pixels into one array of pixels. If we denote
the vectorized form of the intensity image as yI and depth
image as yD, both of length L, this “merged” model can be
written as: [

yI

yD

]
2L×1

=
[

�I

�D

]
2L×N

· c

where intensity and depth are assumed to be sparse in
dictionaries �I , resp. �D both of size L × N . The sparse
vector c of length N would then couple sparse patterns in
intensity and depth, i.e., couple intensity and depth atoms in
pairs. However, since the vector of coefficients c is common,
intensity and depth atoms within a pair will be multiplied
by the same value. Let us now look at two simple synthetic
examples of 3D scenes whose intensity and depth images are
shown in Fig. 1. The first example is a 3D edge and the
second is a textured pattern on a slanted surface. These are
two common intensity-depth features in real scenes. Since
it has the flexibility of using different atoms for intensity
and depth, the merged model will be able to represent both
features. However, since intensity and depth coefficients have
equal values, variability in magnitude between intensity and
depth would have to be represented by different atom pairs,
leading to a combinatorial explosion in dictionary size.

Another model that has been widely used in literature for
representing correlated signals is the joint sparsity model,
where signals share the same sparse support in � of size L×N ,
but with different coefficients:[

yI yD
]

L×2
= �L×N · [a b]N×2 , supp(a) = supp(b),

where supp denotes the sparse support. Therefore, the property
of this model is that signals are represented using the same
atoms multiplied by different coefficients. Obviously, the joint
sparsity model would be able to represent the intensity-depth
edge in Fig. 1 using a piecewise constant atom and different
coefficients for intensity and depth. However, in the slanted
texture example, because the depth image is linear and the
intensity is a chirp, no atom can model both. The joint sparsity
model would then have to decouple these two features in
different atoms, which is suboptimal for representing slanted
textures.

Fig. 2. Graphical representation of the proposed intensity-depth generative
model.

It becomes clear that we need a model that allows joint
representation with different atoms and different coefficients,
but with a common sparse support (the pattern of non-zero
coefficients needs to be the same). We introduce such a model
in the next section.

III. INTENSITY-DEPTH GENERATIVE MODEL

Let us first set the notation rules. Throughout the rest of
the paper, vectors are denoted with bold lower case letters,
matrices with bold upper case letters. The �p-norm is denoted
as ‖ · ‖p (for any p ∈ R+) and Frobenius norm as ‖ · ‖F .
Letters I, D in superscripts refer to intensity and depth,
respectively. Sets are represented with calligraphic fonts and
| · | denotes the cardinality of a set. Column-wise and row-wise
concatenations of vectors a and b are denoted as [a b] and
[a; b], respectively.

Graphical representation of the proposed joint depth-
intensity generative model is shown in Fig. 2. Intensity
image yI and depth image yD (in vectorized forms) are
assumed to be sparse in dictionaries �I , resp. �D , i.e., they are
represented as linear combinations of dictionary atoms {φ I

i }i∈I
and {φD

i }i∈I , resp. :

yI = �I a + ηI =
∑
i∈I0

φ I
i ai + ηI

yD = �Db + ηD =
∑
i∈I0

φD
i bi + ηD, (1)

where vectors a and b have a small number of non-zero
elements and ηI and ηD represent noise vectors. I0 is the
set of indexes identifying the columns (i.e., atoms) of �I and
�D that participate in sparse representations of yI and yD.
Its cardinality is much smaller than the dictionary size, hence
|I0| � |I|, where I = {1, 2, . . . , N} denotes the index set
of all atoms. This means that each image can be represented
as a combination of few, representative features described by
atoms, modulated by their respective coefficients. Because
depth and intensity features correspond to two modalities
arising from the same 3D features, we model the coupling
between coefficients ai and bi through latent variables xi as:

ai = mI
i xi ; bi = m D

i xi , ∀i ∈ I, (2)
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where the variables mI
i , m D

i represent the magnitudes of
the sparse coefficients and xi represent the activity of these
coefficients. Ideally, these variables should be binary, 0 rep-
resenting the absence and 1 representing the presence of a
depth-intensity feature pair. In that case

∑
i xi counts the

number of non-zero such pairs. However, inference of binary
values represents a combinatorial optimization problem of
high complexity that depends on dictionary properties and
the permission of noise, cf. [13]. We relax the problem by
allowing xi to attain continuous values between 0 and 1, which
has been proven to provide a very good approximation in a
similar context, cf., e.g., [14] and [15]. An important thing to
note here is that there is a one-to-one correspondence between
intensity and depth atoms, i.e., φ I

i and φD
i form pairs for all

i = 1, . . . , N . This correspondence is also visible on the graph
in Fig. 2 where each xi is connected to exactly two nodes:
ai and bi .

By assuming that the vector x = (x1, x2, . . . , xN )T is sparse,
we assume that yI and yD are described by a small number
of feature pairs (φ I

i ,φ
D
i ) that are either prominent in both

modalities (both mI
i and m D

i are significant) or in only one
modality (either mI

i or m D
i is significant). In these cases xi is

non-zero, which leads to non-zero values for either ai or bi ,
or both. If xi is zero, both ai and bi are also zero. Hence,
the sparsity assumption on x enforces a compact description
of both modalities by using simultaneously active coefficients.
In addition, when such pairs cannot approximate both images,
the model also allows only one coefficient within a pair to
be non-zero. Therefore, the model represents intensity and
depth using a small set of joint features and a small set of
independent features. The main challenge is to simultaneously
infer the latent variables x, mI = (mI

1, mI
2, . . . , mI

N )
T

and

mD = (m D
1 , m D

2 , . . . , m D
N )

T
under the sparsity assumption

on x. In the next section we propose a convex algorithm that
solves this problem.

IV. JOINT BASIS PURSUIT

Let us re-write the intensity-depth generative model, includ-
ing all unknown variables, in matrix notation as:[

yI

yD

]
=

[
�I 0
0 �D

]
·
[

MI

MD

]
· x +

[
ηI

ηD

]
,

where MI = diag(mI
1, mI

2, . . . , mI
N ) and MD =

diag(m D
1 , m D

2 , . . . , m D
N ). Suppose first that we know

dictionaries �I and �D and we want to find joint sparse
representations of intensity and depth, i.e., to solve for
variables x, mI , mD , under a Gaussian noise assumption (i.e.,
assuming a quadratic representation error). To do this, we
formulate the following optimization problem:

OPT1 : solve for x, mI , mD (3)

min
∑

i

xi , where xi ∈ [0, 1], i = 1, . . . , N

subject to: ‖yI − �I MI x‖2
2 ≤ (ε I )2 (4)

‖yD − �DMDx‖2
2 ≤ (εD)2 (5)

|mI
i | ≤ U I (6)

|m D
i | ≤ U D (7)

where ε I , εD are allowed approximation errors and U I

and U D are upper bounds on the magnitudes mI and mD .
In practice, the values of these upper bounds can be chosen
conservatively as high finite values. By minimizing the sum of
coupling variables xi ∈ [0, 1], OPT1 minimizes the �1 norm
of the vector x and thus imposes sparsity on x. This means
that OPT1 looks for a solution with a small number of non-
zero coupling variables xi that in turn activate a small number
of coefficient pairs (ai , bi ) through (2). This optimization
problem is hard to solve using the above formulation, since
the first two constraints are non-convex due to the terms MI x
and MDx which are bilinear in the variables x, mI and mD .
To overcome this issue, we transform it into an equivalent
problem by introducing the change of variables given by
Eqs. (2) deriving:

OPT2 : solve for x, a, b (8)

min
∑

i

xi , where xi ∈ [0, 1], i = 1, . . . , N

subject to: ‖yI − �I a‖2
2 ≤ (ε I )2 (9)

‖yD − �Db‖2
2 ≤ (εD)2 (10)

|ai | ≤ U I xi (11)

|bi | ≤ U Dxi , (12)

which is a convex optimization problem with linear and
quadratic constraints that can be solved efficiently, i.e., in poly-
nomial time, using log-barrier algorithms, cf. [16] and [17].
A variety of free and commercial software packages are
available like IBM ILOG CPLEX [18], that we use in our
experiments.

The problems (OPT1) and (OPT2) are equivalent using the
variable transformation in Eqs. (2) in the following sense:

Lemma 1. For any optimal solution (x∗, a∗, b∗) of (OPT2),
x∗ is also an optimal solution to (OPT1) with corresponding
matrices (MI)∗, (MD)∗ according to (2). Also, any optimal
solution (x∗, (MI)∗, (MD)∗) of (OPT1) defines an optimal
solution (x∗, a∗, b∗) to (OPT2) .

Proof: For any (x∗, a∗, b∗) and corresponding (MI)∗,
(MD)∗ that satisfy Eqs. (2), conditions (9) and (10) are
equivalent to (4) and (5) by definition. Moreover, since x∗
is nonnegative, conditions (11) and (12) are equivalent to
(6) and (7). Hence, any x∗ that is optimal for (OPT2) with cor-
responding (a∗, b∗) is optimal for (OPT1) with corresponding
(MI)∗, (MD)∗ and vice versa.

Thus, Lemma 1 states that each optimal solution of (OPT1)
induces an optimal solution of (OPT2) and vice versa.
An immediate consequence of the form of the objective
function and constraints in (OPT2) is that x∗ is chosen such
that (11) and (12) are both feasible and at least one of them
is active. Formally, this is stated by the following lemma.

Lemma 2. For any optimal solution (x∗, a∗, b∗) of (OPT2),
at least one of the constraints (11) and (12) is active for each
component i , hence we have

x∗
i = max{ |a

∗
i |

U I
,
|b∗

i |
U D

}, ∀i = 1, . . . , N. (13)

Proof: Otherwise it would be a contradiction to the
optimality of x∗.
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In the following, we refer to the optimization problem
(OPT2) as Joint Basis Pursuit (JBP), where x is the vector of
joint (coupling) variables in the signal model. It is important
to know the theoretical bounds on the norm of the difference
between the solution (a∗, b∗) found by JBP and the true
coefficients (a, b) of the model (1).

Based on the non-coupled case that is treated in [13], we
develop bounds on the difference of the optimal solution of
(OPT2) and a sparse signal to be recovered. For this purpose,
we assume that the matrix

A :=
[

�I 0
0 �D

]
(14)

satisfies the S-restricted isometry property with a constant δS .
This property of a linear system is defined as follows. Denote
AT , T ⊂ 1, . . . , n as the n × |T | submatrix obtained by
extracting the columns of A corresponding to the indices in
set T . The S-restricted isometry constant δS is then defined as:

Definition 1. [12] The S-restricted isometry constant δS of
A is the smallest quantity such that

(1 − δS)‖s‖2
2 ≤ ‖AT s‖2

2 ≤ (1 + δS)‖s‖2
2 (15)

for all subsets T with |T | ≤ S and coefficient sequences (s j ),
j ∈ T .

When δS << 1, this property requires that every set of
columns with cardinality less than S approximately behaves
like an orthonormal system. It can thus be related to the
maximal value of the inner product between any two columns
in the matrix A, usually called the coherence of the dictionary:

μ = max
i, j 	=i

|〈φi ,φ j 〉|, (16)

where φi and ,φ j are two different unit-norm atoms in the
dictionary (i.e., two columns of A) and 〈·〉 denotes the inner
product. With this definition, it can be easily shown that δS =
μ(|T | − 1) satisfies the RIP inequality (15).

Before we present the bound on the coefficient recovery
error of JBP, let us first define some prerequisites. Assume we
are given a pair of signals (yI , yD) as in Eq. (1), with sparse
coefficients (a0, b0), which satisfy constraints (9) and (10).
Let T0 be the support of x0 which is at the same time the
support of at least a0 or b0 and contains the support of the
other one or it coincides with the support of both. Without
loss of generality, let us assume that

‖yI ‖2 = ‖yD‖2 =: f0, (17)

which can be easily obtained by normalization. Assume also
that the components of a0 and b0 satisfy the bound constraints1

|a0
i | ≤ f0, |b0

i | ≤ f0, ∀i = 1, . . . , N, (18)

i.e., in the remainder of the paper we assume the same bounds
on ai and bi : U I = U D = U = f0. It is also useful in
practice to select the approximation error ε in terms of the

1Although the assumption in Eq. (18) does not hold in general, in practical
applications using learned dictionaries we found that it is always satisfied.
However, if one wants to use a bound that is surely satisfied, one should
choose U = f0/σmin , where σmin is the smallest of all singular values of
�I and �D .

fraction of the total signal energy, so we denote ε = η f0,
where 0 ≤ η < 12.

Let further αi denote the scale between the smaller and
larger coefficient for each index i within the sparse support
set T0, i.e.:

αi = min{ |a
0
i |

|b0
i |

,
|b0

i |
|a0

i | }, ∀i ∈ T0, (19)

and let γ denote:

γ = 1 − min
i∈T0

αi . (20)

Parameter γ describes the level of similarity between sparse
coefficients in the two signals, which is decreasing with higher
similarity.3 In the trivial case when a0

i = b0
i , ∀i ∈ T0 we have

that γ = 0. In all other cases γ ≤ 1.
Let further x0 denote an auxiliary vector that satisfies

max{|a0
i |, |b0

i |} = U x0
i , ∀i ∈ T0

namely (x0, a0, b0) is a feasible solution to (OPT2), where
x0 is chosen such that (11) and (12) are both feasible and
(at least) one of them is active.

Finally, let (x∗, a∗, b∗) be an optimal solution to (OPT2).
Then we have the following worst case bound on the distance
of these.

Theorem 1. Let (a0, b0) and (a∗, b∗) as defined above and
choose U = f0 with f0 from (17) and ε I = εD = η f0, where
0 ≤ η < 1. Then

‖[a0; b0] − [a∗; b∗]‖2
2 ≤

[ |T0|
M

(C + γ
√|T0|)2 + C2

]
f 2
0

(21)

holds for a constant C that depends on the signal model
parameter γ , the sparse support size |T0| and the approx-
imation parameter η, and where the M-restricted isome-
try property is satisfied for the linear system, cf. Def. 1.
In particular, we have:

C = 4η
√

M + γ |T0|√1 + δM√
M(1 − δM+|T0|) − √|T0|(1 + δM )

. (22)

The proof of this Theorem is given in Appendix .

V. INTENSITY-DEPTH DICTIONARY LEARNING

In the previous section we have shown how to find
sparse coefficients in the joint depth-intensity generative
model, assuming that the model parameters, i.e., dictionaries
�I and �D are given. Since in general we do not have those
parameters, we propose to learn them from a large database of
intensity-depth image examples. Dictionary learning for sparse
approximation has been a topic of intensive research in the last
couple of years. Almost all existing algorithms are based on
Expectation-Maximization, i.e., they are iterative algorithms
that consist of two steps: 1) inference of sparse coefficients
for a large set of signal examples while keeping the dictionary

2One can chose η to be different for image and depth in the case where
image and noise statistics differ due to the properties of an acquisition device.

3Note that γ does not impose any further coupling between coefficients
a and b, it only quantifies the similarity of their magnitudes.
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parameters fixed, and 2) dictionary optimization to minimize
the reconstruction error while keeping the coefficients fixed.
We follow the same approach here, using JBP in the first step,
conjugate gradient in the second step and then iterating these
two steps until convergence. Once JBP in iteration k finds the
sparse coefficients a(k), b(k) and the coupling variables x(k),
optimization of �I and �D becomes decoupled. Therefore, in
the learning step we use conjugate gradient to independently
optimize the following objectives:

(�I )(k) = min
�I

‖YI − �I P(k)‖2
F + ρ‖�I ‖F (23)

(�D)(k) = min
�D

‖YD − �DQ(k)‖2
F + ρ‖�D‖F , (24)

where ‖ · ‖F denotes the Frobenius norm, YI , YD , P(k) and
Q(k) are matrices whose columns are yI

j , yD
j , a(k)

j and b(k)
j

respectively, and j = 1, . . . , J indexes the signal examples
from a given database. In addition to the reconstruction error,
we have added a normalization constraint on the dictionaries,
scaled by a small parameter ρ, in order to control the dictio-
nary norms as usually done in dictionary learning. After the
learning step in iteration k, we solve again JBP in iteration
k + 1 by using dictionaries (�I )(k) and (�D)(k) obtained in
iteration k. Before showing the performance of the proposed
learning algorithm, we review prior art that we will use for
experimental comparisons in Section VII.

VI. RELATION TO PRIOR ART

To the best of our knowledge, there has not been any work
that addresses the problem of learning joint intensity-depth
sparse representations. Therefore, we overview prior work that
focuses on sparse approximation algorithms that bear similar-
ities to JBP, i.e., algorithms that find sparse approximations of
two signals sharing a common sparse support. Such algorithms
can be grouped into two categories with respect to the signal
model they address: a) simultaneous sparse approximation
algorithms, and b) group sparse approximation algorithms.
We further discuss how these relate to JBP.

Simultaneous sparse approximation algorithms recover a
set of jointly sparse signals modeled as ys = �xs + εs =∑

i∈I φi x s
i + εs , s = 1, . . . , S, where S is the number of

signals ys , � is the dictionary matrix and εs is a noise vector
for signal ys . Vectors of sparse coefficients xs share the same
sparsity support set I, i.e., they have non-zero entries at the
same positions. For the case of two signals, for example image
intensity and depth, this model is a noisy version of the second
model discussed in Sec. II. One of the earliest algorithms
in this group is the Simultaneous Variable Selection (SVS)
algorithm introduced by Turlach et. al. [19]. SVS selects a
common subset of atoms for a set of signals by minimizing
the representation error while constraining the �1-norm of
the maximum absolute values of coefficients across signals.
Formally, SVS solves the following problem:

(SVS) : min
1

2

S∑
s=1

‖ys − 
xs‖2
2, (25)

subject to:
∑

i

max{|x1
i |, . . . , |x S

i |} ≤ τ, (26)

where τ is given. Let X denote the matrix with xs ,
s = 1, . . . , S as columns. We can see that the left hand side
of the constraint in SVS is obtained by applying the �∞-norm
to rows (to find the largest coefficients for all explanatory
variables), followed by applying the �1-norm to the obtained
vector in order to promote sparsity of the support. We denote
this norm as ‖X‖∞,1. Versions of the same problem for the
unconstrained case and the error-constrained case have been
studied by Tropp [20].

To see the relation of SVS to JBP, we use Lemma 2, which
allows us to formulate the JBP for U I = U D as:

min : t (27)

subject to: ‖yD − �Da‖2
2 ≤ ε2 (28)

‖yI − �I b‖2
2 ≤ ε2 (29)∑

i

max{|ai |, |bi |} ≤ t . (30)

Therefore, JBP operates on the same �∞,1-norm of the coef-
ficient matrix as SVS. However, in contrast to SVS, JBP
minimizes the number of non-zero elements in both a and b by
minimizing ‖[a b]‖∞,1 and constraining the approximation
error induced by the coefficients. A much more important
difference of our work and [19] is that we allow for different
sets of atoms for intensity and depth. Thus, in JBP, each
signal can be represented using a different dictionary, but with
coefficient vectors that share the same positions of non-zero
entries. This makes JBP applicable to intensity-depth learning,
in contrast to SVS. Finally, we remark here that choosing
the objective function as we did allows for a smooth convex
representation of the last constraint (30).

Group sparse approximation algorithms recover a signal
modeled as y = ∑

i Hi xi + ε, where Hi is a submatrix of
a big dictionary matrix H. This model is useful for signals
whose sparse support has a group structure, namely when
groups of coefficients are either all non-zero or all zero. The
first algorithm proposed for group sparse approximation was
a generalization of Lasso, developed by Bakin [10], [11], and
later studied by other authors (e.g. Yuan and Lin [21]). Group
Lasso (GL) refers to the following optimization problem:

(GL) : min ‖y −
∑

i

Hi xi‖2
2 + λ

∑
i

‖xi‖p. (31)

The most studied variant of GL is for p = 2, because it leads to
a convex optimization problem with efficient implementations.
The group sparsity model can be used to represent intensity-
depth signals by considering pairs (ai , bi ), i = 1, . . . , N as
groups. In this case, GL with p = 2 becomes:

(GL-ID) : min(‖yI −
∑

i

φ I
i ai‖2

2 (32)

+‖yD −
∑

i

φD
i bi‖2

2 + λ
∑

i

√
a2

i + b2
i ). (33)

The drawback of GL with p = 2 is that the square norm aver-
ages the coefficients in two modalities and does not distinguish
between pairs with a different balance of coefficients. In other
words, it has rotational symmetry in the space of coefficient
pairs. This means that if there is a particular structure in the
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distribution of coefficient pairs (for example governed by the
ratio between intensity and depth) GL might not be able to
recover that structure. Choosing p = ∞ avoids this problem
and allows selection of pairs that might have asymmetric joint
distributions. In that case the regularizer penalizes the norm
‖[a b]‖∞,1. Rather than solving the unconstrained problem
of group lasso with p = ∞ and a non-smooth objective,
JBP reaches a similar goal by solving a constrained convex
optimization problem with smooth constraints. It also elimi-
nates the need for tuning the Lagrange multiplier.

We should also mention here block sparse models, which are
a generalization of group sparse models where a set of signals
shares the same group structure and where that structure
might not be known apriori [22]. Example application of these
models is representation of face images. In the case of image-
depth modeling, the group structure is known and given by
the bimodal structure of the data, thus the modeling reduces
to group sparsity. Nevertheless, one can envisage in the future
application of block sparse models on top of proposed bimodal
image-depth representation for modeling signals such as face
image-depth data.

VII. EXPERIMENTAL RESULTS

We have performed two sets of experiments in order to
evaluate the proposed JBP and dictionary learning based on
JBP. The first set of experiments uses simulated random data,
with the goal to determine the model recovery performance of
JBP when the ground truth signal models are given. In the
second set, we apply JBP and dictionary learning on real
depth-intensity data and show its performance on a depth
inpainting task. In both cases, JBP has been compared to
Group Lasso (GL). For the depth inpainting task, we also
compare JBP to inpainting using total variation (TV) [23] and
using learned depth dictionary [8].

A. Model Recovery

To evaluate the performance of JBP, we have generated a set
of pairs of signals of size L = 64, denoted by {yI

j } and {yD
j },

j = 1, . . . , 500. Signals in each pair have a common sparsity
support of size |T0|, and they are sparse in random, Gaussian
iid dictionaries �I and �D of size 64×128. Their coefficients,
{a j } and {b j }, j = 1, . . . , 500 are random, uniformly distrib-
uted, and do not have the same values nor signs. However,
their ratios αi (as defined in Eq. 19) are bounded from below,
which gives a certain value of γ (see Eq. 20). This results
in a distribution of coefficients shown by the scatter plot in
Fig. 3, left panel, for γ = 0.25 and |T0| = 10. For smaller γ
this joint distribution would be even more directional (thinner
side lobes), while for γ = 0 it would fill out the whole space.
Right panel of Fig. 3 shows joint distributions of coefficients
in two modalities estimated from signals corrupted with noise
of signal-to-noise ratio (SNR) equal to 20dB. If we zoom
in, we can see that for small coefficient values, JBP and
GL differ significantly. Due to its rotational symmetry in
the space of coefficient pairs, GL cannot distinguish between
pairs with a different balance of coefficients, especially for

Fig. 3. Scatter plots illustrating joint distribution of coefficients for
γ = 0.25 and |T0| = 10. Left: original coefficients (no noise). Right:
estimated coefficients from signals corrupted with noise (SNR = 20dB) using
JBP and GL.

Fig. 4. JBP model recovery performance for random signals. Average
coefficient reconstruction error is plotted for different signal-to-noise (SNR)
ratios between sparse signals and Gaussian noise.

small coefficients. Unlike GL, JBP is able to recover the par-
ticular structure (driven by γ ) in the distribution of coefficient
pairs.

Fig. 4 shows the relative coefficient reconstruction error
‖a∗ − a‖2

2/‖a‖2
2 + ‖b∗ − b‖2

2/‖b‖2
2, where (a∗, b∗) denote

the reconstructions of original values (a, b). The error is
averaged over 50 different signals and plotted versus the SNR
between sparse signals and Gaussian noise. Coefficients have
the sparsity parameter |T0| = 10, and the evaluation has been
performed for three different values of γ : 0.1, 0.25, 0.5. For
each SNR value, we have chosen the η parameter in JBP
to get the level of the reconstruction error the same as the
noise level. For GL, we have performed recovery for a range
of λ values and took the best results. We have compared
JBP with GL and with the theoretical bound in Eq. (21), for
M = L = 64 and for γ = 0.1, 0.25, 0.5. Instead of using the
dictionary coherence value for δ, which would give the worst-
case bounds, we use the mean of inner products between all
atoms in order to calculate and plot the average case bounds.
We can see that JBP outperforms GL for a large margin.
Moreover, we can see that GL gives the same performance
irrespective of γ , while JBP reaches better performance for
smaller γ . This supports our claim that GL performs recovery
without distinguishing between different structures in the data.
Finally we see that the actual performance of JBP is much
better than predicted by the theory, showing that the average
derived bound is rather conservative.

Furthermore, we have used these randomly generated
signals as training sets in our dictionary learning algorithm,
in order to recover the original dictionary. All signals have
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Fig. 5. Recovery performance of dictionary learning using JBP and GL for
different sparsity |T0|: number of recovered atoms versus the MSE threshold
under which the atom is considered recovered.

been corrupted with Gaussian noise of SNR=10 dB. For three
sparsity values |T0| = 5, 10, 15, we have applied the proposed
learning algorithm starting from a random initial dictionary.
For comparison, we have replaced the JBP in the inference
step with GL, while keeping the learning step exactly the
same. We refer to this method as GL-based learning. For JBP
we have chosen η = 0.1, which gives the reconstruction error
equal to the noise level of 10 dB. Similarly, we have chosen
λ = 0.1, to reach the similar reconstruction error level for GL.
Fig. 5 shows the cumulative plots of the number of recovered
atoms versus the threshold value above which the atom is
considered recovered. The threshold is given in mean square
error (MSE) between the original atoms and the recovered
ones. We can see that learning based on JBP is superior to
GL-based learning for most threshold values, or performs
similarly for a small number of threshold values.

B. Intensity-Depth Dictionary Learning

In our second set of experiments we have evaluated
the performance of JBP and dictionary learning on real
depth-intensity images. We have learned a depth-intensity
overcomplete dictionary on the Middlebury 2006 benchmark
depth-intensity data [24]. Each intensity image has been
whitened (whole image), i.e., its frequency spectrum has been
flattened, as initially proposed in [5]. Such pre-processing
speeds up the learning. Depth data could not be whitened
because it would introduce Gibbs artifacts around the missing
regions at occlusions. We handle such missing pixels by mask-
ing. Learning has been performed in a patch-mode. Namely,
in each iteration of the two-step learning process, a large
number of depth-intensity pairs of 12 × 12 size patches have
been randomly selected from data. Each depth and intensity
patch within a pair coincide in a 3D scene. Patches have been
normalized to have norm one, and η has been set to 0.1.
We have chosen this value such that we get a good recon-
struction of depth, without the quantization effects present in
Middlebury depth maps (i.e., such that the quantization error
is subsumed by the reconstruction error). We have learned
dictionaries �I and �D , each of size 144 × 288, i.e., twice
overcomplete. For comparison, we have also learned depth-
intensity dictionaries using GL-based learning, where λ = 0.3

has been chosen to obtain the same average reconstruction
error as in JBP.4

Fig. 6(a) and (b) show parts of dictionaries learned by
JBP and GL, respectively. The JBP-learned dictionary contains
more meaningful features, such as coinciding depth-intensity
edges, while GL-learned dictionary only has few of those. JBP
dictionary atoms also exhibit correlation between orientations
of the Gabor-like intensity atoms and the gradient angle of
depth atoms. This is quite visible in the scatter plots of ori-
entation angles of intensity atoms vs gradient angles of depth
atoms, as shown in Fig. 7. We can see that for JBP there is
significant clustering around the diagonal (corresponding to a
90◦ angle between intensity atom orientation and depth atom
gradient). On the other hand, we cannot see this effect when
using GL for learning. To the best of our knowledge, this is
the first time that the correlation between depth gradient angles
and texture orientations is found to emerge from natural scenes
data (see [25] for some recent research in the area of 3D scene
statistics).

We have also evaluated the statistics of parameters α and γ
for a set of 250 patches, randomly selected from the training
data. Values of α are evaluated for each atom within the sparse
support (i.e., atoms with a sufficiently large coupling variable:
x > 0.1) and then averaged over all atoms in all patches. The
obtained mean and standard deviation values of α are 0.61 and
0.36, respectively. Since γ is defined via a bound on α, we
have evaluated it per patch and then averaged, obtaining mean
and standard deviation values of 0.81 and 0.27, respectively.
We can see that the training data exhibits a large range of ratios
between intensity and depth coefficients, which is efficiently
captured by JBP.

Finally, we have compared the performance of JBP and GL,
and the corresponding learned dictionaries, on an inpainting
task for data obtained with two different hybrid sensors:
a time-of-flight (TOF) camera [26] and the Kinect sensor [3].
We have chosen the TOF and Kinect data to show that learned
dictionaries of intensity-depth are not linked to particular
depth sensors. The goal of inpainting is to fill out missing
pixels from the depth map based on other available depth
and intensity data. Since the image sizes are larger then our
learned dictionary patches, we perform inpainting patch-wise,
using a sliding window to reconstruct overlapping patches and
then average them in depth pixel domain. Following previously
introduced notation, we are given a vectorized intensity patch
yI and a depth patch as yD , both of size L. A set of
pixels in yD are labeled as missing using a mask vector o
of the same size, which contains zeros on the position of
missing pixels and ones elsewhere. Let us denote with O a
diagonal matrix of size L × L that has the mask vector o on
its diagonal. To solve the inpainting problem using JPB we
need to solve the problem OPT2 for x, a, b with a modified
constraint (10) as ‖OyD − O�Db‖2

2 ≤ (εD)2. The obtained
solution for b∗ is then used to reconstruct the inpainted depth

4Note that λ value is a bit different here than in the synthetic data
experiments, which is probably due to different noise statistics. Unlike in
JBP, where η determines the reconstruction error, in unconstrained GL the
error is harder to control and we can only try different λ until we reach the
desired error SNR.
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Fig. 6. Learned intensity-depth dictionaries (only half of the atoms are displayed). Each column contains a set of atom pairs (φ I
1,φD), where the left part

is an intensity atom and the right part is a depth atom. (a) JBP-learned dictionaries, (b) GL-learned dictionaries.

Fig. 7. Correlation between depth atom gradients and image intensity atom orientations. (a) Illustration of atom pairs that have 90 degrees angle between
the orientation of the Gabor-like intensity part and the gradient angle of the depth part. Scatter plots of intensity orientation vs depth gradient angle for
(b) JBP and (c) GL.

Fig. 8. Inpainting results on time of flight data. (a) Original intensity image, (b) Original depth image, (c) 4% of kept depth pixels, (d) reconstructed depth
with GL; MSE = 7.3e−3, MSSIM = 0.60; (e) reconstructed depth with JBP, MSE = 4.5e−3, MSSIM = 0.67; (f) reconstructed depth with learned depth
dictionary, MSE = 8.8e−3, MSSIM = 0.60; (g) reconstructed depth with total variation inpainting, MSE = 7.9e−3, MSSIM = 0.61.

patch: ŷD = �Db∗. Similarly, for the GL inpainting, we
solve (33) where instead of the term ‖yD −∑

i φD
i bi‖2

2 we use
‖OyD − O

∑
i φD

i bi‖2
2. The inpainted patch is reconstructed

similarly as in JBP. Parameters η and λ were chosen the same
as in learning.

For the TOF camera data, we have randomly removed 96%
of depth pixels from an intensity-depth pair. Original intensity
and depth images are shown in Fig. 8(a) and (b), respectively.

From the original intensity image and 4% of depth pixels
[shown in Fig. 8(c)], we have reconstructed the whole depth
image, using GL with the GL-learned dictionary [Fig. 8(d)],
and using JBP with the JBP-learned dictionary [Fig. 8(e)].
Since we had only 4% of pixels we have chosen a step size of
1 for sliding the window, which increased the probability that
pixels are reconstructed in at least one patch. In addition,
we have applied inpainting using the method proposed in [8]
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Fig. 9. Inpainting results on Kinect data from the NYU database. (a) Original intensity image, (b) Reprojected depth image with missing regions,
(c) reconstructed depth with JBP, (d) zoom of (c); (e) reconstructed depth with GL; (f) zoom of (e); (g) reconstructed depth with learned depth dictionary;
(h) zoom of (g).

based on a dictionary learned only from depth maps [Fig. 8(f)]
and TV inpainting on depth masked image only [Fig. 8(g)].
We can see that JBP gives the best performance with the
mean square error MSE = 4.5e−3 and mean structural sim-
ilarity index [27] MSSIM = 0.67, followed by GL (MSE =
7.3e−3, MSSIM = 0.60), TV (MSE = 7.9e−3, MSSIM =
0.61) and depth dictionary (DD) inpainting (MSE = 8.8e−3,
MSSIM = 0.60). For the Kinect data, we have used one
example image-depth pair from the “Homeoffice” scene in
the NYU Kinect dataset [28], shown in Fig. 9. After the
reprojection of the depth map to register it with the image
data, many missing regions appear, as shown in Fig. 9(b).
We apply previously explained inpainting procedure (with the
same parameters and a window step of 4) to fill in these
missing regions, and compare the results obtained with JBP,
GL and DD. Since we do not have the ground truth in
this case (missing data by the sensor), we can only make
a visual comparison. From images in Figs. 9(c)–(h), we can
see that JBP reconstructed depth map has the best quality
and is even able to reconstruct the missing parts of the
telescope tripod. Finally, we should mention that the quality
improvement of JBP over GL comes at a higher computational
cost. On a 3.1GHz 4-core Linux machine, JBP for one pair of
12 × 12 patches takes about 5–10 seconds, while GL for one
value of λ takes 0.02 seconds. Both JBP and GL inpainting
processes can be implemented in parallel. Therefore, for
applications where time is critical GL is a better option, while
for applications where quality of reconstruction is crucial JBP
should be chosen.

VIII. CONCLUSION

We have presented an algorithm for learning joint overcom-
plete dictionaries of image intensity and depth. The proposed
method, called JBP, is based on a novel second order cone pro-
gram for recovering signals of joint sparse support in dictionar-
ies with two modalities. We have derived a theoretical bound
for the coefficient recovery error of JBP and shown its superi-
ority to Group Lasso. Unlike GL, which does not distinguish

between pairs with a different balance of coefficients, JBP can
find a particular coefficient structure driven by the magnitude
difference between intensity and depth signals. Moreover,
since the performance of JBP increases with higher correlation
between coefficients (smaller γ ), dictionaries learned using
JBP are expected to find intensity-depth structures with higher
correlation between the two modalities. When applied to
the Middlebury image-depth database, the proposed learning
algorithm converges to a dictionary of intensity-depth fea-
tures, such as coinciding edges and image grating-depth slant
pairs. The learned features exhibit a significant correlation
of depth gradient angles and texture orientations, which is
an important result in 3D scene statistics research. Finally,
we have shown that JBP with the learned dictionary can
reconstruct meaningful depth maps from only 4% of depth
pixels. These results outline the value of our method for
3D technologies based on hybrid image-depth sensors.
In future work, we would like to modify JBP to take into
account specific noise characteristics of hybrid image-depth
sensors, for example by replacing the univariate Gaussian
noise model with a more general multivariate Gaussian noise
model used in [8].

APPENDIX

A. Proof of Theorem 1

Let us first prove the following lemma:

Lemma 3. For h := [a∗; b∗] − [a0; b0] it holds true
that ‖hT C

0
‖1 ≤ ‖hT0‖1 + γ U |T0|, where T C

0 denotes the
complement set of T0 and hT denotes the subvector of
h corresponding to T .

Proof: Define

I0
a := {i ∈ I : |a0

i | = U xi
0},

I0
b := {i ∈ I \ I0

a : |b0
i | = U xi

0},
I∗

a := {i ∈ I : |a∗
i | = U xi

∗},
I∗

b := {i ∈ I \ I∗
a : |b∗

i | = U xi
∗}.
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Due to Lemma 2, we have that I0
a ∪I0

b = I and I∗
a ∪I∗

b = I,
and due to the definition above it holds that I0

a ∩ I0
b = ∅ and

I∗
a ∩ I∗

b = ∅. Therefore, we have that:

‖[a∗; b∗]‖1 =
∑
i∈I∗

a

|a∗
i | +

∑
i∈I∗

b

|b∗
i | +

∑
i∈I∗

a

|b∗
i | +

∑
i∈I∗

b

|a∗
i |

≤ U
∑
i∈I

|x∗
i |+U

∑
i∈I∗

a

|x∗
i |+U

∑
i∈I∗

b

|x∗
i | = 2U‖x∗‖1. (34)

Similarly, we have that:

‖[a0; b0]‖1 =
∑
i∈I0

a

|a0
i | +

∑
i∈I0

b

|b0
i | +

∑
i∈I0

a

|b0
i | +

∑
i∈I0

b

|a0
i |

≥ U
∑
i∈I

|x0
i | + min

i∈T0

αi (
∑
i∈I0

a

|a0
i | +

∑
i∈I0

b

|b0
i |)

≥ (20)2U‖x0‖1 − γ U |T0|. (35)

Due to optimality of x∗, we have ‖x∗‖1 ≤ ‖x0‖1, which
combined with (34) and (35) gives:

‖[a∗; b∗]‖1 ≤ 2U‖x0‖1 ≤ ‖[a0; b0]‖1 + γ U |T0|. (36)

Due to a0
T C

0
= 0 and b0

T C
0

= 0, we can write

‖[a0; b0] + h‖1 = ‖[a0
T0

; b0
T0

; 0] + [hT0; hT C
0

]‖1

= ‖[a0
T0

; b0
T0

] + hT0‖1 + ‖hT C
0

‖1. (37)

Thus, using the triangle inequality and the definition of h we
derive:

‖[a0; b0]‖1 − ‖hT0‖1 + ‖hT C
0

‖1 ≤ ‖[a0; b0] + h‖1

= ‖[a∗; b∗]‖1 ≤(36) ‖[a0; b0]‖1 + γ U |T0|

and thus ‖hT C
0

‖1 ≤ ‖hT0‖1 + γ U |T0|.
We are now ready to prove Theorem 1.

Proof: Let A be defined as in Eq. (14). Then we have
from (9) and (10) that ‖Ah‖2 ≤ 4ε = 4η f0. Assume we
have divided T C

0 into subsets of size M , more precisely,
we have T C

0 = T1 ∪ · · · ∪ Tn−|T0|, where Ti are sorted by
decreasing order of hT C

0
, and where T01 = T0 ∪ T1. Without

alternations-cf. [13]-it holds true that ‖hT C
01

‖2
2 ≤ ‖hT C

0
‖2

1/M .
Using Lemma 3 yields

‖hT C
01

‖2
2 ≤ (‖hT0‖1 + γ U |T0|)2/M

≤ (
√|T0|‖hT0‖2 + γ U |T0|)2/M, (38)

where the second step follows from the norm inequality.
Hence:

‖h‖2
2 = ‖hT01‖2

2 + ‖hT C
01

‖2
2 ≤ (1 + |T0|

M
)‖hT0‖2

2

+2γ U |T0|3/2

M
‖hT0‖2 + (γ U |T0|)2

M
. (39)

From the restricted isometry, cf. Def. 1, we get

‖Ah‖2 = ‖AT01hT01 +
∑
j≥2

AT j hT j ‖2

≥ ‖AT01hT01‖2 − ‖
∑
j≥2

AT j hT j ‖2

≥ ‖AT01hT01‖2 −
∑
j≥2

‖AT j hT j ‖2

≥ √
1 − δM+|T0|‖hT01‖2 − √

1 + δM

∑
j≥2

‖hT j ‖2

≥ √
1 − δM+|T0|‖hT0‖2 − √

1 + δM

∑
j≥2

‖hT j ‖2 (40)

where δS is a constant chosen such that the inequalities hold,
which follows from inequality (4) in [13]. Here, AT denotes
the columns of A corresponding to the index set T . In analogy
to [13], due to the ordering of the sets T j by decreasing
order of coefficients, we have: |hT j+1(t)| ≤ ‖hT j ‖1/M meaning
each component in hT j+1 is smaller than the average of the
components in hT j (absolute value-wise). Thus, we get:

‖hT j+1‖2
2 =

∑
t∈T j+1

‖ht‖2
2 ≤

∑
t∈T j+1

‖hT j ‖2
1/M2

≤ M‖hT j ‖2
1/M2 = ‖hT j ‖2

1/M, and∑
j≥2

‖hT j ‖2 ≤
∑
j≥1

‖hT j ‖1/
√

M = ‖hT C
0

‖1/
√

M

≤ (Lemma 3)(‖hT0‖1 + γ U |T0|)/
√

M

≤ √|T0|/M‖hT0‖2 + γ U |T0|/
√

M (41)

where the last step follows from the norm inequality.
Combining Eq. (41) and Eq. (40), we get:

‖Ah‖2 ≥ √
1 − δM+|T0|‖hT0‖2

−√
1 + δM

√|T0|/M‖hT0‖2 − γ U |T0|
√

1 + δM/
√

M

and subsequently:

‖hT0‖2 ≤ ‖Ah‖2 + γ U |T0|√1 + δM/
√

M√
1 − δM+|T0| − √

1 + δM
√|T0|/M

≤ 4η f0
√

M + γ f0|T0|√1 + δM√
M(1 − δM+|T0|) − √|T0|(1 + δM )

= C f0,

if the denominator is greater than zero. Replacing this result
in Eq. (39) and taking U = f0 we get:

‖h‖2
2 ≤ (1 + |T0|

M
)C2 f 2

0 + 2γ
|T0|3/2

M
C f 2

0 + γ 2 |T0|2
M

f 2
0 ,

which is equivalent to (21) and thus completes the proof.
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