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Abstract—This paper introduces a new method for learning
and inferring sparse representations of depth (disparity) maps.
The proposed algorithm relaxes the usual assumption of the
stationary noise model in sparse coding. This enables learning
from data corrupted with spatially varying noise or uncertainty,
typically obtained by laser range scanners or structured light
depth cameras. Sparse representations are learned from the
Middlebury database disparity maps and then exploited in a
two-layer graphical model for inferring depth from stereo, by
including a sparsity prior on the learned features. Since they
capture higher-order dependencies in the depth structure, these
priors can complement smoothness priors commonly used in
depth inference based on Markov Random Field (MRF) models.
Inference on the proposed graph is achieved using an alternating
iterative optimization technique, where the first layer is solved
using an existing MRF-based stereo matching algorithm, then
held fixed as the second layer is solved using the proposed
non-stationary sparse coding algorithm. This leads to a general
method for improving solutions of state of the art MRF-based
depth estimation algorithms. Our experimental results first show
that depth inference using learned representations leads to state
of the art denoising of depth maps obtained from laser range
scanners and a time of flight camera. Furthermore, we show
that adding sparse priors improves the results of two depth
estimation methods: the classical graph cut algorithm [1] and
the more recent algorithm of Woodford et al. [2].

Index Terms—Sparse approximations, dictionary learning,
depth denoising, depth from stereo.

I. INTRODUCTION

Finding efficient representations of depth or disparity maps
is important for applications involving inverse problems such
as depth denoising and inpainting (for example in view syn-
thesis [3]), and depth map compression (e.g., in 3DTV [4]).
Inverse problems have been extensively studied for natural im-
ages, for example using wavelet representations [5]. However,
because of differences between image and depth statistics,
it is not obvious that wavelets are the most efficient way
to represent the structure of depth maps. Thus, we prefer
to learn an efficient representation from a large database
of examples. Sparse coding [6] uses this approach to find
overcomplete dictionaries of waveforms (atoms) in which the
data has a sparse decomposition. Sparse coding and other
dictionary learning techniques have been successfully applied
to learning image [6]–[11] and audio [12] representations.
Imposing sparse, non-Gaussian priors over latent variables
in a linear generative model leads to a learning rule which
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produces dictionaries with elements that capture non-trivial
aspects of the data statistics, such as long-range spatial corre-
lations. These learned dictionaries, which capture higher-order
dependencies in the data, can be used to regularize methods for
solving inverse problems, yeilding state-of-the art performance
in denoising [13].

Most algorithms for dictionary learning assume that the
signal is corrupted by stationary additive white Gaussian noise.
While this is often a valid assumption in natural images, it does
not hold for depth data. Even when measuring depth directly
with range scanners, noise varies locally due to the different re-
flection of scanner light pulses around transparent or reflective
surfaces, or near boundaries. Likewise, estimation of disparity
from stereo images using standard computer vision algorithms
yields disparity maps with variable uncertainty at each pixel in
the map. Therefore, learning representations of depth requires
adaptation of learning algorithms in order to deal with non-
stationary noise in depth maps or with the unreliability of
disparity map estimates. One contribution of this paper is a
new learning algorithm based on sparse coding that is able
to cope with non-stationary depth estimation errors. Noise
statistics are inferred along with sparse coefficients during the
inference step, which are then passed to the learning step that
properly incorporates this uncertainty into the adaptation of the
dictionary. This allows the dictionary learning method to be
spatially adaptive and robust to noise. We show that this sparse
coding method gives state-of-the-art performance in denoising
of depth maps.

Learned representations of disparity are also important
priors in depth estimation from stereo images, which is still
a challenging problem in computer vision and robotics. Our
second contribution is a new stereo matching algorithm that
exploits the sparse prior over the learned depth atoms, which
allows for modeling higher-order dependencies in depth map
data. Such higher order priors encompass more information
about the 3D structure than smoothness priors typically used
in computer vision. We define stereo matching as a maximum
aposteriori depth estimation problem on a two layer graphical
model, where the top layer consists of hidden units that repre-
sent the coefficients in the sparse code of the depth map. The
middle layer incorporates the output of the upper layer into a
Markov Random Field (MRF) with neighborhood smoothness
constraints. The probabilities for each depth estimate given by
the sparse priors are used to refine the input to the MRF that
can be defined and solved using any of the existing MRF-
based stereo matching algorithms. Therefore, the proposed
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approach represents a generic way to include higher order
priors to existing MRF-based algorithms in order to improve
their solutions. Our final experiments on Tsukuba, Cones and
Teddy datasets [14] demonstrate that sparse priors can be used
to regularize depth map estimates and quantitatively improve
stereo matching results of the standard graph-cut algorithm
(GC) [1] and the more recent second order prior algorithm
(2OP) [2].

The paper is structured as follows. In Section II, we
formulate the new sparse coding method using a generative
model with non-stationary noise, and we present its energy
minimization solution in Section III. Section IV describes
depth inference from stereo based on sparse priors over
learned disparity dictionaries. Experimental results in depth
learning, denoising and inference from stereo are presented in
Section V.

II. SPARSE CODING WITH NON-STATIONARY ADDITIVE
GAUSSIAN NOISE

The main principle underlying sparse coding (also called
dictionary learning) theory is that some signals of dimension
N are well represented by a linear combination of a small
number of elements selected from an overcomplete dictionary
D of size K > N . This principle can be captured by the
formalism of a linear generative model f = Φa+ ε. Columns
of the matrix Φ represent atoms from D, a is the vector of
coefficients that weights each atom, and ε is an N -dimensional
vector of i.i.d. Gaussian noise of mean zero and variance σ2

0 .
Since the dictionary is not given a priori, the main challenge of
sparse coding is to learn the atoms in the dictionary given a set
of training signals. Most approaches for dictionary learning are
based on maximum likelihood estimation, where we look for
the Φ that maximizes P (f |Φ) [6], or the maximum aposteriori
solution that maximizes P (Φ|f) [15].

Previous approaches for sparse coding assume that the
additive noise ε represents the portion of the signal that cannot
be accounted for by the model, and it is usually modeled by an
i.i.d. Gaussian noise process. However, depth maps acquired
using laser range scanners and structured light contain noise
that has spatially varying statistics. To account for this type
of noise, we propose the following generative model for the
depth map f :

f = Φa + ε+ η, (1)

where η captures spatially varying noise from the sensor. We
assume that this noise has a multivariate Gaussian distribution
of zero mean and covariance matrix Ση , i.e., η ∼ NN (0,Ση).
Since we have a sum of two Gaussian noises, the total noise
ζ = ε+ η also has a Gaussian distribution NN (0,Σ), where
Σ = Ση + σ2

0I. This covariance matrix Σ represents a set of
variables that we need to infer along with the coefficients a.
In the case of sparse coefficient vectors a, our optimization
problem is:

Φ∗ = argmax
Φ

P (f |Φ)

≈ argmax
Φ

[
max
a,Σ

P (Φ|f ,a,Σ)P (a)P (Σ)

]
. (2)

In the rest of the paper, we consider only independent (and thus
uncorrelated) external noise, such that Ση = diag(σ̃2

1 , ..., σ̃
2
N ),

and therefore we have: Σ = diag(σ2
1 , ..., σ

2
N ), where σ2

i =
σ2
0 + σ̃2

i , for i = 1, ..., N . The case of correlated noise is also
interesting, but outside the scope of this paper.

The conditional probability of f , given a, Φ and Σ in this
case is:

P (f |Φ,a,Σ) =
exp

[
− 1

2 (f −Φa)
T
Σ−1(f −Φa)

]
(2π)N/2|Σ|1/2

=

N∏
i=1

[
1√

2π|σi|
exp (− (fi − f̂i)2

2σ2
i

)

]
, (3)

where fi and f̂i are i-th entries of vectors f and f̂ = Φa,
respectively. For the prior on the coefficient vector a we take
a Laplace distribution, which is peaked at zero and heavy
tailed. This is a usual choice in most sparse coding methods.
Therefore, we have: P (a) ∝ exp (−λ‖a‖1), where λ controls
the sparsity of a.

Unlike in previous dictionary learning methods, we impose
a hyperprior on the covariance matrix of the noise in our
model. Because we assume the noise at each location is i.i.d.,
our hyperprior P (Σ) is factorial, i.e., P (Σ) =

∏N
i=1 P (σi).

We do not know what shape this noise hyperprior should have,
so we choose the non-informative Jeffreys prior for the noise
variance at each depth sample i. The Jeffreys prior on the
variance of normal distribution is simply 1

|σi| , which gives:

P (Σ) =

N∏
i=1

P (σi) =

N∏
i=1

1

|σi|
. (4)

With the defined priors, our optimization problem in Eq. 2,
cast as an energy minimization problem, becomes:

Φ∗ = argmin
Φ

E(f |Φ,a)

= argmin
Φ

[
min

a,{σi}

N∑
i=1

[
log σ2

i +
(fi − f̂i)2

2σ2
i

]
+λ‖a‖1

]
,

(5)

where E(f |Φ) = − logP (f |Φ,a). The following section
explains how to minimize this energy function.

III. INFERENCE AND LEARNING IN THE SPARSE CODING
MODEL WITH NON-STATIONARY NOISE

Both inference and learning are accomplished by minimiz-
ing the negative log probability of the data under the model.
This is done via an alternating optimization technique that
can be viewed as a variational approximation to the E-M
algorithm. At the beginning of each iteration, we select a depth
map patch and the pixel-wise noise variances are initialized to
fairly large values. The inference consists of two parts. The
energy is first minimized with respect to the coefficients. Next,
with these coefficients held fixed, we minimize the energy with
respect to the pixel-wise noise variances. These two steps are
alternated until convergence, which usually happens in only a
few iterations. Finally, in the learning step, we compute the
gradient of the energy function with respect to the dictionary,
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using the inferred coefficients and noise variances, and take
a small step in that direction (learning). The details of this
scheme are described below.

A. Inference

Our inference step differs from the usual convex optimiza-
tion done in sparse coding since we need to infer the variances
of the noise at each depth sample. In Section II, we have seen
that the total noise has two components: 1) the approximation
noise ε with variance σ2

0 that is equal for all depth samples,
and 2) the external noise η with variance σ̃2

i that differs at
each sample. In the inference step, we will assume that σ0 is
fixed and we optimize with respect to σ̃i. Note that this will
not significantly influence the obtained results since we can
put a small value for σ0 and all the noise variability will be
shifted to σ̃i. However, it will ensure that σi 6= 0 and that the
solution is stable. The inference step is then:

(a, {σ̃i})∗ = arg min
a,{σ̃i}

[

N∑
i=1

log (σ2
0 + σ̃2

i )

+
1

2

N∑
i=1

[fi −
∑
j ajφj(i)]

2

σ2
0 + σ̃2

i

+ λ‖a‖1], (6)

where φj , j = 1, ...,K are atoms from D. We perform this
optimization in two alternating steps. First, we fix a large value
for all σ̃i’s and optimize with respect to a. This case is the
regular l2−l1 optimization, where the σ̃i’s may all be different
constants. In the second step, we fix a and use a closed form
solution for hyperparameters σ̃i’s:

σ̃2
i =

{
0 if 1

2 (fi − f̂i)
2 < σ2

0 ;
1
2 (fi − f̂i)

2 − σ2
0 otherwise.

where f̂i =
∑
j ajφj(i). Each step is guaranteed to de-

scend the energy function. In practice, convergence is usually
achieved in the first few iterations.

B. Learning

Learning is accomplished by taking a small step in the
direction of the negative gradient of the energy function with
respect to the dictionary Φ:

∂E

∂Φ
= −〈Σ−1(f −Φa∗)a∗T〉 . (7)

Since we select different depth map patches at each iteration,
this effectively averages learning gradients drawn from the
entire data set, denoted by 〈·〉. The learning rule differs from
that of standard sparse coding in that the dictionary update
is weighted by the inverse of the noise covariance matrix.
This results in adaptive dictionary updates, where observations
with smaller noise variance (more reliable ones) have a higher
influence on the learning than the observations with high noise
variance (unreliable ones).

In the rest of the paper, for convenience we will refer to
our sparse coding method with non-stationary noise as ns-SC.
It is important to note that ns-SC can be used not only for
learning from depth maps, but also in the following general
cases:

1) when we learn from data acquired by sensors that
introduce non-stationary noise;

2) when we learn from inferred data, where each inferred
variable has a certain reliability (e.g., learning in layered
models).

The second case is certainly a very important one, as there are
many examples encountered in nature where we need to learn
or infer the states of some hidden variables from other inferred
variables. A relevant example is depth inference from stereo
using sparse priors, which we propose in the next section.

IV. STEREO MATCHING WITH SPARSE PRIORS

The dense depth estimation problem is usually formulated
as a MAP estimation problem. Given the left and right images
L and R respectively, we want to estimate a disparity1 map
f . In other words, to each pixel i in one of the images
(the one that we choose as a reference) we need to assign
a certain disparity value fi. We propose an approach that
combines the Markov Random Field (MRF) formulation of
depth inference, commonly used in computer vision, and
inference using higher-order sparse priors. We briefly review
the MRF approach and then describe the proposed method for
depth inference using sparse priors.

A. MRF approach to depth inference

Most state of the art depth estimation approaches in com-
puter vision formulate depth inference by the following opti-
mization problem:

f∗ = argmax
f
P (f |L,R) = argmax

f
P (L,R|f)P (f), (8)

where P (L,R|f) is the data likelihood, and P (f) is the joint
prior for disparity variables fi. The likelihood term is usually
modeled with a factorial Gaussian distribution:

P (L,R|f) ∝
N∏
i=1

exp

[
− (Li −Ri+fi)2

2ρ2

]

= exp

[
−

N∑
i=1

D(fi)

2ρ2

]
, (9)

where Li is the value of left image at pixel i, Ri+fi is the
value of the right image at pixel j displaced from pixel i by fi,
and ρ2 is the stationary noise variance. In computer vision, the
disparity fi is usually one-dimensional since the stereo images
are rectified. However, in general one can also consider two
dimensional disparities. The function D(fi) = (Li −Ri+fi)2
is usually called the data consistency term.

When the depth map is modeled by a Markov Random Field
(MRF), the prior over disparities can be expressed as:

P (f) ∝ exp

[
−
∑
c∈C

Vc(f)

]

= exp

−∑
i

V1(fi)−
∑
i,j∈Ni

V2(fi, fj)− ...

, (10)

1Since there is a unique mapping from disparity values to depth values,
inferring disparity is an equivalent problem to inferring depth.
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where C is a set of cliques, and the Vc are clique potentials [16]
of first, second and higher order. A particularly interesting case
is when the cliques are at most of order two, such that the
prior includes pairwise correlations between disparity variables
at neighboring nodes. In this case, the disparity estimation
problem is:

f∗ = argmin
f
E(f |L,R)

= argmin
f

∑
i

D(fi)

2ρ2
+
∑
i

V1(fi) +
∑
i,j∈Ni

V2(fi, fj)

 ,
(11)

where V1 and V2 are first and second order cliques, which can
be defined in a number of different ways depending on the task
at hand. Ni denotes the neighborhood nodes of node i. Such
energies can be efficiently minimized by graph cut [1], belief
propagation [17], log-cut [18], etc. When the first order cliques
V1 are equal (no preferred disparity), the energy function in
Eq. (11) reduces to the one used in most computer vision
algorithms. Second order cliques incorporate the smoothness
constraint, and they can be evaluated as absolute distance be-
tween disparities of neighboring nodes, or by the Potts energy
that puts more weight on neighboring that disparities differ.
However, a pairwise model such as (11) cannot incorporate
higher order structure such as depth edges. Although the MRF
model can be extended to include triplewise correlations [2],
including even higher order priors in a single layer leads to
high complexity graphs, which in general cannot be optimized
by the graph cut [19].

Another approach to modeling higher order dependencies is
via a sparse prior over a dictionary adapted to the structure of
signals. Such an approach has proven successful in natural
images, where a sparsity prior on a dictionary of oriented
edges solves inverse problems such as denoising and inpaint-
ing [6], [13], [20]. We expect that such priors would also
play a crucial role in solving the correspondence problem,
and thus we approach the problem of depth inference by
including a sparsity prior on local depth features learned by the
algorithm proposed in Section II. The details of our solution
are described in the next section.

B. Depth inference using sparse priors

We propose to combine the MRF structure with a sparse
coding network within a two layer graphical model shown
in Fig. 1. The bottom layer is made up of the left and right
input images. The middle layer is modeled as an MRF (as
previously described), where each node consists of two latent
variables: depth estimates fi and the reliability of each depth
estimate given by σi. The top layer consists of latent sparse
coefficients aj that capture higher order depth dependencies.
The depth inference problem is cast as:

f∗ = argmax
f
P (f |L,R,Σ,a)

= argmax
f
P (L,R|f ,Σ,a)P (f |Σ,a)P (Σ)P (a), (12)

which has two additional variables with respect to Eq. 8:
the covariance matrix Σ of depth noise (i.e., the variance

L R

Φ

a1 a2 aK...

(fi, σi)

layer 1

layer 2

Fig. 1. Two-layer graphical model for depth inference.

or reliability of each depth estimate σi), and the sparse
coefficients a that represent hidden units. We propose to solve
this problem by alternating inference in each of the layers
separately, i.e., the algorithm iterates between the estimation
of f in the middle MRF layer and the inference of a and Σ
by the sparse priors in the top layer.

In inferring the middle layer, a and Σ are fixed and f is
inferred as:

f∗ = argmin
f
E(f |L,R,Σ,a)

= argmin
f

[
∑
i

D(fi)

2[ρ(σi)]2

+
∑
i

(fi − f̂i)2

2σ2
i

+
∑
i,j∈Ni

V2(fi, fj)], (13)

where f̂i is an element of the vector f̂ = Φa. Since a and Σ
are constant in this layer, priors P (a) and P (Σ) vanish from
the energy function. This problem is similar to the inference
problem in Eq. 8, with two differences: a) the data term
variance ρ depends on the variance of depth estimates σ2

i and
is different for each fi; and b) clique potentials depend on a
and σ2

i and are given as V1(fi) = (fi − f̂i)2/(2σ2
i ). The data

term variances [ρ(σi)]
2 can be estimated by their expected

values around f̂i under the noise variance σi. We use a square
window (f̂i − σi, f̂i + σi) to calculate this expectation, i.e.,:

[ρ(σi)]
2 = 〈(D(fi)−D(f̂i))

2〉, ∀fi ∈ (f̂i − σi, f̂i + σi).
(14)

Once we have inferred f in the middle layer, the inference
in the upper layer becomes:

(a, {σi})∗ = arg min
(a,{σi})

E(a,Σ|f)

= arg min
(a,{σi})

[∑
i

(fi − f̂i)2

2σ2
i

+ ‖a‖1

]
, (15)

where the hidden units are inferred by the ns-SC from the
disparity estimates obtained by the middle layer. Since ns-
SC evaluates both the mean f̂i and the variance σ2

i , it sends
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feedback to the middle layer to update the states of these
variables. With new estimates for each variable fi and σ2

i ,
the middle layer can re-evaluate the new disparity estimates
with new clique potentials.

The main role of describing each node in the MRF by a
Gaussian with mean fi and variance σ2

i is to resolve ambigu-
ities in stereo matching. Namely, when the data likelihood
at a certain point is unreliable (ρ(σi) is large), the stereo
matching algorithm puts more weight on the prior given by
V1(fi), which is estimated by the sparse priors from the upper
layer. This happens, for example, at scene points with specular
illumination, where the surface is not Lambertian. Since data
consistency is violated at those points, we need to use prior
information to solve the correspondence problem.

V. EXPERIMENTAL RESULTS

A. Learning of depth dictionaries

We have learned overcomplete dictionaries of depth atoms
using the regular sparse coding (SC) [6] and ns-SC. For train-
ing, we have used the ground truth disparity maps from the
2005 and 2006 Middlebury stereo datasets [14]. Two examples
of disparity maps are shown in Fig. 2. These maps represent
“inverse” depth, i.e., the disparity is inversely proportional to
depth, but keeps the same features (e.g. edges) as depth. It also
represents “projective depth”, because these disparity values
are dependent on the viewing angle. Finding representations
for the projective depth is especially desirable in multi-view
(3DTV) technologies, where an image is usually aligned to a
depth map in order to simplify view synthesis. On the other
hand, laser range scanners are typically of different resolution
and sampling than images, which makes them hard to register.
Another possibility would be to learn on depth maps from
time of flight cameras (TOF). However, there are no publicly
available databases for TOF data. Therefore, we have chosen
the Middlebury database for learning. No prior whitening has
been performed.

Depth maps from the Middlebury stereo dataset were ob-
tained using the structured light technique and they have
missing pixels (black pixels in Fig. 2). We treat those pixels
in two ways:

1) Approach 1: set the noise variance at missing pixels
to infinity (their contribution to learning is thus zero),
while the variance values of the rest of the pixels are
inferred during ns-SC learning; and

2) Approach 2: treat those pixels in the same manner as
other pixels and perform ns-SC learning (i.e., variances
of all pixels are inferred).

The dictionary learned with Approach 1 is denoted as Φ1

and with Approach 2 as Φ2. The idea behind learning with
Approach 2 is to see how well the ns-SC algorithm would
do if it had no information where the missing pixels are, and
would have to infer that. For comparison, we have also learned
the dictionary using standard sparse coding with constant noise
variance within the map [6], except at the missing pixels where
the variance is infinity (i.e., missing pixels do not bias the
learning). This dictionary is denoted as Φ3.

Within each iteration of ns-SC (and SC as well), we have
randomly chosen a large set of 16×16 patches. The dictionary
size has been set equal to the signal size (256), in order to
limit the complexity. Note that overcomplete dictionaries can
be learned as well, leading to better performance in target
applications and a higher computational cost. The parameter
σ2
0 has been chosen to have a small value ∼ 0.01. Since

the sparsity parameter λ is subsumed by the variance of the
noise inferred at each pixel, we set it to 1. Fig. 3 displays
learned dictionaries Φ1, Φ2 and Φ3. We can see that Φ1

and Φ2 are qualitatively similar, with mostly edge-like depth
functions and some slant-like atoms. These are the types
of features usually seen in depth maps. The dictionary Φ3

learned with SC exhibits some repetitive atoms, meaning that
learning prefers some directions in the high-dimensional space.
This might be explained by the fact that learning is done
on unwhitened data, so some directions have higher energy
(variance). This does not happen in ns-SC since the variance is
inferred and the learning rule is adapted accordingly. However,
it is hard to say which dictionary is the best based only on
the qualitative assessment. Therefore, in the next section we
perform quantitative comparison of these dictionaries on depth
map denoising.

B. Depth map denoising

Depth maps obtained by laser range scanners and TOF
cameras are typically corrupted by spatially varying noise.
Denoising of these depth maps thus becomes an important step
in applications that involve view synthesis in hybrid (depth
plus video) camera systems [21]. Depth denoising can be
achieved with the inference step of the ns-SC algorithm. For
evaluation purpose we have added synthetic noise to 1% of
randomly chosen pixels in a depth map block of 100 × 100
pixels, taken from the Purves natural depth maps database [22]
(different from the depth maps used for learning). The noise
has been generated according to the non-stationary Gaussian
model. Each pixel is corrupted by Gaussian noise whose
variance is randomly chosen from 0 to 1. We divide a depth
map into overlapping patches of 16 × 16 pixels (patches are
shifted by 1) and denoise each patch as: ŷ = Φâ, where
â is the sparse coefficient vector inferred by ns-SC. Prior to
inference, each patch has been normalized to have a variance
1, which facilitates the choice of the initialization of noise
variances (initialized also to 1). Each pixel in the denoised
depth map is evaluated as an average over patches that overlap
at that pixel.

The original and noisy depth maps are shown in Fig. 4a and
Fig. 4b, respectively; while Fig. 4c shows the added noise.
The denoised depth map using the ns-SC with Φ1 (Fig. 4e)
is of higher quality compared to the denoised depth map
using ns-SC and Φ2 (Fig. 4f) and ns-SC and Φ3 (Fig. 4g),
where the quality is measured by the Peak-SNR (PSNR).
Besides denoising, ns-SC also estimates the variance of the
noise, shown in Fig. 4d, whose spatial distribution (location
of noisy pixels) corresponds to the noise pattern. Moreover,
ns-SC using any one of the dictionaries outperforms denoising
using classical SC with fixed variance l2 − l1 minimization
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(a) Moebius (b) Reindeer

Fig. 2. Examples of disparity maps from the Middlebury 2006 dataset.

(a) Φ1 (b)Φ2 (b)Φ3

Fig. 3. Learned depth dictionaries: a) with ns-SC and masked missing pixels (Approach 1); b) with ns-SC and no masking of missing pixels (Approach 2);
c) with SC and masked missing pixels.

and Φ3, shown in Fig. 4h. We have also performed median
filtering denoising (Fig. 4i), since it is a proper filter for this
type of noise; the Total Variation denoising [23] using the
algorithm of Chambolle [24] (see Fig. 4j); the Non-Local (NL)
means denoising using median filtering [25] (Fig. 4k), and
the ns-SC inference using the translation invariant wavelet 7-9
frame (TIWF, Fig. 4l). Again, ns-SC with any of the learned
dictionaries Φ1-Φ3 outperforms the other solutions, both in
PSNR and visual quality. Although the solutions obtained
by median filtering and NL-means might also look visually
pleasing, these types of filters average over the fine details
in the map, which is undesirable. Using TIWF instead of the
learned dictionaries for ns-SC (Fig. 4l) is also suboptimal since
the wavelet frame is not adapted to the statistics of the signal.
We do not report the comparisons with denoising methods
designed for stationary noise (e.g., KSVD [13], GSM [26] and
BM3D [27]), since they are not really adapted to this type of
noise and thus cannot appropriately handle it.

Fig. 5a and Fig. 5b show PSNR versus the % of corrupted
pixels averaged over five depth maps, and it confirms the su-
periority of ns-SC with Φ1 over ns-SC with other dictionaries
(Fig. 5a) and over other denoising solutions (Fig. 5b). As
expected, ns-SC using a dictionary learned without masking
the missing pixels (Φ2, Approach 2) performs worse than ns-
SC using a dictionary learned with masking (Φ1, Approach 1),

since less information is provided to the learning algorithm2.
Interestingly, ns-SC with Φ2 performs better than SC with
Φ1, which shows the superiority of ns-SC compared to SC.
Another advantage of ns-SC compared to other denoising
methods is that we do not need to choose a special value
for the regularization parameter λ since the noise variance at
each pixel is inferred during denoising. On the other hand, for
TV denoising and NL means we have chosen the values of λ
or values of the noise variance that yield the best results.

If we have a depth map that has natural noise due to the
acquisition process, we can use ns-SC to remove the noise, but
also to point out the noisy pixels. These would correspond to
the pixels whose inferred noise variance is high. Fig. 6a shows
a noisy laser range scan depth map from the Purves database,
where the noisy pixels take values within the depth range (i.e.,
they are not marked as missing pixels). Reconstructions of
this depth map obtained by NL means filtering and ns-SC
(with Φ1) are shown in Fig. 6b and Fig. 6c, respectively. Both
methods denoised most of the erroneous pixels, but the NL-
means filtering also introduced a loss of texture information,
while ns-SC preserves this information. Moreover, ns-SC gives
an estimate of the noise variance at each pixel, displayed in
Fig. 6d. Interestingly, the indication of noisy pixels can be

2Note that the denoising algorithm does not use pixel masking, the masking
refers only to the way that the dictionary is learned.
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(a) original (b) noisy 28.5dB (c) noise magnitude (d) inferred variance

(e) ns-SC(Φ1), 37.8 dB (f) ns-SC(Φ2), 36.3 dB (g) ns-SC (Φ3), 35.3 dB (h) SC, 32.3dB

(i) median, 31.3 dB (j) TV, 31.8 dB (k) NL means, 32.9dB (l) TIWF, 33.7dB

Fig. 4. Denoising results for a depth map from the Purves database with synthetic noise (1% of corrupted pixels). Performance of ns-SC using different
dictionaries Φ1, Φ2 and Φ3 and performance of other denoising methods: SC- sparse coding, TV- total variation, Median, Non-Local (NL) means and
Translation Invariant Wavelet 7-9 Frame (TIWF). The variance inferred using the ns-SC method with Φ1 is shown on subfigure (d).
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Fig. 5. Average denoising performance with synthetic noise: PSNR vs the % of corrupted pixels (averaged over five depth maps from the Purves dataset).
a) Denoising performance comparison of ns-SC using different dictionaries Φ1, Φ2 and Φ3. b) Denoising performance comparison of ns-SC (using Φ1)
with other denoising methods: SC - sparse coding with Φ3; TV - total variation with optimal λ; Median filtering; NL means - non-local means; TIWF -
non-stationary sparse inference with the translation invariant wavelet 7-9 frame.
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used as a mask for inpainting by setting those pixel variances
to infinity (due to the finite precision of ns-SC, the inferred
variances are finite). The final inpainted depth map with ns-SC
is given in Fig. 6e.

Similar results are obtained on the depth maps captured
by the PMD Time-Of-Flight (TOF) camera3. These cameras
capture 2D video + depth dynamic information with a reason-
able time resolution. The camera sends a modulated optical
signal to the environment and measures the time of the round
trip travel of light for each pixel. The result is a depth map,
which is usually very noisy. The original and denoised depth
maps are given in Fig. 7a-d. Compared to NL-means, ns-SC
preserves some fine detail while removing the noise.

C. Stereo matching

Finally, we show the results of the two-layer stereo match-
ing algorithm described in Section IV using two different
algorithms for solving the MRF in the middle layer: 1) the
graph cut (GC) algorithm [1], and 2) the second order prior
(2OP) algorithm [2]. Although these are not the top performing
algorithms on the Middlebury benchmark, they are among the
most widely known, and their code is available online. Since
our two-layer model does not require a specific optimization
algorithm for the MRF (e.g., graph cut), an interested reader
can apply an algorithm of choice. Here, we are primarily
interested in evaluating the performance improvement obtained
by adding a second layer of hidden units above the MRF
solved with the two mentioned exemplary algorithms.

We have used a dictionary learned with Approach 1
(Sec. V-A), with 32 × 32 pixel atoms, and dictionary size of
1024 atoms. The learned dictionary has atoms similar to Φ1,
but larger, which leads to increased inference efficiency for
larger depth maps.

Fig. 8 shows the performance of GC and GC + ns-SC (our
two layer model with GC in the middle layer) on the Tsukuba
stereo pair from the 2001 Middlebury stereo database, which
does not belong to the training set. The original left image
from the stereo pair is shown in Fig. 8a (the right image
is similar), while the ground truth disparity map is given in
Fig. 8b. The estimated disparity map using the alpha-beta swap
graph cut algorithm [1], [19], [28], is shown in Fig. 8c. It
uses the data term with equal variances ρ2i for single cliques,
and the Potts energy model for pairwise cliques, given as:
V2(fi, fj) = u{i,j}T (fi 6= fj), where u{i,j} = U(|Li − Rj |)
and T denotes the indicator function. The function U is defined
as:

U(|Li −Rj |) =
{

2K if |Li −Rj | < 5 ;
K otherwise.

The parameter K has been set to 20, which is in the range
proposed in [1]. Fig. 8d shows the estimated disparity map
using our two layer model. This map was obtained at con-
vergence after three iterations between the disparity inference
in two layers. Inference in the bottom layer is done using
the graph cut with the modified data term and single cliques
according to Eq. (15). Since ns-SC assumes uncorrelated noise,

3http://www.pmdtec.com/

it infers the noise variance in single pixels of the disparity
map. Therefore, the pairwise cliques are not affected. Even
though graph cut returns discrete estimates of the disparity,
this does not change the continuous nature of the optimization
in the upper layer, as the quantization error is subsumed in
(fi − f̂i)2. We can see that the two layer model improves the
graph cut result by correcting 0.37% of pixels. The obtained
disparity map is also visually improved. Fig. 8e shows the
map of pixels modified by adding the upper layer of sparse
nodes: white pixels denote the correctly modified pixels (from
erroneous to correct) and black denote falsely corrected pixels
(from correct to erroneous). Clearly, there are more correctly
modified pixels, which are mostly located around depth edges.
This is consistent with the fact that the learned dictionary
contains oriented edges.

To demonstrate the generality of the two-layer method, we
have also tested it using the 2OP algorithm of Woodford et
al. [2], which solves the MRF with triplewise cliques. The
code and the default parameters have been obtained from
the authors website4. After only two iterations between the
two layers in our model, the percentage of bad pixels has
been reduced with respect to the 2OP algorithm by 1.26%
on the Teddy dataset (Fig. 9), and by 0.75% on the Cones
dataset (Fig. 10), where the disparity accuracy is set to one
pixel. The error corresponding to missing pixels (black pixels
on the ground truth map) has not been taken into account.
Both datasets are from the Middlebury database and do not
belong to the training set. Since the 2OP algorithm does
random initialization, we have ran the inference five times, and
obtained the average improvement of 1.25% for the Teddy set
and 0.92% for the Cones set. In each run, the two layer model
consistently outperformed the 2OP algorithm. Interestingly,
the upper layer correctly modified pixels that are mostly
located on the surfaces and some around edges, but also falsely
modified some depth edges (see Fig. 9e and Fig. 10e). False
modification of some depth edges is due to the fact that the
image segmentation strategy of the 2OP algorithm leads to
better estimation of depth around boundaries, compared to
just using the depth priors given by the upper layer. This
underlines the importance of learning the joint statistics of
depth and intensity, which represents a promising direction of
future research.

VI. RELATED WORK

A. Depth map representation and denoising

Although learning representations of images has been
widely addressed in the literature in the last few decades [6]–
[12], there has not been much work on learning representations
of depth/disparity maps. The most closely related work to
the one presented in this paper is the work by Mahmoudi
and Sapiro, who learn sparse representations of depth maps
for surface reconstruction [29]. Their work differs from ours
in two aspects: 1) they assume a stationary Gaussian noise
model; and 2) they learn overcomplete dictionaries per shape,
i.e., the dictionaries do not generalize to a set of depth maps.

4http://www.robots.ox.ac.uk/∼ojw/2op/index.html

http://www.pmdtec.com/
http://www.robots.ox.ac.uk/~ojw/2op/index.html
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(a) original (b) NL-means (c) ns-SC (d) variance from ns-SC (e) inpainted ns-SC

Fig. 6. Denoising results for a depth map from the Purves database with natural noise. Noisy samples appear mostly around depth edges, but there is also
some correlated noise (big white region). NL means filtering (b) and ns-SC (c) both remove only uncorrelated noise, but the NL means filter also undesirably
smoothens the textured regions. In addition to denoising, ns-SC infers the variance of the noise (d), which points out the noisy samples (non-zero pixels).
The indication of noisy samples can be used for inpainting (e).

(a) original (b) denoised ns-SC (c) variance from ns-SC (d) denoised with NLmeans

Fig. 7. Denoising results for a depth map from the time of flight depth image with the measurement noise. NL means filtering (d) denoises the depth map,
but smoothens out the fine details. In addition to good denoising, ns-SC (b) infers the variance of the noise (d), which points out the noisy samples (non-zero
pixels).

(a) left image (b) ground truth (c) GC (9.58%) (d) GC + ns-SC (9.21%) (e) modified pixels

Fig. 8. Disparity estimation results on the Tsukuba dataset: a) left image 288 × 384); b) ground truth disparity map; c) disparity estimation result with
graph cut [1], percentage of bad pixels: 9.58%, d) disparity estimation result with the two layer (GC+ns-SC) model with the learned dictionary (patch size
32× 32), percentage of bad pixels: 9.21%, e) modified pixels: white - correctly modified by the upper layer, black - falsely modified by the upper layer.

(a) left image (b) ground truth (c) 2OP (9.40%) (d) 2OP+ns-SC (8.14%) (e) modified pixels

Fig. 9. Disparity estimation results on the Teddy dataset: a) left image (375 × 450); b) ground truth disparity map; c) disparity estimation result with the
2OP algorithm [2], percentage of bad pixels: 9.40%, d) disparity estimation result with the two layer (2OP+ns-SC) model with the learned dictionary (patch
size 32× 32), percentage of bad pixels: 8.14%, e) pixels: white - correctly modified by the upper layer, black - falsely modified by the upper layer.
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(a) left image (b) ground truth (c) 2OP (12.73%) (d) 2OP+ns-SC (11.98%) (e) modified pixels

Fig. 10. Disparity estimation results on the Cones dataset: a) left image (375× 450); b) ground truth disparity map; c) disparity estimation result with the
2OP algorithm [2], percentage of bad pixels: 12.73%, d) disparity estimation result with the two layer (2OP+ns-SC) model with the learned dictionary (patch
size 32×32), percentage of bad pixels: 11.98%, e) modified pixels: white - correctly modified by the upper layer, black - falsely modified by the upper layer.

As we have seen in Section V, depth dictionary learning
with stationary additive noise yields inferior denoising per-
formance compared to the one with a non-stationary noise
model. Besides the advantage of learning under adaptation to
noise/unreliabilty of depth maps, our method also infers the
measure of unreliability of each pixel in a depth map, which
is extremely useful in applications such as view synthesis [3]
and stereo matching IV-B.

In the context of depth coding/compression, some re-
searchers have proposed constructions of transforms that are
adapted to shape and depth representation. Maitre and Do
proposed a shape-adaptive wavelet transform that generates a
small number of wavelet coefficients along depth edges [30].
The coding scheme allocates more bits for representing depth
edges, which are detected by the Canny edge detector. Con-
struction of piecewise smooth functions, called “platelets”
represents also an interesting approach for dealing with smooth
images with sharp boundaries, such as confocal microscopy
images [31] or depth maps [32]. Methods [30] and [32]
demonstrate efficient coding performance on ground truth
(not noisy) depth maps. To the best of our knowledge, these
methods have not been extended to deal with noisy, uncertain
depth maps usually obtained from stereo matching or time of
flight cameras.

In addition to the problem of dealing with unreliable depth
estimates in image based rendering, denoising of depth maps
has become of significant interest recently due to the develop-
ment of the Time-Of-Flight (TOF) cameras. Unlike in standard
imaging, the noise in depth maps is non-stationary: it has dif-
ferent statistics for different scene contents. Interestingly, the
noise variance of depth pixels is inversely proportional to the
amplitude values of light captured by the sensor pixels [33].
Edeler et al. used this relation and a non-stationary noise
model equivalent to ours in order to perform superresolution
of depth maps [33]. However, their solution of the inverse
problem assumes known noise statistics particular to TOF
data, while our approach infers these statistics and thus it
is more general. The aforementioned relation between noise
variances and light amplitudes does not hold for the noise
introduced around depth edges and at close distances, when it
becomes more of “salt and pepper” nature, i.e., there are depth
outliers. Most previous work on TOF depth data denoising
deals with this noise type by first removing the outliers and
then denoising the depth map using the bilinear filter [34] or

non-local (NL) means [35] (also see [36] for the application
of NL-means to laser range data). Prior removal of outliers
is crucial here, since these would bias the estimate of the
noise variance for the depth map. Our work does not need
outlier removal, since those are inferred along the sparse
approximation algorithm. Moreover, we obtain a quantitative
estimate of the reliability for each pixel in the depth map. The
experimental results in Section V confirm that our approach is
superior to NL means filtering using the median filter, which
is better suited for salt-and-pepper noise and does not smooth
out the discontinuities in the depth map. Finally, one should
note that the proposed variance inference represents a general
way of estimating the noise statistics and it can be used in
many regularization-based framework for denoising (e.g., in a
variational formulation of NL means). Such variance-adaptive
denoising strategy would certainly improve the performance of
those methods on depth data. It thus represents an important
contribution to the field of denoising.

B. Depth from stereo

As it is a highly ill-posed problem, stereo correspondence
significantly depends on prior information about the depth
structure in the scene. The most significant progress in stereo
matching has been made by utilizing the depth smoothness
prior. Although the idea that nearby pixels should have similar
disparities dates back to the seventies [37], high perfor-
mance depth estimation algorithms appeared much later with
the introduction of the piecewise smoothness (l1) prior that
preserves depth discontinuities. Depth estimation algorithms,
such as the graph cut [1] and belief propagation [17], define
the matching problem as an energy minimization problem,
where the depth map is modeled as a Markov Random Field
(MRF) [16] with single and pairwise clique potentials. Due
to the significant performance improvements with respect to
previous approaches, these MRF-based algorithms gained a lot
of success. During the last decade, many methods based on
graph cuts and belief propagation have been proposed, which
attain performance improvements by including additional con-
straints to handle occlusions [38]–[40] or by performing image
segmentation during or prior to matching [41].

Other modifications of MRF approaches include algorithms
that extend the MRF objective from single and pairwise cliques
to triplewise [2] and higher order ones [42]. Since graph-cut
algorithms cannot be straightforwardly extended to optimally
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solve MRFs that include priors on these higher order depen-
dencies [19], methods [2] and [42] are based on the QPBO [43]
optimization algorithm. However, QPBO gives suboptimal
solutions for higher order priors, leaving a certain number of
pixels unlabeled in estimated disparity maps. Moreover, the
computational complexity of QPBO increases exponentially
with the degree of the MRF, and limiting implementations to
triple-wise cliques.

Since depth maps of natural scenes contain more complex
structures that cannot by captured by pairwise or triple-
wise statistics, it is important to include priors on higher
order dependencies in stereo matching. The proposed two
layer approach to depth inference offers an efficient way to
regularize the solution of stereo matching by utilizing sparse
priors over learned depth dictionaries. Because of its generic
formulation, the proposed method can use any of the state of
the art MRF-based depth estimation methods in the middle
layer, and obtain an improved depth map solution. The most
important contribution of the proposed two-layer approach to
stereo matching is that it can be applied so generally.

VII. CONCLUSIONS

We have presented a method to learn dictionaries of depth
features that capture higher-order dependencies in depth maps,
resulting in oriented depth edges and slanted surfaces. Because
depth is not a perfectly measurable phenomenon, learning its
statistics has to be performed under noisy conditions, where
the type of noise is significantly different than the one usually
seen in images. Our new sparse coding algorithm explicitly
takes into account the noisy nature of depth estimates, such
that the inference and learning can “see through” the noise in
order to fill in and learn the appropriate structure. Moreover,
it infers a reliability measure of each sample that can be
further used in any algorithm having inferred data as input. Our
denoising results have demonstrated that the depth dictionary
learned with the new ns-SC method with non-stationary noise
gives superior performance compared to the state of the art.

The sparsity prior that enforces higher order dependencies
is then exploited in a new stereo matching method. We have
defined a two-layer graphical model where the nodes in the
middle layer encode disparities and their correlation, and the
nodes in the upper layer enforce sparse priors. The proposed
approach is quite general: the inference in the middle layer
can use any existing MRF-based depth estimation algorithm,
which combined with sparse inference in the upper layer
can yield improved performance. The importance of higher
order dependencies in the depth structure is confirmed by
the superior performance of the two layer model compared
to the MRF-based model only, for two different MRF-based
algorithms. A promising perspective is to use ns-SC to learn
joint representations of texture (color) and depth. It will also
be important to go beyond linear generative models to properly
deal with occlusion in 3D scenes.
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