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Fitting probabilistic models to data is often difficult, due to the general intractability of the partition

function. We propose a new parameter fitting method, minimum probability flow (MPF), which is

applicable to any parametric model. We demonstrate parameter estimation using MPF in two cases: a

continuous state space model, and an Ising spin glass. In the latter case, MPF outperforms current

techniques by at least an order of magnitude in convergence time with lower error in the recovered

coupling parameters.
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Scientists and engineers increasingly confront large and
complex data sets that defy traditional modeling and analy-
sis techniques. For example, fitting well-established proba-
bilistic models from physics to population neural activity
recorded in retina [1,2] or cortex [3–5] is currently imprac-
tical for populations of more than about 100 neurons [6].
Similar difficulties occur in many other fields, including
computer science [7], genomics [8], and physics [9].

The canonical problem is to find parameter values � that
result in the best match between a model and a list of
observations D. Parameter estimation can be viewed as
the inverse of the usual problem physicists face: rather than
assuming fixed model parameters, such as coupling
strengths in an Ising spin glass, and then predicting ob-
servable properties of the system, such as spin-spin corre-
lations, our goal is to start with a series of observations and
then estimate the underlying model parameters. This is a
challenging problem in many interesting cases [7,9,10].

Consider a data distribution over N discrete states, rep-

resented as a vector pð0Þ 2 RN , with pð0Þ
i the fraction of the

observations D in state i. A model distribution parame-

trized by � is similarly represented as pð1Þð�Þ 2 RN . The
superscripts (0) and (1) indicate initial conditions and
equilibrium under system dynamics, as described below.

For any model distribution pð1Þð�Þ, the probability as-
signed to each state can be written

pð1Þ
i ð�Þ ¼ exp½�Eið�Þ�

Zð�Þ ; (1)

where Eð�Þ 2 RN can be viewed as the energy in the
familiar Boltzmann distribution (with kBT set to 1). Zð�Þ
is the partition function, which involves a sum over all N
possible states of the system,

Zð�Þ ¼ XN
i

exp½�Eið�Þ�: (2)

For clarity we develop our method using discrete state
spaces, but it extends to probabilistic models over continu-
ous state spaces, as we demonstrate for an independent
component analysis (ICA) model [11].
The standard objective for parameter estimation is to

maximize the likelihood of the model pð1Þð�Þ given
the observations D, or equivalently to minimize

DKLðpð0Þ k pð1Þð�ÞÞ, the Kullback-Leibler (KL) divergence
between the data distribution and model distribution

[7,12]. The estimated parameters �̂ are given by

�̂ ¼ argmin�DKLðpð0Þ k pð1Þð�ÞÞ; (3)

DKLðpð0Þ k pð1Þð�ÞÞ ¼ X
i

pð0Þ
i logpð0Þ

i �X
i

pð0Þ
i logpð1Þ

i ð�Þ:

(4)

Unfortunately, the partition function Zð�Þ in pð1Þ
i ð�Þ

usually involves an intractable sum over all system states.
This is commonly the major impediment to parameter
estimation.
Many approaches exist for approximate parameter esti-

mation, including mean field theory [13,14] and its expan-
sions [14,15], variational Bayes techniques [16,17],
pseudolikelihood [18], contrastive divergence [19,20],
score matching [21,22], minimum velocity learning [23],
and a multitude of Monte Carlo and numerical integration-
based methods [10,24].
Most Monte Carlo methods rely on two core concepts

from statistical physics, which we will use to develop our
parameter estimation technique, minimum probability flow
(MPF). The first of these is conservation of probability, as
enforced by the master equation for the evolution of a

distribution pðtÞ with time

_p ðtÞ
i ¼ X

j�i

�ijð�ÞpðtÞ
j �X

j�i

�jið�ÞpðtÞ
i : (5)
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�ijð�Þ gives the rate at which probability flows from state j

into state i. The first term of Eq. (5) captures the flow of
probability out of other states j into the state i, and the
second represents the flow out of i into other states j.

The second core concept is detailed balance,

�jip
ð1Þ
i ð�Þ ¼ �ijp

ð1Þ
j ð�Þ; (6)

which when satisfied ensures that the probability flow from
state i into state j equals the probability flow from j into i,

and thus that the distribution pð1Þ is a fixed point of the
dynamics. Sampling in most Monte Carlo methods is
performed by choosing � consistent with Eq. (6) (and the
added requirement of ergodicity [7]), then stochastically
running the dynamics in Eq. (5). Unfortunately, sampling
algorithms can be exceedingly slow to converge, and are
thus ill suited for use in each parameter update step during
parameter estimation.

Using these two core concepts, we propose an approach,
illustrated in Fig. 1, that avoids both sampling and explicit
calculation of the partition function. Specifically, we es-
tablish deterministic dynamics obeying Eqs. (5) and (6)

that converge to the model distribution pð1Þð�Þ, and initi-

alize them at the data distribution pð0Þ. Rather than allow-
ing the dynamics to fully converge and making parameter

updates that minimize DKLðpð0Þ k pð1Þð�ÞÞ as in maximum
likelihood learning [Eqs. (3) and (4)], our parameter up-

dates instead minimize DKLðpð0Þ k pð�Þð�ÞÞ, the KL diver-
gence after running the dynamics for an infinitesimal time
�. This requires computing only the instantaneous flow of
probability away from the data distribution at time t ¼ 0.

The transition rates �ij are underconstrained by Eq. (6).

Introducing the additional constraint that � be invariant to
the addition of a constant to the energy function [as is true

for the model distribution pð1Þð�Þ], we choose the follow-
ing form for �ij:

�ij ¼ gij exp

�
1

2
½Ejð�Þ � Eið�Þ�

�
; ði � jÞ; (7)

where gij ¼ gji 2 f0; 1g. The vast majority of the factors

gij can generally be set to 0. However, for the dynamics to

converge to pð1Þð�Þ, there must be sufficient nonzero �
elements to ensure mixing. In binary systems, good results
are obtained by setting gij ¼ gji ¼ 1 only for states i and j

differing by a single bit flip. The elements of gij may also

be sampled, rather than set by a deterministic scheme (see
Supplemental Material [25]).
Given the transition matrix � and the listD of observed

data samples, and taking � small, the objective function

DKLðpð0Þ k pð�Þð�ÞÞ is approximated by its first order Taylor
expansion, denoted Kð�Þ (see Supplemental Material [25])

Kð�Þ ¼ DKLðpð0Þ k pðtÞð�ÞÞjt¼0

þ �
@DKLðpð0Þ k pðtÞð�ÞÞ

@t

��������t¼0
; (8)

¼ �
X
i=2D

_pð0Þ
i ¼ �

M

X
i=2D

X
j2D

�ij; (9)

¼ �

M

X
j2D

X
i=2D

gij exp

�
1

2
½Ejð�Þ � Eið�Þ�

�
; (10)

where M ¼ jDj is the number of data samples. Parameter

estimation is performed by finding �̂ ¼ argmin�Kð�Þ, gen-
erally via gradient descent of Kð�Þ. Thus, minimizing the

KL divergenceDKLðpð0Þ k pð�Þð�ÞÞ for small � is equivalent
to minimizing the initial flow of probability out of data
states j into nondata states i [Eq. (9)]. For small systems, or
large numbers of observations, every state may be a data
state, in which case the first order term vanishes and higher
order terms must be included.

The dimensionalities of pð0Þ and � are typically large
(e.g., 2d and 2d � 2d, respectively, for a d-bit binary sys-
tem). Fortunately, both can also be made extremely sparse:

pð0Þ
j ¼ 0 for all nondata states j =2 D, and we need only

evaluate �ij for which j 2 D and gij � 0. The cost in both

memory and time is therefore onlyOðMÞ per learning step.
The dependence of total convergence time on the number
of samplesM is problem dependent, but it is roughlyOðMÞ
for the Ising spin glass model discussed below (see
Supplemental Material [25]).
In addition, when estimating parameters for a model in

the exponential family—that is, models such as spin
glasses for which the energy function is linear in the
parameters �—the MPF objective function Kð�Þ is convex
[26], guaranteeing that the global minimum can always be
found via gradient descent. For exponential family models

FIG. 1 (color). An illustration of parameter estimation using
MPF. The three successive panels illustrate the sequence of
parameter updates that occur during learning. Each set of axes
represents the space of probability distributions. The dashed red
curves indicate the family of model distributions pð1Þð�Þ pa-
rametrized by �. The black solid curves indicate deterministic
dynamics that transform the data distribution pð0Þ into the model
distribution pð1Þð�Þ. Under maximum likelihood learning, model
parameters � are chosen so as to minimize the KL divergence
between the data distribution pð0Þ and the model distribution
pð1Þð�Þ. Under MPF the KL divergence between pð0Þ and pð�Þð�Þ
is minimized instead, where pð�Þð�Þ is the distribution obtained
by initializing the dynamics at the data distribution pð0Þ and then
evolving them for an infinitesimal time �. Here we represent
graphically how parameter updates that pull pð�Þð�Þ towards pð0Þ
also tend to pull pð1Þð�Þ towards pð0Þ.
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over continuous rather than discrete state spaces, MPF
further provides a closed form solution for parameter
estimation [27]. MPF is also consistent—meaning that if

the data distribution pð0Þ belongs to the family of distribu-

tions pð1Þð�Þ parametrized by � (Fig. 1, red dashed line),

the objective function DKLðpð0Þ k pð�Þð�ÞÞ will have its
global minimum at the true parameter values (see
Supplemental Material [25]).

We evaluated performance by fitting an Ising spin glass
(sometimes referred to in the computer science literature as
a fully visible Boltzmann machine or simply as an Ising
model) of the form

pð1Þðx; JÞ ¼ 1

ZðJÞ exp½�xTJx�; (11)

where J only had nonzero elements corresponding to
nearest-neighbor units in a two-dimensional square lattice,
and bias terms along the diagonal. The training data D
consisted of M d-element independent and identically
distributed (iid) binary samples x 2 f0; 1gd generated via
Swendsen-Wang sampling [28] from a spin glass with
known coupling parameters. In this example, we used a
square 10� 10 lattice, d ¼ 102. The nondiagonal nearest-
neighbor elements of Jwere set using draws from a normal
distribution with variance �2 ¼ 10. The diagonal (bias)
elements of J were set so that each column of J summed to
0, and the expected unit activations were 0.5. The 2d � 2d

element transition matrix � was populated sparsely,

gij ¼ gji ¼
�
1 states i and j differ by single bit flip

0 otherwise
:

(12)

Code implementing MPF is available [29].
We compared parameter estimation using MPF against

parameter estimation using four competing techniques:
mean field theory (MFT) with Thouless-Anderson-Palmer
(TAP) corrections [30], one-step and ten-step contrastive
divergence [19] (CD-1 and CD-10), and pseudolikelihood
[18]. The results of our simulations are shown in Fig. 2,
which plots the mean square error in the recovered J and in
the corresponding pairwise correlations as a function of
learning time for MPF and the competing approaches out-
lined above. Using MPF, learning took approximately
60 seconds, compared to roughly 800 seconds for pseudo-
likelihood and approximately 20 000 seconds for both
1-step and 10-step contrastive divergence. Reasonable steps
were taken to optimize the performance of all the parameter
estimation methods tested (see Supplemental Material
[25]). Note that, given sufficient samples, MPF is guaran-
teed to converge exactly to the right answer, as it is con-
sistent and the objective function Kð�Þ is convex for a spin
glass. MPF fit the model to the data more accurately than
any of the other techniques. MPF was dramatically faster to
converge than any of the other techniques tested, with the
exception of MFTþ TAP, which failed to find reasonable
parameters. Note that MFTþ TAP does converge to the

correct answer in certain parameter regimes, such as the
high temperature limit [15], while remaining much faster
than the other four techniques.
As a demonstration of parameter estimation using MPF

for a continuous state space probabilistic model, we trained
the filters J 2 Rd�d of a d dimensional ICA [11] model
with a Laplace prior,

pð1Þðx; JÞ ¼ e
�P

k

jJkxj

2d detðJ�1Þ ; (13)

where x 2 Rd is a continuous state space. Since the log
likelihood and its gradient can be calculated analytically
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FIG. 2 (color). A demonstration of MPF outperforming exist-
ing techniques for parameter recovery in an Ising spin glass
model. (a) Time evolution of the mean square error in the
coupling strengths for 5 methods for the first 60 seconds of
learning. Note that mean field theory with second order correc-
tions (MFTþ TAP) actually increases the error above random
parameter assignment, though it does converge to the correct
answer in some other parameter regimes, such as in the high
temperature limit of this Ising spin glass model [15]. (b) Mean
square error in the coupling strengths for the first 800 seconds of
learning. (c) Mean square error in coupling strengths for the
entire learning period. (d)–(f) Mean square error in pairwise
correlations for the first 60 seconds of learning, the first 800
seconds of learning, and the entire learning period, respectively.
In every comparison above MPF finds a better fit, and for all
cases but MFTþ TAP does so in a shorter time.
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for ICA, we solved for J via maximum likelihood learning
[Eq. (3)] as well as MPF, and compared the resulting log
likelihoods. Training data consisted of natural image
patches. The log likelihood of the model trained with
MPF was �174:0 bits, while that for the maximum like-
lihood trained model was a nearly identical �173:6 bits.
Average log likelihood at parameter initialization was
�273:0 bits (see Supplemental Material [25]). The edge-
like filters resulting from training, similar to receptive
fields in the primary visual cortex [31], are shown in
Fig. 3 for both maximum likelihood and MPF solutions.

In summary, we have presented a novel, general purpose
framework, called minimum probability flow, for fitting
probabilistic models to data that outperforms current tech-
niques in both learning time and accuracy. Our method
works for any parametric model without hidden state var-
iables, over either continuous or discrete state spaces, and
we avoid explicit calculation of the partition function by
employing deterministic dynamics in place of the slow
sampling required by many existing approaches. Because
MPF provides a simple and well-defined objective func-
tion, it can be minimized quickly using existing higher
order gradient descent techniques. Furthermore, the objec-
tive function is convex for many models, including those in
the exponential family, ensuring that the global minimum
can be found with gradient descent. Finally, MPF is con-
sistent—it will find the true parameter values when the data
distribution belongs to the same family of parametric
models as the model distribution.
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Appendix A: Taylor Expansion of KL Divergence

The minimum probability flow learning objective func-
tion K (θ) is found by taking up to the first order terms
in the Taylor expansion of the KL divergence between
the data distribution and the distribution resulting from
running the dynamics for a time ε:

K (θ) ≈ DKL

(
p(0)||p(t) (θ)

) ∣∣∣
t=0

+ ε
∂DKL

(
p(0)||p(t) (θ)

)
∂t

∣∣∣
t=0

(A-1)

= 0 + ε
∂DKL

(
p(0)||p(t) (θ)

)
∂t

∣∣∣
t=0

(A-2)

= ε
∂

∂t

(∑
i∈D

p
(0)
i log

p
(0)
i

p
(t)
i

)∣∣∣∣∣
0

(A-3)

= −ε
∑
i∈D

p
(0)
i

p
(0)
i

∂p
(t)
i

∂t

∣∣∣∣∣
0

(A-4)

= −ε
∑
i∈D

∂p
(t)
i

∂t

∣∣∣∣∣
0

(A-5)

= −ε

(
∂

∂t

∑
i∈D

p
(t)
i

)∣∣∣∣∣
0

(A-6)

= −ε ∂

∂t

(
1−

∑
i/∈D

p
(t)
i

)∣∣∣∣∣
0

(A-7)

= ε
∑
i/∈D

∂p
(t)
i

∂t

∣∣∣∣∣
0

(A-8)

= ε
∑
i/∈D

∑
j∈D

Γijp
(0)
j (A-9)

=
ε

|D|
∑
i/∈D

∑
j∈D

Γij , (A-10)

where we used the fact that
∑
i∈D p

(t)
i +

∑
i/∈D p

(t)
i = 1.

This implies that the rate of growth of the KL divergence
at time t = 0 equals the total initial flow of probability
from states with data into states without.

Appendix B: Convexity

As observed by Macke and Gerwinn [1], the MPF ob-
jective function is convex for models in the exponential
family.

We wish to minimize

K =
∑
i∈D

∑
j∈DC

Γjip
(0)
i . (B-1)

K has derivative

∂K

∂θm
=
∑
i∈D

∑
j∈Dc

(
∂Γij
∂θm

)
p
(0)
i (B-2)

=
1

2

∑
i∈D

∑
j∈Dc

Γij

(
∂Ej
∂θm

− ∂Ei
∂θm

)
p
(0)
i , (B-3)

and Hessian

∂2K

∂θm∂θn
=

1

4

∑
i∈D

∑
j∈Dc

Γij

(
∂Ej
∂θm

− ∂Ei
∂θm

)(
∂Ej
∂θn

− ∂Ei
∂θn

)
p
(0)
i

+
1

2

∑
i∈D

∑
j∈Dc

Γij

(
∂2Ej
∂θm∂θn

− ∂2Ei
∂θm∂θn

)
p
(0)
i .

(B-4)

The first term in the Hessian is a weighted sum of outer

products, with non-negative weights 1
4Γijp

(0)
i , and is thus

positive semidefinite. The second term is 0 for models
in the exponential family (those with energy functions
linear in their parameters).

Parameter estimation for models in the exponential
family is therefore convex using minimum probability
flow learning.

Appendix C: Relationship of MPF to other
techniques

1. Score matching

Score matching, developed by Aapo Hyvärinen [2], is a
method that learns parameters in a probabilistic model
using only derivatives of the energy function evaluated
over the data distribution (see Equation (C-5)). This
sidesteps the need to explicitly sample or integrate over
the model distribution. In score matching one minimizes
the expected square distance of the score function with
respect to spatial coordinates given by the data distribu-
tion from the similar score function given by the model
distribution. A number of connections have been made
between score matching and other learning techniques
[3–6]. Here we show that in the correct limit, MPF also
reduces to score matching.

For a d-dimensional, continuous state space, we can
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write the MPF objective function as

KMPF =
1

N

∑
x∈D

∫
ddy Γ(y, x)

=
1

N

∑
x∈D

∫
ddy g(y, x)e

1
2 (E(x|θ)−E(y|θ)), (C-1)

where the sum
∑
x∈D is over all data samples, and N is

the number of samples in the data set D. Now we assume
that transitions are only allowed from states x to states
y that are within a hypercube of side length ε centered
around x in state space. (The master equation will re-
duce to Gaussian diffusion as ε→ 0.) Thus, the function
g(y, x) will equal 1 when y is within the x-centered cube
(or x within the y-centered cube) and 0 otherwise. Call-
ing this cube Cε, and writing y = x+ α with α ∈ Cε, we
have

KMPF =
1

N

∑
x∈D

∫
Cε

ddα e
1
2 (E(x|θ)−E(x+α|θ)). (C-2)

If we Taylor expand in α to second order and ignore cubic
and higher terms, we get

KMPF ≈
1

N

∑
x∈D

∫
Cε

ddα (1)

− 1

N

∑
x∈D

∫
Cε

ddα
1

2

d∑
i=1

αi∇xiE(x|θ)

+
1

N

∑
x∈D

∫
Cε

ddα
1

4

(
1

2

[ d∑
i=1

αi∇xiE(x|θ)
]2

−
d∑

i,j=1

αiαj∇xi∇xjE(x|θ)

)
. (C-3)

This reduces to

KMPF ≈
1

N

∑
x∈D

[
εd +

1

4

(
1

2

1

12
εd+2

d∑
i=1

[
∇xiE(x|θ)

]2

− 1

12
εd+2

d∑
i=1

∇2
xiE(x|θ)

)]
, (C-4)

which, removing a constant offset and scaling factor, is
exactly equal to the score matching objective function,

KMPF ∼
1

N

∑
x∈D

[
1

2
∇E(x|θ) · ∇E(x|θ)−∇2E(x|θ)

]
(C-5)

= KSM. (C-6)

Score matching is thus equivalent to MPF when the con-
nectivity function g(y, x) is non-zero only for states in-
finitesimally close to each other. It should be noted that
the score matching estimator has a closed-form solution
when the model distribution belongs to the exponential
family [7], so the same can be said for MPF in this limit.

2. Contrastive divergence

Contrastive divergence [8, 9] is a variation on steepest
gradient descent of the maximum (log) likelihood (ML)
objective function. Rather than integrating over the full
model distribution, CD approximates the partition func-
tion term in the gradient by averaging over the distri-
bution obtained after taking a few, or only one, Markov
chain Monte Carlo (MCMC) step away from the data dis-
tribution (Equation C-7). Qualitatively, one can imagine
that the data distribution is contrasted against a distri-
bution which has evolved only a small distance towards
the model distribution, whereas it would be contrasted
against the true model distribution in traditional MCMC
approaches. Although CD is not guaranteed to converge
to the right answer, or even to a fixed point, it has proven
to be an effective and fast heuristic for parameter esti-
mation [10, 11].

The contrastive divergence update rule can be written
in the form

∆θCD ∝ −
∑
j∈D

∑
i/∈D

[
∂Ej (θ)

∂θ
− ∂Ei (θ)

∂θ

]
Tij , (C-7)

where Tij is the probability of transitioning from state
j to state i in a single Markov chain Monte Carlo step
(or a small number of steps). Equation C-7 has obvious
similarities to the MPF learning gradient

∂K (θ)

∂θ
= ε

2N

∑
j∈D

∑
i/∈D

[
∂Ej(θ)
∂θ − ∂Ei(θ)

∂θ

]
(C-8)

gij exp
[
1
2 (Ej (θ)− Ei (θ))

]
. (C-9)

Thus, steepest gradient descent under MPF re-
sembles CD updates, but with the MCMC sam-
pling/rejection step Tij replaced by a weighting factor
gij exp

[
1
2 (Ej (θ)− Ei (θ))

]
. Note that this difference in

form provides MPF with a well-defined objective func-
tion, and it guarantees consistency (i.e., there is a global
minimum when model and data distributions agree).

Appendix D: Sampling the connectivity matrix Γ

The MPF learning scheme is blind to regions in state
space which data states don’t have any connectivity to
- the flow at time 0 is only a function of the states that
are directly connected to data states. To get the most in-
formative learning signal, it seems sensible to encourage
probability flow directly between data states and states
that are probable under the model. That way the objec-
tive function is sensitive to the regions which are prob-
able under the model. We believe nearest neighbor con-
nectivity schemes are effective largely because as the pa-
rameters converge the regions around data states become
the high probability regions for the model. We wish to
try connectivity schemes other than nearest neighbors to
allow probability to most efficiently flow between data
states and high probability model states. In order to do
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so we need to slightly extend the MPF algorithm. We
do this by allowing the connectivity pattern in Γ to be
sampled independently in every infinitesimal time step.

Since Γ is now sampled, we will modify detailed bal-
ance to demand that, averaging over the choices for Γ,
the net flow between pairs of states is 0.〈

Γji p
(∞)
i (θ)

〉
=
〈

Γij p
(∞)
j (θ)

〉
(D-1)

〈Γji〉 p(∞)
i (θ) = 〈Γij〉 p(∞)

j (θ) , (D-2)

where the ensemble average is over the connectivity
scheme for Γ. We describe the connectivity scheme via
a function gij , such that the probability of there being a
connection from state j to state i at any given moment is
gij . We also introduce a function Fij , which provides the
value Γij takes on when a connection occurs from j to i.
That is, it is the probability flow rate when flow occurs -

〈Γij〉 = gijFij . (D-3)

Detailed balance now becomes

gjiFji p
(∞)
i (θ) = gijFij p

(∞)
j (θ) . (D-4)

Solving for F we find

Fij
Fji

=
gji
gij

p
(∞)
i (θ)

p
(∞)
j (θ)

=
gji
gij

exp [Ej (θ)− Ei (θ)] . (D-5)

F is underconstrained by the above equation. Motivated
by symmetry and aesthetics, we choose as the form for
the (non-zero, non-diagonal) entries in F

Fij =

(
gji
gij

) 1
2

exp

[
1

2
(Ej (θ)− Ei (θ))

]
. (D-6)

Γ is now populated as

rij ∼ rand [0, 1) (D-7)

Γij =

 −
∑
k 6=i Γki i = j
Fij rij < gij and i 6= j
0 rij ≥ gij and i 6= j

. (D-8)

Similarly, its average value can be written as

〈Γij〉 = gij

(
gji
gij

) 1
2

exp

[
1

2
(Ej (θ)− Ei (θ))

]
(D-9)

= (gijgji)
1
2 exp

[
1

2
(Ej (θ)− Ei (θ))

]
. (D-10)

So, we can use any connectivity scheme g in learning.
We just need to scale the non-zero, non-diagonal entries

in Γ by
(
gji
gij

) 1
2

so as to compensate for the biases intro-

duced by the connectivity scheme.
The full MPF objective function in this case is

K =
∑
j∈D

∑
i/∈D

gij

(
gji
gij

) 1
2

exp

[
1

2
(Ej − Ei)

]
(D-11)

where the inner sum is found by averaging over samples
from gij .

TABLE I. Mean square error in recovered coupling strengths
(εJ), mean square error in pairwise correlations (εcorr) and
learning time for MPF versus mean field theory with TAP
correction (MFT+TAP), 1-step and 10-step contrastive di-
vergence (CD-1 and CD-10), and pseudolikelihood (PL).

Technique εJ εcorr Time (s)

MPF 0.0172 0.0025 ∼60

MFT+TAP 7.7704 0.0983 0.1

CD-1 0.3196 0.0127 ∼20000

CD-10 0.3341 0.0123 ∼20000

PL 0.0582 0.0036 ∼800

Appendix E: Additional information on Ising spin
glass example from main text

1. Competing techniques

The four competing techniques against which MPF
was compared are: mean field theory (MFT) with
Thouless-Anderson-Palmer (TAP) corrections [12], one-
step and ten-step contrastive divergence [9] (CD-1 and
CD-10), and pseudolikelihood [13]. Table I shows the
relative performance at convergence for each technique
in terms of convergence time and mean square error in
coupling strengths and pairwise correlations.

MFT with TAP involves approximating the Gibbs free
energy of the model with a second-order Plefka expan-
sion [14]. MFT+TAP is fast because it involves only an
inversion of the magnetic susceptibility matrix, but it can
perform poorly, for instance near criticality [15].

Contrastive divergence approximates the term involv-
ing the partition function in ∂θDKL

(
p(0)

∣∣∣∣p(∞) (θ)
)
, via

a Markov chain which is initialized at the data distribu-
tion p(0), and then truncated after only a small number
of sampling steps. It is commonly used in machine learn-
ing, and provides an effective and fast stochastic param-
eter update rule for learning in many probabilistic mod-
els. However, it is not guaranteed to converge to a fixed
point, and it does not correspond exactly to an objective
function. The relationship between our technique and
contrastive divergence is discussed in the Supplemental
Material.

Pseudolikelihood approximates the joint probability
distribution of a collection of random variables with a
product of conditional distributions, where each factor is
the distribution of a single random variable conditioned
on the others:

p(x1, x2, . . . , xd)→
d∏
i=1

p(xi|x1, . . . xi−1, xi+1, . . . , xd)

(E-1)

This approach often leads to surprisingly good estimates,
despite the extreme nature of the approximation.
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2. Optimization steps taken for parameter
estimation algorithms

a. Minimum Probability Flow and Pseudolikelihood

Both Minimum Probability Flow and Pseudolikelihood
have well defined objective functions and gradients. Pa-
rameter estimation was thus performed by applying an
off the shelf L-BFGS (quasi-Newton gradient descent) im-
plementation [16] to their objective functions evaluated
over the full training dataset D.

3. Contrastive Divergence

The CD update rule was computed using the full train-
ing dataset. The learning rate was annealed in a linear
fashion from 3.0 to 0.1 to accelerate convergence.

a. Mean Field Theory

Mean field theory requires the computation of the in-
verse of the magnetic susceptibility matrix, which, for
strong correlations, was often singular. A regularized
pseudoinverse was used in the following manner:

A = (χTχ+ λI)+χT , (E-2)

where I is the identity matrix, M+ denotes the Moore-
Penrose pseudoinverse of a matrix M , χ is the magnetic
susceptibility χij = 〈xixj〉− 〈xi〉 〈xj〉, and λ is a regular-
izing parameter. This technique is known as stochastic
robust approximation [17].

4. Dependence of computation time on sample size

For the Ising spin glass example described above and
in the text, we measured both the time to evaluate the
objective function and the time for the L-BFGS imple-
mentation in Section E 2 a to converge as a function of
batch size. As can be seen in Figure E-1, for large batch
size the objective function evaluation time is linear, and
the convergence time is approximately linear.

Appendix F: Additional Ising spin glass comparison

The Ising model has a long and storied history in
physics [18] and machine learning [19] and it has recently
been found to be a surprisingly useful model for networks
of neurons in the retina [20, 21]. The ability to fit Ising
models to the activity of large groups of simultaneously
recorded neurons is of current interest given the increas-
ing number of these types of data sets from the retina,
cortex and other brain structures.

(a)

0 1 2 3 4 5 6 7 8 9 10
x 105

0

0.5

1

1.5

2

2.5

3

Batch size

O
bj

ec
tiv

e 
ev

al
ua

tio
n 

tim
e 

(s
)

Effect of batch size on objective function evaluation time

(b)

0 1 2 3 4 5 6 7 8 9 10
x 105

0

200

400

600

800

1000

1200

1400

Batch size

C
on

ve
rg

en
ce

 ti
m

e 
(s

)

Effect of batch size on convergence time

FIG. E-1. The time taken for (a) evaluation of the MPF ob-
jective function and (b) convergence of the L-BFGS parameter
estimation algorithm as a function of training batch size for
the Ising spin glass model presented in the text. Parame-
ter estimation involves many parameter update steps, each of
which requires reevaluating the MPF objective function and
gradient.

We fit an Ising model (fully visible Boltzmann ma-
chine) of the form

p(∞)(x; J) =
1

Z(J)
exp

−∑
i,j

Jijxixj

 (F-1)

to a set of N d-element iid data samples
{
x(i)|i = 1...N

}
generated via Gibbs sampling from an Ising model as
described below, where each of the d elements of x is
either 0 or 1. Because each xi ∈ {0, 1}, x2i = xi, we can
write the energy function as

E(x; J) =
∑
i,j 6=i

Jijxixj +
∑
i

Jiixi. (F-2)

The probability flow matrix Γ has 2N × 2N elements,



5

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1
40 unit Ising model

Time (sec)

M
ea

n 
ab

so
lu

te
 c

or
re

la
tio

n 
er

ro
r

FIG. F-1. A demonstration of rapid fitting of the Ising model
by minimum probability flow learning. The mean absolute
error in the learned model’s correlation matrix is shown as a
functions of learning time for a 40 unit fully connected Ising
model. Convergence is reached in about 15 seconds for 20, 000
samples.

but for learning we populate it extremely sparsely, setting

gij = gji =

{
1 states i and j differ by single bit flip

0 otherwise
.

(F-3)

Figure F-1 shows the average error in predicted corre-
lations as a function of learning time for 20,000 samples
from a 40 unit, fully connected Ising model. The final ab-
solute correlation error is 0.0058. The Jij used were gra-
ciously provided by Broderick and coauthors, and were
identical to those used for synthetic data generation in
the 2008 paper “Faster solutions of the inverse pairwise
Ising problem” [22]. Training was performed on 20,000
samples so as to match the number of samples used in
section III.A. of Broderick et al. Note that given suffi-
cient samples, the minimum probability flow algorithm
would converge exactly to the right answer, as learning
in the Ising model is convex (see Appendix B), and has
its global minimum at the true solution. On an 8 core
2.33 GHz Intel Xeon, the learning converges in about 15
seconds. Broderick et al. perform a similar learning task
on a 100-CPU grid computing cluster, with a convergence
time of approximately 200 seconds.

Appendix G: Continuous state space independent
component analysis (ICA) [23] model

Training was performed on 100,000 10 × 10 pixel
whitened natural image patches from the van Hateren
database [24]. Minimization was performed by alternat-
ing between minimization of the objective function in
Equation D-11 and updates to the continuous state space
connectivity function g (xj ,xi), as described in more de-
tail in Section H. Both training techniques were initial-

ized with identical isotropic Gaussian noise (with vari-
ance 0.01, such that each receptive field was initialized
to nearly unit length), and trained on the same image
patches, which accounts for the similarity of individual
filters found by the algorithms.

Appendix H: Continuous state space learning with
the connectivity function set via Hamiltonian Monte

Carlo

Choosing the connectivity matrix gij for Minimum
Probability Flow Learning is relatively straightforward
in systems with binary or discrete state spaces. Nearly
any nearest neighbor style scheme seems to work quite
well. In continuous state spaces q ∈ Rd however, con-
nectivity functions g (qi,qj) based on nearest neighbors
prove insufficient. For instance, if the non-zero entries
in g (qi,qj) are drawn from an isotropic Gaussian cen-
tered on qj , then several hundred non-zero g (qi,qj) are
required for every value of qj in order to achieve effective
parameter estimation in some fairly standard problems,
such as receptive field estimation in Independent Com-
ponent Analysis [23].

Qualitatively, we desire to connect every data state
qj ∈ D to the non data states qi which will be most
informative for learning. The most informative states
are those which have high probability under the model
distribution p(∞) (q). We therefore propose to popu-
late g (qi,qj) using a Markov transition function for the
model distribution. Borrowing techniques from Hamilto-
nian Monte Carlo [25] we use Hamiltonian dynamics in
our transition function, so as to effectively explore the
state space.

1. Extending the state space

In order to implement Hamiltonian dynamics, we first
extend the state space to include auxiliary momentum
variables.

The initial data and model distributions are p(0) (q)
and

p(∞) (q; θ) =
exp (−E (q; θ))

Z (θ)
. (H-1)

with state space q ∈ Rd. We introduce auxiliary momen-
tum variables v ∈ Rd for each state variable q, and call
the extended state space including the momentum vari-
ables x = {q,v}. The momentum variables are given an
isotropic gaussian distribution,

p (v) =
exp

(
− 1

2vTv
)

√
2π

, (H-2)
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and the extended data and model distributions become

p(0) (x) = p(0) (q) p (v) (H-3)

= p(0) (q)
exp

(
− 1

2vTv
)

√
2π

(H-4)

p(∞) (x; θ) = p(∞) (q; θ) p (v) (H-5)

=
exp (−E (q; θ))

Z (θ)

exp
(
− 1

2vTv
)

√
2π

(H-6)

=
exp (−H (x; θ))

Z (θ)
√

2π
(H-7)

H (x; θ) = E (q; θ) +
1

2
vTv. (H-8)

The initial (data) distribution over the joint space x
can be realized by drawing a momentum v from a uni-
form Gaussian distribution for every observation q in the
dataset D.

2. Defining the connectivity function g (xi,xj)

We connect every state xj to all states which satisfy
one of the following 2 criteria,

1. All states which share the same position qj , with
a quadratic falloff in g (xi,xj) with the momentum
difference vi − vj .

2. The state which is reached by simulating Hamil-
tonian dynamics for a fixed time t on the system
described by H (x; θH), and then negating the mo-
mentum. Note that the parameter vector θH is
used only for the Hamiltonian dynamics.

More formally,

g (xi,xj) = δ (qi − qj) exp
(
− ||vi − vj ||22

)
+ δ (xi −HAM (xj ; θH)) (H-9)

where if x′ = HAM (x; θH), then x′ is the state that re-
sults from integrating Hamiltonian dynamics for a time
t and then negating the momentum. Because of the mo-
mentum negation, x = HAM (x′; θH), and g (xi,xj) =
g (xj ,xi).

3. Discretizing Hamiltonian dynamics

It is generally impossible to exactly simulate the
Hamiltonian dynamics for the system described by
H (x; θH). However, if HAM (x; θH) is set to simulate
Hamiltonian dynamics via a series of leapfrog steps, it re-
tains the important properties of reversibility and phase
space volume conservation, and can be used in the con-
nectivity function g (xi,xj) in Equation H-9. In practice,
therefore, HAM (x; θH) involves the simulation of Hamil-
tonian dynamics by a series of leapfrog steps.

4. MPF objective function

The MPF objective function for continuous state
spaces and a list of observations D is

K (θ;D, θH) =
∑
xj∈D

∫
g (xi,xj)

exp

(
1

2
[H (xj ; θ)−H (xi; θ)]

)
dxi.

(H-10)

For the connectivity function g (xi,xj) given in Section
H 2, this reduces to

K (θ;D, θH) =∑
xj∈D

∫
exp

(
− ||vi − vj ||22

)
exp

(
1

2

[
1

2
vTj vj −−

1

2
vTi vi

])
dvi

+
∑
xj∈D

exp

(
1

2
[H (xj ; θ)−H (HAM (xj ; θH) ; θ)]

)
.

(H-11)

Note that the first term does not depend on the param-
eters θ, and is thus just a constant offset which can be
ignored during optimization. Therefore, we can say

K (θ;D, θH) ∼∑
xj∈D

exp

(
1

2
[H (xj ; θ)−H (HAM (xj ; θH) ; θ)]

)
.

(H-12)

Parameter estimation is performed by finding the pa-

rameter vector θ̂ which minimizes the objective function
K (θ;D, θH),

θ̂ = argmin
θ

K (θ;D, θH) . (H-13)

5. Iteratively improving the objective function

The more similar θH is to θ, the more informative
g (xi,xj) is for learning. If θH and θ are dissimilar, then
many more data samples will be required in D to effec-
tively learn. Therefore, we iterate the following proce-

dure, which alternates between finding the θ̂ which min-
imizes K (θ;D, θH), and improving θH by setting it to

θ̂,

1. Set θ̂t+1 = argminθK (θ;D, θtH)

2. Set θt+1
H = θ̂t+1

θ̂t then represents a steadily improving estimate for the
parameter values which best fit the model distribution
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p(∞) (q; θ) to the data distribution p(0) (q), described by
observations D. Practically, step 1 above will frequently

be truncated early, perhaps after 10 or 100 L-BFGS gra-
dient descent steps.
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