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Abstract Computational models of primary visual cortex
have demonstrated that principles of efficient coding and
neuronal sparseness can explain the emergence of neurones
with localised oriented receptive fields. Yet, existing models
have failed to predict the diverse shapes of receptive fields
that occur in nature. The existing models used a particular
“soft” form of sparseness that limits average neuronal activ-
ity. Here we study models of efficient coding in a broader
context by comparing soft and “hard” forms of neuronal
sparseness.

As a result of our analyses, we propose a novel network
model for visual cortex. The model forms efficient visual rep-
resentations in which the number of active neurones, rather
than mean neuronal activity, is limited. This form of hard
sparseness also economises cortical resources like synaptic
memory and metabolic energy. Furthermore, our model ac-
curately predicts the distribution of receptive field shapes
found in the primary visual cortex of cat and monkey.
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1 Introduction

The nature of neuronal representation in primary sensory
regions of cortex has been the subject of intense experi-
mental study ever since Hubel and Wiesel showed that neu-
rones in primary visual cortex respond to localised oriented
edges. Computational theories of representational learn-
ing have provided new ideas about the principles behind
the operation of the primary visual cortex, (e.g. Dayan
and Abbott, 2003). Specifically, methods for unsupervised
learning of neuronal representations have been developed
and applied to natural images (Bell and Sejnowski, 1997;
Olshausen and Field, 1996). These models have shown that
the combination of efficient coding and a sparseness con-
straint is compatible with physiological measurements in
V1: a learning process that optimises the efficiency of cod-
ing in sparse neuronal representations yields receptive fields
with oriented and localised structure like the ones that have
been experimentally observed.

Recently, however, the biological relevance of the early
models of efficient coding (Bell and Sejnowski, 1997;
Olshausen and Field, 1996) was challenged by work that
showed that the receptive fields generated by these models
were too stereotyped edge detectors and did not capture the
diversity in receptive field structure observed for the primary
visual cortex in cat and monkey (Ringach, 2002). Here we
investigate the reasons for this discrepancy by reconsidering
the particular form of sparseness used in the early models
and by exploring alternatives. We propose a new model of
sensory coding that uses a different form of sparseness and
that can account for the diversity of shapes of biological
receptive fields. We explain how our new model relates to
signal coding with optimized orthogonal matching pursuit
(Rebollo-Neira and Lowe, 2002) and how it might change
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the current understanding of the computational role of simple
cells in primary visual cortex.

1.1 Theories of efficient coding in vision

The biological motivation behind the theory of efficient sen-
sory coding is the assumption of economy in sensory pro-
cessing (Attneave, 1954; Barlow, 1983; Atick, 1992). If a bi-
ological organism is confronted with sensory input of certain
properties, it is natural to expect that evolution and learning
will adjust the organism to these properties in order to in-
crease the efficiency of sensory processing (Gibson, 1966;
Field, 1987). Specifically, it was suggested that efficiency in
visual neuronal coding means that neurones become sensi-
tive to independent elements that constitute an image. The
receptive fields of neurones should then correspond to the sta-
tistically independent structural primitives of natural images.
If the number of structural primitives in a patch of a natural
image is typically small, this should be reflected in neuronal
sparseness, that is, a small number of active neurones.

These general motivations of efficient coding are reflected
in individual models of visual coding. Sparsenet (Olshausen
and Field, 1996, 1997) is a causal generative model of visual
input in which the neuronal representations of images are
constrained to be sparse, that is, have a histogram of activity
values that is more steeply peaked at zero than a Gaussian
distribution. This model is able to learn to construct recep-
tive fields that resemble cortical edge detectors (simple cells)
when trained with natural images, but only if sparseness is
imposed. A second class of models use independent com-
ponent analysis of natural visual input (Bell and Sejnowski,
1997) which yields neuronal receptive fields with very sim-
ilar shapes to those obtained with Sparsenet. Independent
component analysis exploits the central limit theorem, which
states that when non-Gaussian signals are linearly superim-
posed, the resulting distribution is more Gaussian than its
components. In a linear mixture of signals, independent com-

ponent analysis determines the individual components whose
distributions deviate maximally from Gaussians (Hyvaerinen
and Oja, 2000). The degree to which the distributions of in-
dividual components deviate from Gaussianity can be mea-
sured in different ways. The most commonly used measure
of non-Gaussianity determines if a given distribution is more
narrowly peaked at zero than a Gaussian distribution. Thus,
although the underlying principles appear to be different,
both types of coding models rest on a very similar definition
of sparseness.

1.2 Different forms of sparseness and their motivations

Neuronal sparseness is defined in different ways in the lit-
erature. Both models of efficient sensory coding described
above force neuronal activities to smooth distributions that
are peakier than Gaussians. This constraint can be viewed
as soft sparseness. An alternative form of sparseness often
used in the literature is hard sparseness which keeps the pro-
portion of neurones small that are simultaneously active in a
network. Hard sparseness, in other words, corresponds to a
discontinuous density of neural activities with a Dirac peak
at zero. The effects of the two different types of sparseness
constraints on the distributions of neuronal activity can be
seen in Fig. 1 (solid curves). We refer to sensory represen-
tations that are formed using hard sparseness as sparse-set
representations because the fraction of active neurones is
small. In contrast, soft sparseness confines neural activity
levels but not necessarily the fraction of active neurones.

In principle, either soft or hard sparseness can be used
to generate efficient sensory representations. However, the
two forms of sparseness have different ramifications for other
aspects of cortical processing. These include the finite capac-
ity of synaptic memory to make associations (Zetsche, 1990;
Földiak, 1995) and restrictions on metabolic energy con-
sumption (Baddeley, 1996; Laughlin and Sejnowski, 2003;
Lennie, 2003). Parsimonius use of cortical memory favors
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Fig. 1 Empirical distributions of neuronal activities in the different
sparse coding models: Diagram (a) shows the results for a model with
soft sparseness constraint (Sparsenet with Cauchy sparseness), diagram
(b) for a model with hard sparseness constraint (SSC network). The dis-
tributions of neuronal activity coefficients are drawn as solid curves,
the corresponding distributions of feed-forward projections onto the

receptive fields are the dashed curves. The models were trained on
16 × 16 image patches and the sparseness parameter in Eq. (7) was set
to θ = 0.22 for the Sparsenet and θ = 0.31 for the SSC network. The
width bar in (b) gives the theoretical estimate of the gap size in the
distribution of neuronal activity values (see text)
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hard sparseness. Research on neuronal associative memory
has revealed that the memory in Hebbian synapses is best
used by neural representations in which only a small frac-
tion of the neural population is active at any instant, e.g.
(Willshaw et al., 1969; Gardner-Medwin, 1976; Palm, 1980;
Baum et al., 1988; Buhmann and Schulten, 1988; Tsodyks
and Feigelman, 1988; Treves, 1991; Palm and Sommer,
1992; Földiak, 1995). Further, we will demonstrate that
metabolic energy consumption can be conserved with hard
sparse representations.

The agenda in this paper is to compare models of ef-
ficient coding that incorporate either hard or soft sparse-
ness in their ability to predict receptive fields recorded in
primary visual cortex (Ringach, 2002). We investigate the
Sparsenet (Olshausen and Field, 1996) as an example of a
model that uses soft sparseness and two different models that
enforce hard sparseness. The first is the “sparse-set coding
network”, a novel model that explicitly optimises the sparse
selection of active neurones to achieve efficient coding. The
second model serves as a control; it is a naive combination
of Sparsenet with a mechanism for pruning small activity
values.

2 Methods

2.1 A generative model of visual input

The idea of efficient coding can be formalised in a causal
generative model of visual input. Generative models describe
data with complicated probability density (such as visual in-
puts in natural environments) by estimating a combination of
underlying causes. For a particular input x, the most probable
instantiation of causes is described by a set of real-valued
latent variables b. In general, this type of density estimation
is a tractable description of the data if the underlying causes
have a simple statistical structure, like for example, to be
independent. In linear generative models, the input may be
reconstructed by a matrix ": x̂ =

∑m
l=1 bl"l . Most models

of efficient neuronal coding are based on linear generative
models. They interpret the latent variables b as neuronal rep-
resentations of sensory input and relate the linear map " to
neuronal receptive fields.1

Van Essen and Anderson (1995), have estimated that sen-
sory representations in primary visual cortex are overcom-
plete; a 14 × 14 = 196 array of input fibres is analysed by
roughly 100000 neurones. The numbers correspond to an
overcompleteness of about five hundred which exceeds the
size of the models that can be handled in simulations. To en-
able overcompleteness in principle, we employed overcom-

1 For an introduction to these models, see chapter ten of Dayan and
Abbott (2003).

plete causal models in which the dimension of the neuronal
representation b was larger than the dimension of the input x.
Further, we assumed that the neural activities are indepen-
dent. In other words, the prior distribution of neural activity
is factorial: p(b) =

∏
i p(bi ). The joint distribution between

inputs and neuronal representations is then given as

p(x, b) = p(x | b)
∏

i

p(bi ) (1)

where p(x | b) is the likelihood. Sensory coding can now
be defined as the procedure that finds the neuronal repre-
sentation b that is most probable given a particular sensory
input. Mathematically this means that the posterior prob-
ability p(b | x) = p(x | b)p(b)/p(x) is maximised. For any
fixed input, p(x) is fixed and, therefore, the posterior is pro-
portional to the joint distribution in Eq. (1). Thus, a min-
imisation of the energy function E(b) = − log p(x, b) de-
scribes the coding process. We use a Gaussian likelihood
and p(bi ) ∝ exp[−θ f (bi )] in Eq. (1), which yields the en-
ergy function

E(b) = 1
2

n∑

i=1

(xi − x̂i )2 + θ
∑

i

f (bi ) (2)

As will be explained, the minimisation of the energy
function in Eq. (2) with respect to the variables b describes
many different methods of visual coding and efficient signal
representation. The first term on the right hand side of Eq. (2)
is the log likelihood, which is the quadratic error between the
reconstruction x̂ and the original input x. The second term on
the right hand side of Eq. (2) is the log of the factorial prior
of the neuronal variables. The learning of receptive fields
is described by minimising Eq. (2) with respect to ". It is
assumed that the adjustment of the receptive fields " takes
place on a slower time scale than the coding process, that
is, with neuronal representations b that are optimized for the
given stimuli. In the next section, we will insert different
functions f (x) that constrain the neuronal representations to
different forms of sparseness. The factor θ in the sparseness
term governs the balance between reconstruction quality and
sparseness. Therefore, we will refer to θ as the sparseness
parameter.

2.2 Models of sensory coding

First we introduce different models of sensory coding, that
is, different methods to optimise Eq. (2) with respect to the
neuronal variables b. The method of optimisation has to be
chosen in accordance to the sparseness function f (x). The
optimisation of the neuronal variables is assumed to take
place on a faster time scale than the adjustments of recep-
tive fields. Therefore, the following coding procedures treat
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the " variables simply as constants. We will use the follow-
ing definitions: ci := ("x)i = 〈"i , x〉 is the inner product
between a receptive field and the image (For inner prod-
ucts we will often use the bracket notation xT y =: 〈x, y〉.)
C := ""T is the matrix of inner products between receptive
fields.

2.2.1 Soft-sparseness models

If f (x) in Eq. (2) is chosen to be a smooth differentiable
function, the local optimisation process corresponding to
the coding of a sensory input can be computed by gradient
descent in Eq. (2)

#bi ∝ − ∂ E
∂bi

= ci −
∑

j '=i

Ci j b j − θ f ′(bi ) (3)

Note that Eq. (3) defines the neuronal update in a network
of cortical neurones. The neurones receive the feedforward
projection (or thalamic input) c. Further, the neurones are in-
terconnected with synaptic weights that are equal to the inner
product of their receptive fields C. Two features in this net-
work bias the neuronal activities towards lower values. First,
the mutual connections that introduce competition between
neurones with similar receptive fields. Second, the sparse-
ness term. Here we will explore two functions that impose
soft sparseness, the Cauchy function f (x) = log(1 + x2/σ 2)
as used in the original Sparsenet model (Olshausen and Field,
1996) and a hyperbola f (x) =

√
1 + x2/σ 2; a soft version

of the L1 norm as used in a different model (Chen et al.,
1998).

2.2.2 Hard-sparseness models

If f (x) in Eq. (2) is chosen to be the non-differentiable
function that counts active neurones: f (bi ) = ||b||L0 =∑

i H (|bi |) with H (x) := 1 for x > 0; H (x) := 0 for x ≤ 0,
gradient descent can no longer be used for the optimisa-
tion. Rather, the hard sparseness constraint introduces the
combinatorial problem to select the best subset of active
neurones. To reveal the optimisation function for selecting
active neurones, we rewrite Eq. (2) by expressing the neu-
ronal activities as products bi = ai yi of analogue coefficients
ai and binary usage variables yi (see Eq. (12) in Appendix
A). For any given combination of input c and active neu-
rones y the analogue values that minimise Eq. (2) are given
by

a∗ = [P yC P y]+c (4)

where P y := diag(y) is the projector onto the coefficient sub-
space spanned by the vector y and [.]+ is the Moore-Penrose
pseudoinverse. Inserting the optimal analogue coefficents a∗

in Eq. (12) yields the optimization function for selecting
active neurones:

E(y) = −1
2

〈
x, P y

" x
〉
+ θ ||y|| (5)

where P y
" := [P y"]+ P y" (Eq. 15) is the projector onto

the image subspace spanned by the receptive fields of the
active neurones {"i : yi = 1} (for derivation of Eqs. (4)
and (5), see Appendix A). Note, that Eq. (5) prefers sets
of active neurones whose receptive fields span a subspace
that contains as much as possible of the image. Thus, the
optimization of Eq. (2) with a hard sparseness constraint
dictates to select small sets of active neurones that minimise
the residual between input and reconstruction, given by
r y = x − x̂ = (11 − P y

")x .
In general, the formation of efficient sparse-set codes by

minimising Eq. (5) is an NP-complete combinatorial opti-
misation problem that in practice can only be solved ap-
proximately. The literature about adaptive signal represen-
tation describes several approximate optimisation strategies
of Eq. (5) under the name of matching pursuit. Matching
pursuit is a method to optimise the representation of a given
signal in a given set of basis functions. The basis functions
are the same as the receptive fields " in our model. If Eq. (5)
is used to select the single most adequate basis vector for
a given input, it becomes E(i) = − 1

2 〈x,"i 〉2. This version
of Eq. (5) describes the selection of the first basis function
in standard matching pursuit (Mallat and Zhang, 1993). In
standard matching pursuit the approximation of the signal
is refined by iterating the selection process on the residual.
However, this iteration minimises Eq. (5) only in cases where
the basis functions are orthogonal: Standard matching pur-
suit does not optimise coding efficiency in the general case
because the residual is not orthogonal to the subspace of the
basis functions that are already in use.

An extension of matching pursuit to cases of non-
orthogonal bases is called optimised orthogonal matching
pursuit (Rebollo-Neira and Lowe, 2002). This method cal-
culates a set of biorthogonal basis vectors in each iteration
step. The resulting basis set is used to determine the opti-
mal coefficients and for selecting the next basis function.
Optimised orthogonal matching pursuit can be reformulated
as local minimisation of Eq. (5), that is, a sequential min-
imisation in which only a single y-variable is changed at a
time: The biorthogonal basis vectors are given by the matrix
[P y"]+ which forms the projection operator P y

" in Eq. (5).
In practice, the computation of the biorthogonal basis in

each step of optimised orthogonal matching pursuit is com-
putationally much lengthier than standard matching pursuit.
This extra computational demand is somewhat ameliorated
by calculating each biorthogonal basis recursively from the
basis of the previous step. Corresponding to the recursive
acceleration in optimised orthogonal matching pursuit, the
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local minimisation of Eq. (5) can be numerically accelerated
by recursive computation of P y

" with the Sherman-Morrison
formula.

2.2.3 The sparse-set coding network model

Here we focus on approximate schemes of optimisation of
Eq. (5) that are not restricted to greedy, sequential updating
and that can be implemented in a neural network. To this end
we use Eq. (5) in the form

E(y) = −1
2

〈
c, [P yC P y]+c

〉
+ θ ||y|| (6)

(Eq. (13) in Appendix A). For the sparse regime, we devel-
oped an approximation to Eq. (6) that can be implemented
as a Hopfield type network (Hopfield, 1982)

E(y) + −1
2

〈y, T y〉 + θ ||y|| (7)

with the stimulus dependent interactions Ti j := −ci Ci j c j +
2δi j c2

i (derivation, see Appendix A). For a given input, the
updates for minimising the energy in Eq. (7) can be written as

yi ← H
(

Tii

2
−

∑

j '=i

Ti j y j − θ

)
= H (di − θ/ci ) (8)

bi = ai yi = di H (di − θ/ci ) (9)

with di = ci −
∑

j '=i

Ci j c j y j (10)

Eq. (9) follows from Eq. (17) in Appendix A.
In the following, we refer to the model described by the

Eqs. (7)–(10) as the sparse-set coding network or the SSC
network. Note that the competition between cells with similar
receptive fields in Eq. (10) is mediated by the same set of net-
work connections C as in the Sparsenet. However, the nature
of competition is different in the two models. The Sparsenet
implements the competition through subtraction of intra-
cortical feedback from feedforward input (Eq. (3)). In the
sparse-set coding network, the competition involves nonlin-
ear operations, a threshold function and multiplicative gating.

2.2.4 A control model based on pruning in soft-sparse
codes

To assess whether a basis selection involving discrete opti-
misation (7) pays off in coding efficiency, we compared the
sparse-set coding network to a control model. The control
model consisted of a combination of Sparsenet with a naive
sparse-set coding procedure, without the combinatorial op-
timization used in the SSC network. Specifically, we pruned

neuronal activities smaller than a threshold in the soft sparse
representations produced by Sparsenet. In the neurones that
remained active after the pruning, the activity levels were
readjusted for best reconstruction (using Eq. (4)). We care-
fully optimised the combination of values for the pruning
threshold and for the sparseness parameter θ in Eq. (2).

2.3 Learning of receptive fields

We assume that the learning of receptive fields occurs on a
slower time scale than the process of sensory coding. With
this assumption, the learning can be formulated as being in-
dependent of the dynamics involved in the particular coding
model. For all the coding models we have described, the re-
ceptive fields " can be learned with gradient descent in the
energy function of Eq. (2):

#"i j ∝ − ∂ E
∂"i j

= (xi − x̂i ) b j . (11)

This local “delta” learning rule was applied after the neu-
ral representation had been optimised for a given training
input. Eq. (11) works equally well for the models with hard
sparse coding because once active neurones have been se-
lected according to a given stimulus, the energy is a quadratic
(differentiable) function of the receptive fields of the selected
neurones. Thus, the learning affects only receptive fields of
selected neurones and the synaptic changes can be computed
as in Eq. (11), with the gradient descent method. In this study
we used batchwise learning, where synaptic changes from
several training inputs are accumulated before the receptive
fields were updated. After each update step the receptive
fields were renormalised.

3 Results

We compared the models of sensory coding with soft and
hard sparseness constraints in computer experiments. The
number of neurones in each model was three times the di-
mension of the inputs, that is, the representations were three
times overcomplete. All models were trained on patches
of natural images that had been “whitened” by reducing
low spatial frequency components (Olshausen and Field,
1996). The basis functions were randomly initialised be-
fore training. During training, the models were presented
with a large number of input patches. Each input was used
in the coding and learning procedure as described in the
Methods.

First we assessed, after the learning process had con-
verged, how the different types of sparseness constraints af-
fect the distributions of neuronal activity values. The sparse-
ness parameter θ in Eq. (2) was set based on the experiments
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that will be described in the last paragraph of this Section
3.3.

One can see in Fig. 1 that the feed forward responses
of the receptive field filters c (dashed curves) have similar
exponentially-tailed distributions in the hard and soft sparse
coding model (Ruderman, 1994). The kurtosis values were
similar, K = 6.6 for Sparsenet and K = 5.4 for the sparse-
set coding network. The strong effects of the lateral interac-
tions between the neurones are reflected in distributions of
neuronal activity values (solid curves). These distributions
look qualitatively different in both models. In the Sparsenet,
the lateral interaction leads to a distribution with much higher
kurtosis than the feed forward filter response (K = 197.3)
but with similar shape. In the sparse-set coding model, the
interaction between the neurones yields a discontinuous dis-
tribution of neuronal activities with a delta peak at zero with
a kurtosis of K = 287.3 which is 46% higher than for the
Sparsenet distribution. There are gaps in the histogram for
small (nonzero) absolute values because for these values the
achievable decrease in reconstruction error is outbalanced
by the usage penalty. The gap size can be estimated: From
Eq. (12) and the fact that the basis functions are normalized,
it follows that one neurone whose activity is a can reduce the
energy by not more than a2/2. The energy increase for using
an additional neurone is θ . Thus, the gap that one would ex-
pect theoretically is |a| ≤

√
2θ which is entered in Fig. 1(b)

as the width bar. As one can assess, the theoretical estimate
corresponds quite well to the gap observed in the empirical
distribution.

A typical result of neuronal coding and image reconstruc-
tion using the SSC network is shown in Fig. 2. The sparseness
parameter θ in Eq. (7) was chosen so that the average num-
ber of active neurones per patch was 4.8 (individual set sizes
vary with the input).

Note in Fig. 2 that although the sensory representation is
very sparse, that is, it has very few active neurones (displayed
by bright and dark dots in the middle panel), the quality of
reconstruction seems remarkably high.

3.1 Coding efficiency versus hard sparseness

We investigated the tradeoff between hard sparseness and
quality of reconstruction systematically by varying the
sparseness parameter θ in Eq. (7). Because it was time con-
suming to explore the entire parameter space, we trained the
models with smaller patches of natural images (8 × 8 rather
than 16 × 16). Figure 3 shows how the signal-to-noise ratio
in the reconstruction increased with increasing size of the
active set. Note that for mean set size = 1 the SSC network
yields efficient codes that are similar to vector quantisation
in which just one most appropriate basis function is selected
for a given input patch.

Fig. 2 Image coding and reconstruction in the SSC network (trained
on 8 × 8 patches). The original image (left panel) is tiled into 64 patches
of 8 × 8 pixels. The middle panel shows the neuronal activities repre-
senting the image. Each of the 64 rectangular compartments displays
the activities of 192 neurones representing an 8 × 8 patch of the orig-
inal image. The gray area represents all the inactive neurones, bright
and dark dots correspond to the few active neurones. The sparseness
parameter in Eq. (7) was set to θ = 5.6 × 10−2. The right panel shows
the reconstruction based on the sparse representation illustrated in the
middle panel
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Fig. 3 Reconstruction quality as a function of the number of active neu-
rones. The SSC network used the approximately optimal coefficients
(Eq. (17)). The models denoted with ∗ used the fully optimised ana-
logue coefficients (Eq. (4)): The model labeled by “SSC∗” employs the
neurone selection of the the sparse-set coding network, “Sparsenet∗”
and “Sparsenet L1∗” denote the controls where the neurone selec-
tion was based on the soft sparse codes of the corresponding coding
models

To ask if the discrete optimisation performed in the SSC
network is important for quality of reconstruction, we com-
pared the SSC network to a sparse-set coding procedure
based on Sparsenet and pruning, see Methods. Notably, for
all sparseness levels tested, the reconstruction with the SSC
network was significantly better than with the Sparsenet-
based control model. Further, one realises from Fig. 3 that
the approximative coefficients in the SSC network (Eq. (17))
yielded signal-to-noise values that were almost as high as
those generated by a model with fully optimised coefficients
(Eq. (4)).

3.2 Metabolic energy consumption

We assessed the amount of metabolic energy that each model
would consume if the sensory codes are represented by spike
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Fig. 4 Measurement of metabolic energy consumption of sensory
codes (8 × 8 patches). The block diagram (a) depicts how we mea-
sured the spike counts required by a particular sparse coding model
(see text for explanation.). Diagram (b) compares the required spikes in
two sparse coding models, Sparsenet and the SSC network. The y-axis

displays the logarithm of the spike counts used to code the visual rep-
resentations. The x-axis displays the ratio of successful recognitions.
Each sparse coding model was tested for three different sizes of the pro-
totype set, the low curve corresponds to 80 patterns, the intermediate
curve to 160 patterns and the high curve to 320 patterns

rates. To this end, we measured the number of spikes required
to allow an ideal observer to detect one particular input from
an ensemble of different visual inputs. To express the neu-
ronal activities, we represented each abstract neurone as two
spiking neurones that encoded the positive and negative ac-
tivity values separately. This introduction of pairs of spiking
neurones allowed to represent the visual codes of the abstract
coding networks by spike trains. In addition, this duplication
of neurones made the model compatible with Dale’s law,
that is, the observation that biological neurones have either
excitatory or inhibitory effects on their targets.

The process of detecting a visual input involved five steps
and is visualised in Fig. 4(a). First, ensembles of inputs were
formed by a random selection of image patches. Second,
the ensembles were used with each model to generate sets
of sensory codes that we called prototype sets. Third, one
prototype was selected and its coefficients were used as rate
parameters in Poisson processes to generate spike trains.
Fourth, the resulting spike trains were decoded by a process
in which firing rates were estimated from the spike counts in
a fixed time interval. Fifth, the code obtained from the rate
estimations was assigned to the element in the prototype set
with the highest similarity (ideal observer procedure). The
similarity between codes was measured by the Cartesian
distance. Ultimately, successful detections were defined as
cases for which the code resulting from the rate estimations
was assigned to the original prototype. The recognition ratio,
that is, the ratio of successful detections, naturally increased
with the average number of spikes in the spike trains, which,
in turn, correlates with the metabolic energy that is spent.
Figure 4(b) displays the mean number of spikes per coded
image over the ratio of successful identifications. The three
curves for each model correspond to prototype sets of 80,
160 and 320 patterns. Evidently, the task was harder for
the larger prototype sets. Nonetheless, codes generated by

the SSC network consistently required substantially fewer
spikes than did soft sparse codes, for all prototype set sizes.
Note that Fig. 4(b) shows a clear difference between the two
types of coding even with the numbers of required spikes
per image displayed on a logarithmic scale. Thus, by this
measure, sparse-set codes are metabolically more efficient
than soft sparse codes.

3.3 Receptive field structure

To study the shapes of receptive fields that the different
models of visual coding produce, we trained with larger
patches of natural images (16 × 16 pixels) and compared the
results to recordings from primary visual cortex in monkey
(experimental data courtesy of D. Ringach). To find the best
settings of the sparseness parameter θ for the models, we
tested a set of values covering different orders of magnitudes.
We then choose for each model the value that led to receptive
field shapes that matched the biological data the closest. The
used values were θ = 0.31 for the SSC network and θ = 0.22
for Sparsenet. A fine tuning of θ within an order of magnitude
was prohibitively time consuming for 16 × 16 patches. Also,
the spot checks that we ran indicated that the results were
not very sensitive to such fine tuning.

Figure 5 displays receptive fields of randomly selected
cells from the models and from the experimental data (Gabor
fits).

Note that the shapes of the experimental receptive fields
are diverse. Besides typical edge-detector shaped recep-
tive fields, the upper rows display blob-like and unoriented
shapes whereas the lower rows contain structures with many
subfields. The SSC network seems to capture the diversity
in shapes of the biological receptive fields. The Sparsenet
model forms edge-detectors but does not reproduce recep-
tive fields with blob-like shapes or with many subfields.
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Fig. 5 Receptive fields from the efficient coding models and from
recordings in monkey V1. The models were trained on 16 × 16 patches
of natural input. Each panel shows 128 randomly selected cells, ordered
with respect to shape. Experimental results are shown as Gabor fits
(data courtesy of D. Ringach). Scale differences due to distance from
the fovea were corrected for

To assess the distributions of receptive field shapes quan-
titatively, we fitted the receptive fields from the models with
Gabor functions and compared them to the fits for the exper-
imental data. Figure 6 shows properties of the Gabor param-
eters for the entire cell populations, with the exception of
those cells from models for which the fitting procedure was
unstable, because the fields were centred outside the patch.

Ringach (2002) reported that Sparsenet was not fully suc-
cessful in reproducing the natural range in receptive field
structure; this finding is confirmed in plot (a). By contrast,
the SSC network captures the distribution of the envelopes
of the biological receptive fields remarkably well, plot (b).

The asymmetry in the polarity of the receptive fields (def-
inition in appendix C) is plotted over the aspect ratio of the
Gabor envelope in figures (c) and (d). Note that the exper-
imental data sample all values of asymmetry and that they
form clusters near perfect symmetry (Asym. = 0) and full
asymmetry (Asym. = 1). The SSC network also produces
cells at both extrema of the range of asymmetry, although
the clustering seems somewhat exaggerated compared to the
experimental data. On the other hand, the distribution of
fields made by Sparsenet is missing the cluster in the regime
of perfect symmetry. Overall, Figs. 5 and 6 suggest that the
variety of receptive fields recorded from monkey V1 was
more closely reproduced by the SSC than by the Sparsenet
model.

4 Discussion

4.1 New model for receptive field formation using hard
sparseness

Models in neuroscience can help explain the complexity and
diversity of experimental results by simple functional prin-
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Fig. 6 Spatial properties of receptive fields in the models and in
monkey V1 (data courtesy of D. Ringach). Red: 146 experimental cells
in each graph. Blue: Modelled cells; 302 Sparsenet cells in each left
graph, 447 SSC cells in each right graph. (a) and (b) display length
and width of the Gabor envelopes measured in periods of the cosine
wave (see schematic figure (e) and Appendix C). Circular shapes are
located near the origin, slim edge-detectors near the “length” axis and
geometries with multiple subfields at large “width” values. (c) and
(d) plot the asymmetry of the receptive fields, as measured by the
normalised difference between the integrals h+ and h−, see schematic
figure (e) and Appendix C. The x-axes of (c) and (d) display the log of
the ratio between length and width of the Gabor envelopes

ciples. Here we used the approach of computational mod-
elling to explore visual cortical function, with an emphasis
on explaining how the shapes of receptive fields emerge in
V1. Previous work showed that the computational princi-
ple of coding efficiency is able to explain how receptive
fields shaped like edge detectors in V1 are formed. However,
earlier computational models, the Sparsenet (Olshausen and
Field, 1996) and independent component analysis (Bell and
Sejnowski, 1997), were unable to capture the distribution of
receptive field shapes that had been quantified experimen-
tally (Ringach, 2002). To understand the reason for this gap
between theory and biology, we investigated the influence of
a central assumption in these earlier models, the choice of
soft sparseness in the neural representation.

Thus, we investigated different computational models;
Sparsenet (Olshausen and Field, 1996) and two new models
(developed in the course of this study) that employed dif-
ferent forms of sparseness. Sparsenet produced soft sparse
representations of sensory input and the new models form
hard sparse representations. One of the novel models, which
we call the sparse-set coding (SSC) network, explicitly
optimised coding efficiency. The second model served as
a control; it crudely approximated efficient hard sparse
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representations by pruning small neuronal activity values
from the representations formed by Sparsenet.

We trained the models on natural images and compared
the resulting receptive fields to biological data. The com-
parison revealed that the new SSC network had substantial
advantages over both the original and modified (control) ver-
sions of the Sparsenet model. First, the comparison revealed
that soft sparse codes could not be transformed into effi-
cient hard sparse codes just by pruning. In other words, the
control model that combined Sparsenet and pruning did a
significantly poorer job in reconstructing the stimulus than
the sparse-set coding network. Second, the sparse-set coding
network had the benefit of conserving metabolic resources
(Laughlin and Sejnowski, 2003): the number of spikes re-
quired to code sparse-set representations was almost an order
of magnitude less than that required for Sparsenet represen-
tations. This second feature of sparse-set coding, the eco-
nomical use of energy, is in line with an earlier result that the
optimal tuning curve of a Poissonian neurone is a threshold
function rather than a smooth function of a continuous input
variable if spike rates are low (Bethge et al., 2003). The par-
simonious use of metabolic energy by hard sparse represen-
tations is complemented by results of studies of associative
memory that have shown that the same type of representa-
tion uses also synaptic memory very efficiently (Willshaw
et al., 1969; Gardner-Medwin, 1976; Palm, 1980; Buhmann
and Schulten, 1988; Tsodyks and Feigelman, 1988; Treves,
1991; Palm and Sommer, 1992; Földiak, 1995; Palm and
Sommer, 1995). Third, the sparse-set coding network pro-
duced a greater variety of receptive fields than generated by
the Sparsenet model; the shapes of receptive fields ranged
from those with many oriented subfields to unoriented pro-
files whereas the Sparsenet produced a somewhat narrow
range of edge detectors. In fact, the sparse-set coding net-
work clearly outperformed the Sparsenet in predicting the
diverse distribution of receptive field structures observed in
recordings from the primary visual cortex of the monkey
(Ringach, 2002) and the cat (Jones and Palmer, 1987).2 The
reason for this difference in the distribution of shapes that
the two models produce is that the sparse-set coding net-
work selects many fewer active cells to code any given input
than does Sparsenet. Consequently, each receptive field in
the sparse-set coding network represents only a small and
tightly selected sample of inputs.

4.2 Mathematical methods for hard sparse sensory coding

Generative models. The sparse-set coding network we pro-
pose is related to earlier generative models that used hard

2 The distribution of shapes of receptive fields in the primary visual
cortex of cat and monkey are very similar, for a comparison see Ringach
(2002).

sparse coding (Hinton et al., 1997; Sallee and Olshausen,
2002). In those models the process of coding sensory in-
put was slow because it involved Gibbs sampling from the
posterior. By contrast, the sparse-set coding network forms
sensory representations very quickly because the underlying
computation is based on an approximation of the (compu-
tationally intensive) inference process in causal generative
models (Teh et al., 2003).

Basis pursuit. Two of the models that we investigated re-
late to basis pursuit denoising (Chen et al., 1998), a current
method of signal representation. The energy function of ba-
sis pursuit is Eq. (2) when an L1-norm sparseness term is
used. Because of this sparseness term, the energy function
of basis pursuit is not differentiable at zero and, thus, can-
not be minimised using gradient descent. The minimisation
method in basis pursuit is quadratic programming. One of
the models we used for soft sparse coding, Sparsenet with
a hyperbolic sparseness constraint, is essentially a gradient-
descent approximation of basis pursuit.

Recent theoretical results on basis pursuit indicate that it
has a direct connection to hard sparse coding. For certain
conditions, it was proven that the representations formed
by basis pursuit are the same as solutions of Eq. (12) with
the hard sparseness constraint (Donoho and Elad, 2002). Al-
though basis pursuit might provide a fast means of generating
hard sparse sensory representations, it is not yet clear if it can
be used to model visual cortex. First, it must be determined
if the statistics of the visual input meets the prerequisites
for basis pursuit to perform sparse-set coding and how the
algorithm can be implemented in a neural network.

Matching pursuit. Matching pursuit is a popular algorithm
for the step by step refinement of signal representations in
the field of adaptive signal processing; when run for a few
iterations, it can form sparse-set codes. Thus, matching pur-
suit has been proposed as a model for visual cortex (Perrinet
et al., 2004) (see below). The original form of matching
pursuit is fast and guaranteed to converge asymptotically
(Mallat and Zhang, 1993). However, as explained in the
methods section, codes generated by finite numbers of steps
minimise the residual error only for orthogonal basis sets.
Thus, sparse overcomplete coding based on standard match-
ing pursuit is not principled by efficient coding in the sense
of minimising Eq. (2).

Two extensions of matching pursuit for nonorthogonal
basis sets have similarities to our SSC network. First, or-
thogonal matching pursuit (Pati et al., 1993) uses the same
suboptimal basis selection as matching pursuit, but explic-
itly optimises the coefficients, according to Eq. (4). Second,
optimised orthogonal matching pursuit improves on the orig-
inal method by optimising basis selection in a manner that
corresponds to a sequential, greedy minimisation of Eq. (5)
(Rebollo-Neira and Lowe, 2002). Thus, our framework for
sparse-set coding (Eqs. (5) and (6)) includes optimised
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variants of matching pursuit as special cases. The sparse-
set coding network (Eqs. (7)–(10)) is a new approximate
method for computing optimised codes in the sparse regime.
It is computationally fast and can be implemented as a neural
network without being limited to greedy optimisation.

4.3 Implications for cortical processing

Models of cortical microcircuits. Unlike other causal mod-
els of sensory coding using a hard sparseness constraint
(Hinton et al., 1997; Sallee and Olshausen, 2002; Rebollo-
Neira and Lowe, 2002), ours can be implemented as a neu-
ronal network. Thus, we are able to compare interactions
among neuronal elements in our model with interactions
among cortical neurones. Causal models of efficient coding,
like those we use here, suggest a specific function for in-
teractions between neurones, an “explaining away” between
causes. Explaining away means that cells with similar re-
ceptive fields compete for inclusion in a given sensory rep-
resentation. This competition is mediated in the Sparsenet
and the sparse-set coding network through the weights C,
though the competition takes a different form in each model.
That is, each model makes a different prediction about how
thalamic and cortical inputs (Peters and Paine, 1994) should
be combined. In the Sparsenet, thalamic and cortical inputs
superpose linearly (Eq. (3)).3 In the sparse-set coding net-
work, the competition takes a nonlinear, multiplicative form
(Eq. (9)). To determine which (if either) scheme is used by
the brain will require studies of coding networks closer to
biophysical realism, whose predictions can be compared di-
rectly to neurophysiology.

Computational purpose of simple cells. We have shown
that learning in the sparse-set coding network can predict
the diverse shapes of simple cells. The key elements in
this network are efficient coding and a hard sparseness con-
straint. Efficient coding reflects extrinsic conditions imposed
by stimuli, whereas hard sparseness reflects intrinsic con-
straints, such as the metabolic costs and limited resources
for memory formation. Together, these elements are suffi-
cient to explain the formation of receptive fields, but to what
extent is each necessary to build simple receptive fields?
Other models of visual coding suggest that the requirement
for efficient coding might not be strict or could be replaced by
other computational motives. For example, matching pursuit
does not explicitly optimise coding efficiency, yet it gener-
ates receptive fields shaped like edge detectors (Sallee, 2002;
Perrinet et al., 2004). In addition, other computational mo-
tives have been demonstrated to form simple cell-like recep-
tive fields as well. These motives include translation/scaling-

3 Note that in the Sparsenet, even though the combination of feed-
forward and feedback is linear the coding is ultimately a nonlinear
operation on the input because feedback is present.

invariant coding (Li and Attick, 1994) or slow feature anal-
ysis of the spatio-temporal structure of the input (Hurri and
Hyvaerinen, 2003). In this study we have quantitatively com-
pared how receptive fields produced by different models of
efficient coding match the properties of those found in na-
ture. By extending this approach to models based on other
functional principles, it should be possible to identify the pre-
vailing functional principles for visual coding in the broader
context.

Discrete processing of visual input. Although it is natural
to think that visual perception continues steadily over time,
theoretical work has raised the suggestion that visual pro-
cessing might be executed in discrete epochs (Stroud, 1956).
In fact, several psychophysical experiments (VanRullen and
Koch, 2003, 2005) provide support for the existence of tem-
porally discrete perceptual processes. With visual input that
changes over time, the discrete selection of sparse sets of ac-
tive neurones in the sparse-set coding network translates into
a mode of operation that is discontinuous in time. Thus, a
sparse-set coding network could be a first stage for transform-
ing continuously varying visual input into discrete epochs of
visual recognition. Our assessment of metabolic efficiency
of different coding models did assume a hierarchical scheme
of visual processing that involved a form of discrete pro-
cessing. It consisted of two hierarchical stages. In the first
stage a coding model (Sparsenet or SSC network) encoded
raw sensory input in terms of functional primitives, the re-
ceptive fields that reflect the statistics of the visual input.
The second stage contained an ideal observer that compared
a given input with discrete elements in the prototype set. In
a realistic hierarchical model of cortical sensory processing,
the second level should employ learning as well. Rather than
selecting the prototypes at random, they should be formed
by clustering naturally changing visual input. In addition,
the memory and comparison process should be based on
computations that can be implemented in cortical networks,
for example, associative memory in the superficial cortical
layers. Our current research (Rehn and Sommer, 2006) inves-
tigates a model of discrete visual recognition that combines
the ideas of sparse-set coding with sparse associative memo-
ries for temporal sequences (Willwacher, 1982; Sommer and
Wennekers, 2005).

Appendix A: Derivation of the energy functions for
hard-sparseness

Inserting bi = ai yi , f (x) = ||x ||L0 , and the definitions
c = "x, C = ""T and P y = diag(y), one can rewrite
Eq. (2) (up to the constant 〈x, x〉/2) as

E(y, a) = 1
2

〈
a, P yC P ya − 2P yc

〉
+ θ Tr(P y) (12)
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where Tr(P y) =
∑

i yi = ||y||. Equation (12) requires in-
terleaved optimisation in both variable sets a and y.
For fixed y the optimal analogue coefficients are a∗ =
argmina||P yC P ya − P yc||. The solution can be computed
as Eq. (4) using the pseudoinverse. If one inserts Eq. (4) in
Eq. (12), the resulting energy function is

E(y) = −1
2

〈
c, [P yC P y]+c

〉
+ θ ||y|| (13)

which solely depends on the binary variables since the coef-
ficients are optimised implicitly.

Using the identities for the pseudoinverse: A+ =
[AT A]+ AT and [AT ]+ = (A+)T (see pseudoinverse in
Wikipedia), the inner product in Eq. (13) can be written

〈
c, [P yC P y]+c

〉
=

〈
x, (P y")T [P y"(P y")T ]+ P y"x

〉

=
〈
x, [P y"]+ P y" x

〉
(14)

The operator in the inner product on the RHS of Eq. (14) is
a projection operator:

[P y"]+ P y" =: P y
" =

(
P y

"

)2 (15)

which projects into the subspace spanned by the receptive
fields of the active units {i : yi = 1}. Equation (14) and
definition 15 yield Eq. (5).

Another way to rewrite Eq. (13) is to insert P yC P y =
[P y(C − 11)P y + 11]P y =: C y P y . C y is a full rank matrix
if the selected set of basis functions is linearly indepen-
dent. This is guaranteed in the complete case and very likely
to be fulfilled for sparse selections in overcomplete bases.
Thus, for sparse y vectors we can replace the pseudoin-
verse in Eq. (13) by the ordinary inverse and use the power
series expansion: [C y]−1 = 11 − P y(C − 11)P y + [P y(C −
11)P y]2 − · · · Using the expansion up to the first order yields
the approximations for Eqs. (5) and (4), respectively

E(y) + 1
2

〈
c, P y(C − 2·11)P yc

〉
+ θ Tr(P y) (16)

a∗ + [11 − P y(C − 11)P y]c (17)

With the definition Ti j := −ci Ci j c j + 2δi j c2
i , Eq. (7)

follows from Eq. (16).

Appendix B: Fitting of receptive fields

In the sparse regime, each basis function can be
well fitted with a two-dimensional Gabor function in
the image coordinates u, v: h(u′, v′) = A exp[−( u′

√
2σu′

)2 −
( v′
√

2σv′
)2] cos(2π f u′ + (), where u′ and v′ are translated and

rotated image coordinates, σu′ and σv′ represent the widths
of the Gaussian envelope, and f and ( are the spatial fre-
quency and phase of the sinoidal grating. Notation in Fig. 6:
width := σu f and length := σv f . To measure asymmetry of
a Gabor function we split h along the v′ axis into h− and h+
and use: Asym := |

∫
h+ds −

∫
h−ds|/

∫
|h|ds.
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