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Introduction

Over the past 50 years, visual neuroscience has sought to characterize how neurons 
respond to specific stimulus properties such as shape, texture, color, and motion.  While 
this approach has revealed many interesting and important aspects of neural coding in 
the visual system, we still remain largely ignorant of how neural populations represent 
these properties as they appear within the context of dynamic, natural scenes.  The 
problem is that what constitutes “the stimulus” in a natural scene is far from obvious, 
whereas much of visual neuroscience has proceeded by assuming it is given to begin 
with.  Neuroscience has taken a reductionist approach, while vision is largely a holistic 
process.

Consider for example the simple scene of a log against a background of rocks, as in 
Figure 1.  It takes little conscious effort to comprehend what is going on in this scene - 
the boundary of the log appears obvious to most observers.  But if we put ourselves in 
the position of a patch of neurons in V1 getting input from the a local patch of this 
image, things are far less clear.  The right panel of Figure 1 shows the response of an 
array of model V1, orientation-selective units analyzing a local patch of the image, with 
the boundary of the log superimposed as a faint gray line.  As one can see, almost 
nowhere along this boundary are there neurons firing indicating the position and 
orientation of the boundary.  Instead, one finds neurons firing at many different positions 
and orientations that signal structure in the background and foreground, but with little 
relation to the boundary itself.  Thus, simply measuring oriented contrast in an image 
does not give us a direct measure of the shape of things in the visual world.  Extracting 
those properties involves something much more complicated.  

Unfortunately, our introspections about how we see the world are a poor guide for how 
to go about studying it.  Indeed, engineers attempting to build artificial vision systems 
came to the same conclusion decades ago:  the definition of a feature as elementary as 
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Figure 1.  What constitutes a feature, or the “stimulus,” within a natural scene is far from 
obvious.  The right panel shows how a hypothetical array of model V1 neurons (Gabor filters at 
four different orientations) would respond to the image subregion shown at left.  The length of 
each line segment indicates the magnitude of response of a neuron whose receptive is situated 
at that position and orientation.  Simply measuring oriented contrast tells one very little about 
the structures of interest in natural scenes.



an edge or contour is essentially an ill-posed problem, as it depends heavily on context 
and high-level knowledge.  Even the definition of contrast, a seemingly fundamental 
stimulus property, is difficult as it is a relative measure that depends on specifying a 
region over which to measure the local luminance, and there is not one right answer for 
how to do this in natural scenes.  

As Helmholtz wisely observed more than 100 years ago, perception is a process of 
“unconscious inferences.”  Inferring properties of the world depends upon combining 
data (the image) together with prior knowledge about the world. (See also Chapter xx 
(Kersten & Yuille).)  The obvious questions then are, how is this knowledge learned, and 
how it is instantiated in the neural circuits of the visual cortex?  Answering these 
questions will depend upon building mathematical models that can describe the wealth 
of variability and structure in natural scenes.  Not only does the visual system have to 
describe simple features like edges, but all structure in natural scenes, much of which 
may not correspond to things we are usually aware of when we look at a scene.  In 
other words, there is a need to educate ourselves about the structure of natural scenes 
and the different ways of modeling it before we can understand how neurons represent 
and exploit this knowledge.  The problem of characterizing the wide range of structure, 
from edges to textures to subtle patterns of shading, is what we will refer to as natural 
scene statistics.

This chapter reviews work over the past several decades on modeling natural scene 
statistics and their relation to cortical representation.  It should be mentioned from the 
outset that most of these models are of images of natural scenes, not of the physical 
scenes themselves.  The underlying hypothesis is that the nervous system can 
eventually learn models of the world working from the statistics of the input stream, 
which are sensed as images.  We also focus on models that may be directly related to 
neural mechanisms and ultimately tested in neurophysiological experiments.  There is 
much work exploring the links between natural scene statistics and aspects of 
perception such as contrast sensitivity (Bex et al. 2009), color sensitivity (Yoonessi & 
Kingdom 2008), contour detection (Geisler et al. 2001), and depth perception (Burge et 
al. 2010) which we do not include here.  The reader is referred to Geisler (2008) for an 
excellent review of much of the work in this area.  Another excellent source for work on 
natural scene statistics and image coding is the text by Hyvarinen, Hurri & Hoyer 
(2009).

We begin here by introducing the theory of efficient coding, which forms the foundation 
for much of the work on natural scene statistics.  We then discuss theories of sparse 
representation and hierarchical representation and their relation to the response 
properties of cortical neurons.

Efficient Coding

Just as eyes have evolved to form an image, so too has the circuitry required to process 
it.  In the case of eyes, there are a large number of factors that determine the quality of 
a focused image and its adaptability to environmental conditions (Land & Nilsson 2012).  



Each animal will have evolved toward the optimal trade off between various constraints 
and the optical performance that is required for it to thrive in its environmental niche.  
This point represents a local optimum in adaptive space, and so tends to be relatively 
stable.  If the animalʼs environment and behavioral requirements are known, we can 
speak of a theoretical explanation from the principles of optics and the physical 
constraints on the system.  This basic theoretical approach carries over to 
visual information processing:  We can provide a theoretical explanation of visual 
processing and representation if we understand the natural visual environment, an 
animalʼs behavioral requirements, and the principles of visual information processing.  

The goal of efficient coding is to represent the most relevant visual information with the 
fewest physical and metabolic resources.  Clearly, determining what constitutes relevant 
information for a mammal is plagued with its own problems since most animals perform 
a multitude of tasks, from the simple pupillary reflex all the way to visual scene analysis.  
Nevertheless, we can make progress by choosing computational goals for which we can 
derive an optimal solution, given appropriate constraints, and relevant visual stimuli.  
The solution to this problem constitutes a theoretical prediction of the neural system, 
and thus gives a falsifiable model.  In the approaches described below, it is largely 
assumed that the early visual system is forming a generic representation that is useful 
for myriad tasks, and so the goal is to preserve all information about the scene that is 
captured in the image.  Later, we elaborate this theoretical approach beyond coding to 
the idea of recovering abstract properties of scenes.

Theory of redundancy reduction and whitening
Attneave (1954) was the first to point out that there could be a formal relationship 
between the statistical properties of images and certain aspects of visual perception. 
This notion was then put into concrete mathematical and neurobiological terms by 
Barlow (1961, 1989), who proposed a self-organizing strategy for sensory nervous 
systems based on the principle of redundancy reduction—i.e., the idea that neurons 
should encode information in such a way as to minimize statistical dependencies among 
them.  Barlow reasoned that such representations make more efficient use of neural 
resources in transmitting information, since they do not duplicate information in different 
neurons.  

The first strides in quantitatively testing the theory of redundancy reduction came from 
the work of Simon Laughlin and M.V. Srinivasan. They measured both the histograms 
and spatial correlations of image pixels in the natural visual environment of flies, and 
then used this knowledge to make quantitative predictions about the response 
properties of neurons in early stages of the visual system (Laughlin 1981; Srinivasan et 
al., 1982). They showed that the contrast response function of bipolar cells in the flyʼs 
eye performs histogram equalization (so that all output values are equally likely), and 
that lateral inhibition among these neurons serves to decorrelate their responses for 
natural scenes, confirming two predictions of the redundancy reduction hypothesis.
Another advance was made ten years later by Atick & Redlich (1992) and van Hateren 
(1992, 1993), who formulated a theory of coding in the retina based on whitening the 



power spectrum of natural images in space and time. Since it had been shown by Field 
(1987) that natural scenes posses a characteristic 1/f2 spatial power spectrum, they 
reasoned that the optimal decorrelating filter should attempt to whiten the power 
spectrum - i.e., make it flat, or uniform.  Since the signal amplitude (square root of 
power) falls as 1/f , then the optimal whitening filter has a transfer function that simply 
rises linearly with spatial-frequency in order to produce a flat power spectrum in the 
output of the retina.  The whitening filter is then combined with a lowpass filter that cuts 
out noise at the highest spatial-frequencies.  Taking the inverse Fourier transform of the 
combined filter, assuming zero phase, results in a spatial filter that is qualitatively similar 
to the center-surround antagonistic receptive fields of retinal ganglion cells and neurons 
in the LGN.  The spatiotemporal extension of this theory was tested in the LGN of cats, 
where it was shown that the temporal power spectrum is whitened in response to 
natural movies (Dan, Atick & Reid 1996).  Importantly, testing this theory requires using 
natural scenes or other stimuli with the same spatiotemporal correlations, not simply 
white noise.

Robust coding
Although redundancy reduction plays a central role in sensory codes, it is not the whole 
story because redundancy itself is essential for robustness to noise (Atick & Redlich 
1990; Ruderman 1994; Barlow 2001).  In the peripheral visual system there are many 
sources of noise and uncertainty.  Blurring due to the optics and photoreceptor 
transduction noise are two, but the more limiting factor is that neurons can only transmit 
information with finite precision, which has been estimated to be around 1-2 bits per 
spike (Borst & Theunissen 1999).  Without redundancy in the neural code 
itself, information about scene structure will be lost.

Doi & Lewicki (2007) used the framework of robust coding (Doi et al. 2007; Doi & 
Lewicki 2005) to develop a model of retinal coding using noisy units, sensory noise, and 
optical blur.  The model optimizes the trade-off between redundancy and efficiency to 
learn a code that minimizes the mean squared reconstruction error of the 
stimulus.  Unlike earlier methods based on power spectra, the model can have an 
arbitrary number of coding units and can accurately predict receptive field structures 
and their adaptation to noise in both the fovea where the photoreceptor to (midget) 
ganglion cell ratio is close to 1:1 (with combined on- and off-channels), and the 
periphery, where it exceeds 20:1.  The optimal robust code can be decomposed into 
the traditional Wiener filter, which optimally compensates for noise and distortion in the 
input, and an optimal code for a noisy Gaussian channel (Doi & Lewicki 2011), which 
approximates a population of limited capacity neurons.

Optimal codes generated by redundancy reduction and robustness approaches are not 
necessarily unique and can generate a family of solutions with equivalent performance 
(information transmission or mean squared error reconstruction) (e.g. Atick & Relich 
1992; Doi & Lewicki 2007).  To explain the center surround structure of retinal ganglion 
cells, for example, it is necessary to impose additional constraints, such as a cost on the 
weights (Vincent & Baddeley 2003).  This can be viewed as a more general statement 



of the redundancy reduction principle, because there are many other factors that 
influence the structure and overall metabolic efficiency of the neural population code 
(Laughlin 2001; Balasubramanian et al. 2001; Tkacik et al. 2010).  Recently, more 
biologically accurate models that minimize the metabolic cost of spiking and adapt non-
linear neural response functions to maximize information transmission account for 
rectification and predict the on- and off- center-surround structure of retinal ganglion 
cells (Karklin & Simoncelli 2011).

Beyond efficient coding
While the principles of redundancy reduction and robust coding have made some 
inroads in accounting for response properties of neurons in early vision, it would seem 
that other considerations come into play in the cortex.  An important difference between 
the retina and cortex is that the retina is faced with a severe structural constraint, the 
optic nerve, which limits the number of axon fibers leaving the eye. Given the net 
convergence of approximately 7 million cones (and at least 10 times as many rods) onto 
1.5 million ganglion cells, redundancy reduction would appear to constitute a sensible 
coding strategy for making the most use of the limited resources of the optic nerve. V1, 
by contrast, expands the image representation coming from the LGN by having far more 
neurons for representation than it has inputs.  In layer 4 of macaque V1 alone the ratio 
of stellate cells to geniculate input fibers is on the order of 100:1, and even higher in the 
fovea (Barlow 1981).   So what is being gained by spending extra neural resources in 
this way?

First, it must be recognized that the real goal of sensory representation is to model the 
causes of the redundancy in images, not necessarily to reduce it (Barlow 2001).  What 
we really want is a meaningful representation—something that captures the causal 
properties of images, or whatʼs “out there” in the environment. Second, redundancy 
reduction provides a valid probabilistic model of images only to the extent that the world 
can meaningfully be described in terms of statistically independent factors.  While some 
aspects of the visual world do seem well described in terms of independent factors 
(e.g., surface reflectance is independent of illumination), most seem awkward to 
describe in this framework (e.g., body parts can move fairly independently but yet are 
also oftentimes coordinated to accomplish certain tasks). Thus, in order to understand 
how the cortex forms useful representations of scene structure we must appeal to 
principles other than redundancy reduction that are beyond the basic framework of 
efficient coding and help us move toward inferring underlying causes. 

Sparse, Distributed Representation

In 1972, Horace Barlow put forth a second theoretical proposal - dubbed the “neuron 
doctrine” of perception - which proposed that neural representations have been 
organized to describe sensory stimuli using the fewest possible number of active 
neurons, and furthermore that such representations are matched to the statistics of 
natural stimuli (Barlow 1972).  Since then a number of investigators have developed 
quantitative models based on this idea that attempt to account for the response 



properties of cortical neurons.  Here we describe the theoretical motivations for this 
approach, models that have been developed and their various elaborations, and the 
relation to V1 response properties.

Theory of sparse representation 
One way of potentially achieving a meaningful representation of sensory information is 
by finding a way to group inputs together so that the world can be described in terms of 
a small number of events at any given moment.  In terms of a neural representation, this 
means that activity is distributed among a small fraction of neurons, forming a sparse, 
distributed representation.  Such a representation converts the higher-order redundancy 
present in images (i.e., the complex dependencies among pixel values) into a simple 
first-order redundancy in each neuron (Field 1994).  Each neuronʼs activity is redundant 
since it is highly predictable - it spends most of its time at zero - but so long as this can 
provide a meaningful description of images, then it is potentially more useful than a 
dense representation in which all redundancy has been reduced.

Consider for example a local region of the image containing an edge at a particular 
orientation (Figure 2).  In the retina or LGN, many neurons with circularly symmetric 
receptive fields will need to be active to completely represent the change in luminance 
along the length of the edge.  However a set of cortical neurons with elongated 
receptive fields can represent this structure with many fewer active units - just those 
whose orientation and position is aligned with the edge.  Since the receptive fields of 
these neurons are better matched to the edge, fewer are needed to describe it.  Note 
that nothing has been gained in the ability to describe the edge element per se—i.e., 
there is no gain in information—but the description is now in a more explicit format.  

All information about the image is present in the photoreceptors, but it is not in a form 
that is easily accessible or useful for driving behavior (except perhaps for controlling the 
pupillary reflex or accommodation).  For a representation to drive behavior it needs to 
be put into a more explicit form.  In this particular example, the activity of a single 
cortical unit conveys more meaning about what is going on in the scene - the presence 

Figure 2.  Sparse representation of an edge.  A population containing only neurons with 
circularly symmetric receptive fields would require many active neurons to completely 
represent the structure along the edge (left).  By contrast, a population of neurons with 
elongated receptive fields at different orientations will require many fewer active units, 
because each of the active units is better matched to the structure in the image (right).
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of the edge and its orientation - than does a single neuron in retina or LGN.   An edge is 
admittedly still far removed from what we need to drive useful behavior, but 
nevertheless it is a first step in pulling out structure about the scene.

Sparse representations are sometimes (mistakenly) put in the same category as 
ʻgrandmother cellsʼ or other winner-take-all representation schemes.  Such schemes 
would require an enormous number of neurons to represent the large variety of input 
patterns that occur.  Here, we are concerned with sparse distributed representations in 
which multiple active units are still used to encode any given stimulus, thus providing a 
higher coding capacity for a population of neurons (Foldiak 1995).  For example, a 
population of N binary units constrained to having only k units active could in theory 

represent 
�
N

k

�

 items, as opposed to only N items in a winner-take-all code.

Sparse coding model of V1
The first quantitative link between the principle of sparse representation and the 
oriented receptive fields of neurons in visual cortex was provided by Field (1987).   He 
modeled the oriented receptive fields of V1 neurons with Gabor functions (as was 
proposed previously by Marcelja (1980) and Daugman (1985)) and examined the 
histogram of their responses to a diverse set of natural images.  By exploring different 
settings of the Gabor function parameters (spatial-frequency bandwidth and aspect 
ratio), he was able to show that the setting which maximizes the concentration of activity  
into the fewest number of units is roughly the same as those found for many cortical 
neurons—i.e., around one octave in bandwidth and 1.3 in aspect ratio (length to width). 
In other words, the particular shapes of V1 simple-cell receptive fields appear well 
suited for achieving a sparse representation of natural images.

Olshausen & Field (1996) took this a step further by using a non-parametric model that 
makes no specific assumptions about the functional form of the receptive fields and 
attempts to adapt a population of units to the statistics of natural images so as to 
maximize sparseness.  Instead of considering the representation as an array of filter 
outputs, they formulated the problem in terms of a linear generative model:

                                               I(�x) =
�

i

ai φi(�x) + �(�x)                                         (1)

where I(�x) denotes the spatial distribution of intensity within an image (typically a local 
image patch, on the order 16x16 pixels), φi(�x) is a basis function, or “dictionary 
element,” defined over the same spatial domain as the image, ai describes how much of 
function φi(�x) is needed to describe the image, and �(�x) is a residual error term that 
accounts for structure not well described by the model.  (�x represents the two-
dimensional position within the image.)  The coefficient values, ai are taken to represent 
the activities of neurons within a patch of cortex representing the image region I(�x).  
They are computed by minimizing an energy function that consists of the squared 
reconstruction error plus a penalty on the coefficients:



                                       E =
�

�x

�
I(�x)−

�

i

ai φi(�x)

�2

+ λ
�

i

C(ai)                        (2)    

where C is a cost function appropriate for encouraging sparsity (often chosen to be 
absolute value) and λ controls the tradeoff between sparsity and reconstruction error.  
This energy function may also be interpreted within a probabilistic framework as the 
negative log posterior of the coefficients ai given the image I(�x), where the cost 
function C corresponds to a sparse prior over the coefficients.  When the number of 
basis functions is equal to the number of image pixels and there is no noise (�(�x) = 0), 
the model is equivalent to so-called “independent components analysis” (ICA) (Bell & 
Sejnowski 1995; Olshausen & Field 1997).

Solutions to the energy minimization may be computed efficiently by a neural circuit 
consisting of leaky integrators, threshold units, and lateral inhibition (similar to a 
Hopfield network) (Rozell et al. 2008; Hopfield 1984).  Learning of the basis functions is 
accomplished by minimizing the same energy function, typically via stochastic gradient 
descent, which leads to a Hebb-like rule between the inputs and outputs of the circuit 
(see also Foldiak 1992, Rehn & Sommer 2006, and Zylberberg & DeWeese 2011 for 
alternative formulations).

Adapting this model to millions of image patches extracted from natural scenes results 
in a solution in which the basis functions become spatially localized, oriented, and 
bandpass (selective to structure at different scales), as shown in Figure 3.  When 
characterized in terms of their Fourier spectrum, the learned functions fall around 1.5 
octaves spatial-frequency bandwidth and 30-40 degrees orientation bandwidth, again 
similar to the spatial properties of V1 simple cell receptive fields.  Note however that 
making a direct comparison between the basis functions and receptive fields is 
complicated because the activity of a neuron in the model indicates how much of its 

Figure 3.  a. Basis functions φi(�x) learned from from training on natural images.  Each 
square patch corresponds to a learned function for a 16 x 16 pixel image patch.  b. Scatter 
plot of spatial-frequency bandwidths and orientation bandwidths of the learned functions.  
(From Olshausen, Cadieu & Warland, 2009)
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basis function is present in the image, whereas the receptive field usually refers to the 
spatial weighting of the input that a neuron uses to compute its output.  These two 
things are equivalent only when the basis is orthogonal, which it is not.  However, in the 
neural circuit implementation of the model, the feedforward drive to each unit is given by 
the inner product of its basis function with the image, so in that sense it acts similar to a 
receptive field.  In addition, when one maps out the receptive field of a unit in the model 
using single pixel stimuli, the result resembles the basis function (Olshausen & Field, 
1996, figure 4b).  Other models that are formulated directly in terms of receptive fields 
or filters achieve qualitatively similar results (Bell & Sejnowski 1997; van Hateren & van 
der Schaaf 1998; Osindero et al. 2006).

Ideally, one would like to compare not just the form of individual basis functions, but also 
how the population as a whole tiles the joint space of position, orientation and spatial-
frequency.  However, to do such a comparison properly would require exhaustively 
recording from all neurons within a hypercolumn of V1. From the partial assays of 
parafoveal neurons currently available, it would seem there is an over-abundance of 
neurons tuned to low spatial-frequencies as compared to the model (DeValois et al. 
1982; Parker & Hawken 1988; van Hateren & van der Schaaf 1998).  However real 
neurons have a certain level of precision with which they can code information, whereas 
in the model there is no limit in precision imposed upon the coefficient amplitudes (i.e., 
they have essentially infinite precision in amplitude).  It seems likely that when such 
biophysical constraints are taken into account the bias towards low spatial-frequencies 
could be explained since the low spatial-frequencies in natural scenes have a higher 
signal-to-noise ratio than high spatial-frequencies (Doi & Lewicki 2005).

It should be noted that such a linear model of images can not possibly hope to capture 
the full richness of the structures contained in natural scenes.  One important reason for 
this is that the true causes of images - light reflecting off the surfaces of objects - 
combine by the rules of occlusion, which are highly non-linear (Ruderman, 1997; see 
also Chapter xx (Kersten & Yuille).  It remains to be seen how the solutions are affected 
in a model incorporating these non-linearities and whether it is still consistent with V1 
response properties, though see Lücke et al. (2009) and La Roux et al. (2011) for 
promising work in this direction.  

Overcomplete representation
In general, a complete code where there are as many outputs as inputs can represent 
information without loss.  But if the goal is to discover and represent structure in the 
input there is no reason to impose this limitation.  Indeed, much work in signal analysis 
and image processing has demonstrated the importance of using overcomplete 
representations - where the number of outputs is greater than the number of inputs - 
when one wishes to ascribe meaning to the code outputs in terms of structures they 
represent in the input (Simoncelli et al. 1992; Mallat & Zhang, 1993; Lewicki & 
Olshausen 1999; Chen, Donoho & Saunders 2001).   



Rehn & Sommer (2006) developed a sparse coding model that enforces ʻhard sparsityʼ - 
where coefficients are forced to be either active or exactly zero - and showed that when 
the representation is made three times overcomplete that a greater diversity emerges in 
the learned basis functions.  Besides localized, oriented functions, one also finds 
unoriented, circularly symmetric functions in addition to grating-like functions with more 
oscillations.  Interestingly, these results are better matched to the actual diversity seen 
among V1 receptive fields (Ringach 2002).  Another study systematically explored the 
effect of increasing either sparsity or overcompleteness (up to 10x) and obtained similar 
diverse families of functions as either of these parameters is increased (Olshausen, 
Warland & Cadieu 2009).  
 
As noted above, layer 4 of V1 contains on the order of 100 times as many neurons as 
there are input fibers from the LGN.  Thus, the models explored to date are still far 
below the neurobiological regime.  Why is V1 so overcomplete and what are the extra 
dimensions being used for?  At least part of the answer must have to do with the fact 
that we are still missing many other stimulus dimensions such as time, color and 
disparity.  

Sparse coding in time, color, and stereo
Retinal images of course are not static but change continuously over time as an 
observer moves through the world.  The sparse coding model may be extended to 
describe this structure as well.  van Hateren & Ruderman (1998) approached the 
problem simply by considering time as another dimension and then learning a basis 
over x,y,t image “cubes.”  The learned functions resemble the previous solution in terms 
of their spatial characteristics, but they also translate over time in a direction that is 
orthogonal to the orientation, and at different rates to represent structures moving at 
different speeds in the image.  The disadvantage of a blocked coding scheme of this 
type, however, is that it results in many copies of the same space-time function centered 
at different points in time within a block.  Olshausen (2002, 2003) used a convolution 
model to cover the time domain so that any given basis function can be shifted to an 
arbitrary point in time.  The resulting functions are qualitatively similar to those learned 
in a blocked ICA scheme, but require many fewer code elements.  The learned basis 
functions resemble at least qualitatively the inseparable space-time receptive fields of 
V1 simple cells.  Making a quantitative comparison or prediction of neural response 
properties, however, will demand training on movie ensembles that are representative of 
the spatiotemporal structure falling on the retina.

The sparse coding model has also been extended to describe spatio-chromatic 
structure and disparities arising from stereo image pairs of natural scenes.   Wachtler et 
al. (2001) trained an ICA model on hyperspectral images and showed that color 
opponent receptive fields emerge for the low spatial-frequency basis functions, while 
high spatial-frequency basis functions remain in luminance only.  Hoyer & Hyvarinen 
(2000) obtained similar results training on RGB images, as did Doi et al. (2003) using a 
realistic cone mosaic.  Johnson, Kingdom & Baker (2005) analyzed the spatio-chromatic 
structure of natural scenes by examining correlations among luminance and color-



opponent channels;  their results suggest that changes in coarse-scale color information 
correlate with changes in fine-scale texture information, but how this higher-order 
structure could be captured in a neural coding scheme has not been explored.

Hoyer & Hyvarinen (2000) trained an ICA model on stereo images of natural scenes and 
showed that a population of binocular neurons emerge spanning a range of ocular 
dominance and mimicking observed disparity tuning properties such as ʻtuned 
excitatoryʼ, ʻtuned inhibitoryʼ, ʻnearʼ and ʻfarʼ.  However making a meaningful quantitative 
comparison or prediction of neural response properties will require collecting and 
training on stereo image pairs that are representative of the range of fixations that occur 
during natural viewing of the 3D environment. 

Non-classical receptive fields as an emergent property of sparse coding
Beyond accounting for known receptive field properties, the sparse coding model also 
makes predictions about the types of non-linearities and interactions among neurons 
expected in response to natural images.  As mentioned previously, each neuronʼs output 
is computed by minimizing the energy function in equation 2.  The result of this 
minimization is a nonlinear mapping from the input image I(�x) to neuron activities ai.  
Thus, although the image model itself is linear, the encoding of images is non-linear.  
The nature of this non-linearity is such that each output unit is modified by a 
suppressive interaction with its neighbors (those units with overlapping receptive fields) 
(Olshausen & Field 1997; Rozell et al. 2008).  Specifically, the response of a neuron is 
sparser than expected from simply computing the inner product of its basis function with 
the image.  In other words, responses are pruned out or sparsified so that only those 
units that best describe the image structure are active.  In the probabilistic version of the 
model, this is known as “explaining away” (Hinton & Ghahramani 1997) (see also 
Chapter xx (Kersten & Yuille)).

Simulations by Zhu & Rozell (2010), in addition to Lee et al. (2007), show that these 
sparsifying non-linearities can account for many of the non-classical receptive 
properties observed in V1 neurons such as end-stopping, contrast-invariant orientation 
tuning, and orientation-specific surround suppression.  Importantly, these effects were 
not built into the model, but rather emerge as a consequence of inference in a 
generative model that has been adapted to the structure of natural images.  (Other 
accounts in terms of natural scene statistics have been proposed by Schwartz & 
Simoncelli (2001) and Karklin & Lewicki (2009), as described below.)

The experiments of Vinje & Gallant (2000, 2002) also lend support to the idea of 
sparsification. They recorded from V1 neurons in an awake behaving monkey while 
natural image sequences obtained from free-viewing were played both within and 
surrounding a neuronʼs receptive field. They showed that when neurons are exposed to 
progressively more context around their classical receptive field, their responses 
become sparser. In the model, this happens because units are effectively competing to 
describe the image at any given moment. With little or no context, there is more 
ambiguity about which basis functions are best suited to describe structure within the 



image, and so the response resembles what is predicted from a linear weighting of the 
image.  This effect could also be the result of top-down influences from higher cortical 
areas, as would be expected from explaining away in a hierarchical graphical model 
(Lewicki & Sejnowski 1997; see also Chapter xx (Kersten & Yuille)). 

Modeling group dependencies
In the probabilistic interpretation of the sparse coding model, the coefficients are 
assumed to be statistically independent since the prior over them is factorial 
(corresponding to the sum in the second term of eq. 2) (Olshausen & Field 1997).  
However, even after adapting the basis functions to natural images the coefficients are 
far from being statistically independent (Bethge 2006).  Part of the reason for this is the 
existence of contours and other more extended forms of structure in images which can 
not be captured by a simple basis function model. For example, Geisler et al. (2001) 
and Sigman et al. (2001) have shown that edge co-occurrence statistics in natural 
scenes follow a co-circular pattern that extends far beyond the receptive field of any 
given oriented neuron.  

Given that such dependencies exist, what should the cortex do about it?  According to 
redundancy reduction, dependencies should be removed.  This approach was taken by 
Schwartz & Simoncelli (2001) who proposed removing dependencies among oriented 
units via a suppressive (divisive) interaction with each other.  The resulting model 
provides a good account for contextual effects measured in V1 neurons using spatial 
frequency gratings.  An alternative approach, taken by Garrigues & Olshausen (2008) & 
Lyu & Simoncelli (2007), is to use an Ising or Markov random field model to capture the 
dependencies.   These models use a non-factorial prior that includes a pairwise 
coupling term between units that condition coefficient magnitudes.  Neurons that exhibit 
dependencies in their responses to natural images thus learn facilitatory connections 
between them.  Such facilitatory interactions are consistent with a substantial body of 
psychophysics (Field et al. 1993; Polat & Sagi 1993) and physiology (Kapadia et al. 
2000).  A number of computational models for doing contour integration or completion 
employ similar mechanisms (Parent & Zucker 1989; Shashua & Ullman 1988; Yen & 
Finkel 1998).   

Another factor contributing to statistical dependencies among coefficients is that the 
basis functions in a sparse code need to cooperate in order to interpolate structures that 
vary along a continuum.  For example, edges will occur at different positions along a 
continuum, but there is only a discrete set of basis functions available - not enough to 
match each and every position of an edge.  Thus, two ore more basis functions must 
add together in order to describe things that occur in between them.  The signature of 
this dependency is that groups of basis functions related in position, orientation, or scale 
will tend to show a circularly symmetric distribution among their coefficients, as opposed 
to a star-like distribution that would result from sparse variables that are statistically 
independent (Zetzsche et al. 1999).  (When replotted in terms of normalized conditional 
distributions this results a so-called “bow-tie” pattern (Simoncelli & Buccigrossi 1997)).  
In the time domain, these dependencies give rise to temporal correlations in coefficient 



magnitude, or “bubble-like” behavior in the temporal envelope of activity (Hyvarinen et 
al. 2003).  Similar forms of dependency can also arise simply from common contrast 
fluctuations (Lyu 2011; Eichhorn et al. 2009). 

One approach toward modeling this form of dependency is to group together related 
basis functions so that their coefficients share a common amplitude component:

aij = σi uij

where i denotes the group, and j indexes the elements within a group.  Group 
amplitudes σi > 0 are constrained to be sparse and independent, whereas the 
normalized coefficients within a group uij have no sparseness constraint.  This 
approach was used by Wainwright et al. (2001) to model statistical dependencies 
among wavelet coefficients in terms of Gaussian scale mixtures (where the uij are 
Gaussian and σi has a heavy-tailed distribution).  Hyvarinen & Hoyer (2000) used this 
approach in a modified ICA model, termed ʻsubspace ICAʼ, in which basis functions are 
separated into non-overlapping groups, or subspaces, of size 2, 4, or 8.  After training 
on natural images, each group learns a set of basis functions having similar orientations 
but with shifted positions or phases, and the group amplitude σi exhibits phase- and 
shift-invariance similar to complex cells.  Other investigators have since elaborated on 
this idea by having overlapping groups that are organized topographically into a 2-D 
map, allowing one to visualize the dependencies among an entire of population of 
learned basis functions (Hyvarinen et al. 2001; Osindero et al. 2006; Garrigues & 
Olshausen 2010; Gregor & Lecun 2010).  The resulting maps bear a striking 
resemblance to orientation maps and non-oriented “blobs” in V1.   Note however that in 
all of these models the group structure is fixed, not learned - only the basis functions are 
learned to fit this structure.  Hyvärinen & Köster (2007) explored a range of different 
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Figure 4.  Statistical dependencies among coefficients arise due to interpolation of image 
features occurring at different positions along a continuum.  a. An edge moving continuously 
over two vertically oriented basis functions centered at different positions in the image (functions 
are shown displaced vertically to avoid clutter).  b. In the joint space of the coefficients, the 
movement of the edge traces out an arc.  Dot indicates the current position of the edge.  c. 
When averaged over many different contrasts and polarities as well as edge types (lines vs. 
edges), the resulting joint distribution of the coefficients is circularly symmetric yet sparse 
(peaked at zero with heavy tails).  This is in contrast to the star-shaped distribution (right) that 
would result from two sparse, statistically independent variables.



group sizes and found that groups of 16-32 basis functions yield the best fit (in terms of 
log-likelihood) for natural images using 24x24 pixel image patches.  

Temporal dependencies may be modeled in a similar fashion by imposing a “slowness 
prior” (essentially a penalty on the temporal derivative) on the σi so that they vary 
smoothly or persist over time in response to a video sequence.  The general idea of 
imposing slowness was initially proposed by Foldiak (1991) and Wiskott & Sejnowski 
(2002) as a way to learn invariant representations of visual input - also known as “slow 
feature analysis.”  Berkes et al. (2009) employ this approach to learn local invariances 
from natural video sequences.  The learned group structure is similar to that obtained 
with subspace ICA, and the amplitude responses also resemble those of complex cells, 
but in this case the group size is also learned, yielding around 2-4 bases per group.  
Cadieu & Olshausen (2009, 2012) employ the idea of temporal persistence in a 
complex-valued basis function model.  The coefficients are split into amplitude and 
phase, with slowness imposed upon the amplitudes.  They show that the resulting 
phase variables tend to precess in a linear fashion that is suitable for learning and 
representing transformations (i.e., motion) in natural video sequences. 

Hierarchical Models

The approaches and models discussed above have either been concerned with forming 
an efficient code of the visual image, or a sparse representation based on a linear 
combination of features.  The goal of vision, however, is not merely to describe the 
image but to understand it - i.e., to deduce, from the raw 2D image, properties of the 3D 
scene and the surfaces and objects within it.  In other words, the problems of coding 
and representation lead to deeper problems of computation and inference.  These 
problems become especially relevant as one moves beyond V1 to consider the 
functions of higher stages of cortical processing.  

One approach to understanding higher levels of processing is to develop hierarchical 
models composed of multiple layers, in which a higher level captures structure in the 
lower level, which is itself a non-linear transform of earlier levels (Fukushima 1980; 
Lecun et al. 1989; Serre et al. 2007; George & Hawkins 2005; Hinton 2007; Hinton 
2010; Lee et al. 2008; see also Chapter xx (Kersten & Yuille)).  (Note that non-linearity 
between levels is key because otherwise a concatenation of two linear models can be 
trivially reduced to a single layer linear model.)  Such models are loosely modeled after 
the hierarchical structure of visual cortex and can be viewed as an extension of the 
methods discussed above for learning group dependencies.  Similar approaches are 
currently being pursued in machine learning and computer vision (Hinton & 
Salakhutdinov 2006; Ranzato & Hinton 2010; Lee et al. 2009).  Although these models 
show promise in capturing higher-order structure and exhibit impressive performance in 
classification tasks, the connections to biological systems are less clear.

In order to provide insights into the functions of visual cortex, it is necessary to define 
computational objectives that are biologically relevant - i.e., objectives that capture 
aspects of the problems that natural vision systems have evolved to solve.  Our own 



view is that the problem of “object recognition” as it has been defined in computer vision 
- assigning labels to images - is too narrow to capture the range of tasks we use our 
visual systems for.  Tasks such as navigation, locomotion (e.g., foot placement), 
grasping, foraging and social interaction are more than labeling problems.  They 
demand rich and dynamic representations of 3D shape and scene layout that are 
suitable for planning and driving actions, or subtle details of reflectance that provide 
cues regarding material properties.  A formal, rigorous specification of these tasks 
remains an open problem however.  In the meantime we focus on two subproblems 
which we believe are an essential component of many tasks:  learning abstract 
properties of images, and factorizing form and motion.

Learning abstract properties of images
An important aspect of vision is abstraction - i.e. the ability to generalize from specific 
instances to general categories or more abstract visual features.  In the context of 
natural scenes, Karklin & Lewicki (2009) addressed the fact that contours are typically 
composed of a great variety of image edges due to the changing textures of the 
foreground and background surfaces.  Therefore, to encode (or “recognize”) a contour, 
the visual system must at some point generalize from these specific instances of edges 
to an abstract representation of a contour that is invariant to the specific form.  Linear 
image models such as ICA or sparse coding are not able to capture this structure 
because they encode the image literally or exactly.  In terms of a probabilistic model, 
they assume a single distribution for all natural images.

To define a computational objective for the generalization problem, Karklin & Lewicki 
use a hierarchical generative model whose density is conditionally dependent on a 
higher-level, distributed representation.  When adapted to natural images, the first level 
of the model learns a standard linear image representation composed of Gabor-like 
functions.  The second level of the model learns an efficient representation of image 
distributions, in terms of the first level functions, that are typical in natural scenes.  The 
model learns abstract representations of a variety of image structures such as contours, 
junctions, and textures (Figure 5).  More pertinent to biological visual systems is that the 
model also predicts a number of non-linear properties of complex cells, including 
insensitivity to phase.  Moreover, the higher-level units also exhibit functional subunits 
similar to those obtained with spike-triggered covariance analysis of V1 complex cells.  
Thus, the model can predict the dimensions in stimulus space to which V1 complex 
cells are either sensitive or insensitive.

Other models along similar lines have also been proposed to learn abstract properties 
of images.  Schwartz et al. (2006) formulate the problem of modeling densities in terms 
of Gaussian scale mixtures and show that the second layer variables also show 
invariances resembling those of complex cells.  Ranzato & Hinton (2010) use the 
second layer variables to model the mean and covariance in an RBM (restricted 
Boltzmann machine) model and show that these variables can be used for image 
classification.  Zoran & Weiss (2011) propose a discrete Gaussian mixture model, which 
may be viewed as a special case of Karklin & Lewickiʼs model when the second layer is 



restricted to having only one unit active and the learned features in the first layer are 
subdivided into non-overlapping groups.  Their model achieves high log-likelihood and 
good performance at image denoising and deblurring tasks.  (Similar denoising results 
were obtained using a distributed representation of the image covariance (Karklin 
2007).)   Shan, Zhang & Cottrell (2007) developed a ʻrecursive ICAʼ model that stacks 
layers of ICA with a compressive non-linearity in between each stage.  This simpler, 
extendible model learns representations that capture similar structures in higher layers 
but without explicit causal inference.

Learning to separate form and motion
Time-varying natural images contain highly complex and dynamic structure.  This is due 
to many factors, but a major component is due to the projection of the 3D environment 
onto the image plane as an observer moves about the world.  These two factors - the 
observer motion and the structure of the world - are entangled together in the time-
varying pixel intensities.  A reasonable goal for a perceptual system then is to 
disentangle these two factors from the raw data, because doing so would recover the 
the motion of the observer and the 3D structure of the scene.

Cadieu & Olshausen (2012) have proposed a hierarchical model that factorizes time-
varying images into components appropriate for learning form and motion (Figure 6).  
The first layer forms a sparse, linear decomposition of image content in terms of a set of 
spatial features as described above.  The resulting sparse feature outputs are then 
factorized into two sets of variables that disentangle the different contributions due to 
form and motion: a set of amplitudes a(t) that represent the contrast of each feature, 
and a set of phases α(t) that represent the local shift of each feature.  The second layer 
is then able to learn the patterns contained in the amplitude and phase variables in 
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Figure 5.  Generalization across variability in natural scenes. a. A two-dimensional 
projection of the modelʼs second-layer representation reveals well-separated clusters 
corresponding to abstract image properties.  b. Each 3×3 group of images shows a sample 
of the images in each cluster shown at left.  Despite the variability in the appearance of 
edges and textures, the modelʼs representation of natural images generalizes within each 
region while still distinguishing among them.  (From Karklin & Lewicki 2009)



response to time-varying images.  These learned patterns, expressed in the second 
layer weights B and D, act as a prior over the form and motion during the inference of 
these variables.  Importantly, the learned motion patterns provide a rich basis for 
regularizing optic flow beyond conventional “smoothing” priors (Figure 6c) (see also Sun 
et al. (2008) for related work).     

The inferred second-layer variables v and w provide a distributed representation of the 
patterns of form and motion, respectively, that occur in natural movies.  This separation 
mirrors the separation of form and motion found in the ventral and dorsal streams in 
visual cortex, and indeed the responses of units in the model make predictions about 
the types of representations that may be found in areas V2 and MT.  There is an 
important distinction, however, between the manner in which form and motion are 
computed in this model and the standard models that have been proposed for form and 
motion processing in visual cortex (Serre et al. 2007; Simoncelli & Heeger 1998).  
Namely, this model relies upon factorization to disentangle form and motion, which 
means that recovering one of these properties depends upon knowing the other.  In 
other words, the computations for extracting form and motion interact, rather than 
happening independently.  It may be possible to test this idea by generating artificial 
stimuli where the form or shape of an object changes over time as it moves, and then 
looking at how the subsequent representations of motion, or oneʼs perceptions of 
motion and object stability, are affected.
 

Figure 6.  a. Hierarchical model for factorizing form and motion.  b. Examples of learned form 
components, B.  Weights are visualized in terms of the spatial position (left) or the peak spatial-
frequency and orientation (right) of the first-layer features they connect to.  The learned form 
patterns capture texture boundaries, contours, and differential orientation structure.  c. 
Examples of learned motion components, D.  Each is visualized according to the optic flow 
pattern it captures in the input.  The learned motion patterns include full-field motion, local 
motion, rotation and shear, and differential motion. (From Cadieu & Olshausen, 2012)



Conclusions

Over the past 30 years, work on natural scene statistics has steadily progressed from 
characterizing simple image pixel statistics to more abstract properties of form and 
motion.  From these mathematical models arise predictions about neural coding and 
representation that may be compared to neurophysiological data.  In many cases, such 
as in the retina and area V1, these models give us a new way to think about neural 
response properties that are already known and have been well characterized.  What 
has been gained here is that we have a linking principle between these response 
properties and the statistics of natural scenes.  To the extent that these principles may 
be generalized, then we can make predictions about response properties that are 
heretofore unknown.  The hierarchical models described above, for example, provide 
new hypotheses about what to look for in the representations of higher level areas such 
as V2 and MT.

As we noted at the outset, we are referring to this body of work as “natural scene 
statistics” even though most of the models are actually of images, which are simply 2D 
projections of scenes.  The hope is that explicit representations of scene properties will 
eventually emerge from models of images.  In the meantime though it would also make 
sense to make direct measurements of scene properties - e.g., surface shape, material 
properties, and dynamics - and build these into models to infer properties of the world.  
Indeed there is some promising work in this direction (Tappen, Freeman & Adelson 
2005; Barron & Malik 2012), and it remains a rich area for future exploration.
 
Although we are claiming to make predictions from these models about response 
properties of cortical neurons, there is much more that needs to be done in formulating 
these models in terms of specific neural mechanisms.  In terms of Marrʼs levels of 
analysis, our models are formulated at the level of computational theory, yet we are 
tying them to phenomena at the level of implementation.  Nothing has been said for 
example about what layers are implementing these models or what cell types are 
involved.  In addition, the “units” in these models are far removed from neurons in that 
they represent continuous, graded values rather than spikes, and they integrate their 
inputs through simple linear summation as opposed to the types of non-linear 
integration that occurs in dendrites (Polsky et al. 2004).  In order to make concrete 
predictions that may be directly and seriously compared to real neural substrates, it will 
be necessary to rethink how these models are implemented at the biophysical level.

Perhaps the most immediate application of these models in neuroscience and 
psychophysics is to use them to parameterize the properties of natural scenes in a way 
that may be manipulated and controlled in experiments.  In the same way that these 
models form internal representations of scene structure, they may be used in the 
opposite direction to generate scenes from stochastic perturbations to the latent 
variables.  In this way, it is possible to generate classes of complex visual stimuli that 
adhere to natural scene statistics to varying degrees, and then ask what aspects 
observers, or different populations of neurons, are most sensitive to.  In this way, 



models of natural scene statistics may offer us a more ecologically valid set of stimuli for 
probing the visual system.
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