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ABSTRACT

This paper explores sparse coding of natural images in the highly overcomplete regime. We show that as the
overcompleteness ratio approaches 10x, new types of dictionary elements emerge beyond the classical Gabor
function shape obtained from complete or only modestly overcomplete sparse coding. These more diverse dic-
tionaries allow images to be approximated with lower L1 norm (for a fixed SNR), and the coefficients exhibit
steeper decay. We also evaluate the learned dictionaries in a denoising task, showing that higher degrees of
overcompleteness yield modest gains in peformance.
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1. INTRODUCTION

An important goal of image representation is to make explicit the structure contained in a scene. Sparse coding
achieves this by adapting a dictionary to the statistics of the data so that any given image may be represented by a
small number of active units out of a large population. When the number of elements in the representation exceeds
the dimensionality of the data, the representation is said to be overcomplete. Overcomplete representations are
desired for a number of reasons: they allow for “shiftability,” such that translation or other transformations
in the image result in smooth and easily predictable changes among the coefficients;1 they provide robustness
in situations where coding precision is limited;2 and they can provide highly compact, sparse representations
suitable for compression.3,4 From the point of view of neuroscience, overcomplete codes are of interest because
the neural representation layer 4 of V1 is highly overcomplete (more neurons than input fibers), by factor of
at least 100.5 Thus an overcomplete sparse coding model provides a possible hypothesis for cortical image
representation.

One of the central questions that arises in the design of an overcomplete representation is the choice of
dictionary. Ideally, one would like the elements of the dictionary to match the structures contained in images.
For this reason Gabor or Gaussian atoms of various aspect ratios have been used to capture lines and edges in
images.3,4 However, for the diverse forms of structure that occur in natural images it is difficult to know a priori
what class of functions is most appropriate. The optimal choice of dictionary ultimately depends upon image
statistics as well as task demands. Here, we focus on the contribution from image statistics, and we explore what
dictionaries emerge as the degree of overcompleteness increases from 1.25x to 10x.

Our first efforts on this problem were reported at the HVEI conference in 1996,6 however at that time we
were only able to explore representations up to 2x overcomplete due to the limitations of computational resources
at the time. The intervening years have seen dramatic increases in computational speed and memory which now
make it feasible to explore much higher degrees of overcompleteness. In more recent work7 we showed that as
either overcompleteness or sparsity is increased, the dictionaries that emerge exhibit greater diversity, resulting
in ridge-like functions, circularly symmetric functions, and gratings. This paper builds on that work by focusing
on how the learned dictionaries and the resulting sparsity change as a function of increasing overcompletness
only, while keeping SNR fixed. We also preprocess the data at somewhat higher resolution allowing more detailed
structures to emerge. Finally, we evaluate the dictionaries on a denoising task.
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2. SPARSE CODING MODEL

In a sparse coding model,8,9 an image I(~x) is approximated in terms of a set of dictionary elements or basis
functions φi(~x) as follows:

I(~x) =

M∑
i=1

ai φi(~x) + ε(~x) (1)

where ~x indexes position within the two-dimensional image. The residual term ε(~x) is included to capture
structure not well described by the dictionary and is usually small compared to the first term. The image is
thus represented in terms of the coefficient activations, ai, which are encouraged to be sparse by imposing a cost
function on their absolute value. The coefficients are computed by minimizing an energy function that includes
both this cost function and the squared L2 norm of residual, ε:

E =
1

2

∑
~x

[
I(~x)−

M∑
i=1

ai φi(~x)

]2
+ λ

M∑
i=1

|ai| (2)

The parameter λ controls the tradeoff between reconstruction error and sparsity.

The energy function may be minimized by a neural circuit consisting of leaky integrators and threshold
elements connected in a resistive grid, similar to a Hopfield network:10

τ u̇i + ui = bi +
∑
j 6=i

Gij ai (3)

ai = g(ui) (4)

with bi =
∑

~x φi(~x) I(~x), Gij =
∑

~x φi(~x)φj(~x), and

g(u) =

{
sgn(u)[|u| − λ] |u| > λ

0 otherwise

Learning of the dictionary is accomplished by stochastic gradient descent of E with respect to the dictionary
{φi(~x)}, using the coefficients computed from eqs. 3 and 4.

∆φi(~x) = η

I(~x)−
M∑
j=1

aj φj(~x)

 ai (5)

The learning rate η is chosen to be sufficiently small so that the dictionary adapts on a very slow timescale
in response to the statistics of many images. After each update the dictionary is renormalized to enforce∑

~x φ
2
i (~x) = 1 ∀i.

3. RESULTS

The model was adapted to 16 × 16 pixel patches extracted from a set of images of natural scenes drawn from
the van Hateren database11,12 (see Appendix A for a listing of all the images used and details of preprocessing).
Very similar results were obtained with David Field’s images of the northwest.13 Each image was transformed
to log-intensity and then whitened and lowpass filtered to equalize variance at all spatial-frequencies and to
remove energy from the corners of the two-dimensional frequency domain, following the same procedure described
previously.9 This yields approximately 2 million distinct 16 × 16 image patches differing by a translation of at
least 2 pixels in any direction. Because of the lowpass filtering which cuts out the corners of the frequency-
domain, there are only about 200 significant dimensions in these data (this is confirmed by noting the point at
which the eigenvalues of the covariance matrix begin to drop off sharply). Thus, a dictionary with M=256 basis
functions is actually about 1.25x overcomplete.
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Dictionaries of size M=256, 512, 1024, and 2048 were learned from the data, yielding overcompletness ratios
of 1.25, 2.5, 5, and 10, respectively. For each dictionary, lambda was adjusted during learning so as to maintain
an SNR of 16 dB in the reconstruction error, where SNR is computed as

SNR (dB) = 10 log10

pixel variance

mean squared error
(6)

Figure 1 shows a random sampling of 100 elements from each learned dictionary. As the degree of over-
completeness increases, one sees a greater degree of specialization emerge. At 1.25x overcomplete, the basis
functions resemble oriented Gabor functions at different spatial scales, as has been reported previously.8,9, 12,14

At 2.5x and 5x overcomplete, the basis functions diverge in two different directions: 1) elongated functions,
and 2) compact (non-elongated) functions resembling gratings. At 10x overcomplete, one sees at least four new
classes of basis functions emerge: 1) straight contour or “ridgelet” functions15 that extend across the entire image
patch, 2) circular functions resembling difference-of-Gaussians, 3) curved functions, and 4) gratings at different
spatial frequencies. Representative examples of these four types of functions are shown in Figure 2. The full 10x
dictionary is shown in Figure 7.

The emergence of new types of basis functions begs the question of whether each type forms a complete tiling
within its own feature space. I do not have a rigorous answer to this question, but in previous work7 we showed
that the circular functions form a complete and uniform tiling of the image patch, and that the ridgelet functions
span all orientations and positions. I have not performed such an analysis here, but for now I will simply note
that the number of functions of each type is similar that previous study and so it seems plausible that they
would form a complete tiling in this case as well.

The specializations that emerge at higher degrees of overcompleteness would seem to make it easier to encode
these different forms of structure within an image. For example, an image patch containing a straight contour
can be more compactly described in terms of one of the ridgelet functions. But if the dictionary consisted only
of these functions then it would be difficult to approximate more complex shapes such as T-junctions, textures,
and so forth. For this reason, the circular, curved and grating functions are likely needed. Thus, the Gabor-
like functions found in the regime of low overcompleteness may be better understood as a “one size fits all”
compromise that emerges to approximate the diverse forms of structure that occur in natural images. As the
sparse coding model is given more degrees of freedom, the Gabor functions fade away and the representation is
dominated by more specialized classes of functions.

To investigate whether the more overcomplete representations allow for a simpler or more compact encoding
of images, we examine how the coefficient values of a given dictionary decay for each image, and we evaluate
their average L1 norm. If the more specialized dictionary elements emerging at higher overcompleteness ratios
are better matched to image structure, they should decay more rapidly and exhibit a lower average L1 norm as
overcompleteness increases. Figure 3 confirms that this is the case.

Finally, we evaluated the performance of each dictionary on a denoising task. Again, the reasoning here is
that a dictionary better matched to the structure of natural images makes a better model, and thus it should
be more adept at removing artifacts such as noise. We test this by adding Gaussian i.i.d. noise of variance 1.0
(same as the image variance) to the images to give an SNR of 0 dB. We then infer the coefficients using eqs. 3
and 4, sweeping through a range of values for λ in order to find the optimal value. The results are shown in
Figure 4 and examples of noisy and denoised image patches are shown in Figure 5. As expected, the higher
overcomplete dictionaries yield a measurable increase in performance, though the gain is modest and barely
perceptually noticeable in the denoised images. Overall, the overcomplete dictionaries recover about 5-6 dB of
signal from the noisy images.

4. DISCUSSION

That “Gabor functions emerge from sparse coding of natural images” is by now regarded as a well known fact.
Here we show that this statement must be qualified with regard to the overcompleteness ratio of the dictionary.
Only sparse representations that are complete or modestly overcomplete result in a Gabor-like solution. As
the overcompleteness ratio increases to 10x, the solution differs dramatically from the classical Gabor solution,
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1.25x 2.5x

5x 10x

Figure 1. Learned dictionaries. Each panel shows 100 basis functions selected at random from the dictionary of a given
overcompleteness ratio.

resulting in dictionaries containing more specialized elements such as straight contours, blobs, local curvature, and
gratings. The specialized elements are better matched to the structures occurring natural images, as evidenced
by the fact that they yield lower L1 norm representations, steeper coefficient decay, and better denoising. It
seems plausible that they may also result in improved image compression though this remains to be seen.

These results are of relevance to neuroscience because the input layer of V1 is thought to be at least 100x
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ridgelet

circular

curvature

grating

Figure 2. Representative examples of the four types of basis functions that emerge in the 10x overcomplete dictionary.

overcomplete5 and firing rates are low as compared to their inputs from the LGN, suggesting that this system
may also form a highly overcomplete, sparse representation of images. The results obtained here with highly
overcomplete dictionaries thus suggest that these neurons may be representing more diverse types of features
than previously thought. Indeed, as Rehn & Sommer have shown, the diversity seen in overcomplete sparse
representations better matches the actual diversity seen in V1 neurons when their shapes are more accurately
characterized.? However the Rehn & Sommer model was only about 3x overcomplete, and the feature diversity
seen was rather modest as compared to what is seen here with 10x overcompleteness, which is still far short of the
V1 regime. This begs the question then of what the extra degrees of freedom in cortex are being used for. Other
dimensions such as time (motion), color, and disparity also need to be represented, which are not considered
here. In any case, it may be worth re-examining the receptive field properties of these neurons, especially in
response to natural scenes, in light of these findings.

APPENDIX A. IMAGES USED IN TRAINING

The training set consisted of 35 images selected from the van Hateren natural scenes database.11,12 These were
selected from an original set of 50 images that were randomly drawn from the database, from which we discarded
images containing artifacts such as blur due to camera shake or excessive man made artifacts. The resulting set
of 35 images are shown in Figure reffig:training-images. The filenames of the selected images are as follows:

imk00264.iml imk00315.iml imk00665.iml imk00695.iml imk00735.iml imk00765.iml imk00777.iml
imk00944.iml imk00968.iml imk01026.iml imk01042.iml imk01098.iml imk01251.iml imk01306.iml
imk01342.iml imk01726.iml imk01781.iml imk02226.iml imk02260.iml imk02262.iml imk02982.iml
imk02996.iml imk03332.iml imk03362.iml imk03401.iml imk03451.iml imk03590.iml imk03686.iml
imk03751.iml imk03836.iml imk03848.iml imk04099.iml imk04103.iml imk04172.iml imk04207.iml

The original images are 1024 rows x 1536 columns, with pixel values linearly proportional to intensity.
Following the same logic as Ruderman,16 we transform each image to log-intensity. The central 1024x1024
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Figure 3. a. Average coefficient decay. For each image patch, and for each dictionary, the coefficients are rank ordered by
amplitude. The average decay as a function of rank for a random subsample of 10000 image patches is shown for each
dictionary. b. Average L1 norm of the coefficients for each dictionary, using the same subsample of 10000 image patches.
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Figure 4. Denoising performance measured in terms of SNR as a function of lambda for each dictionary. The more
overcomplete dictionaries yield better performance at higher values of λ.

region is extracted and the mean is subtracted to yield a pixel distribution that is roughly symmetric around
zero. This image is then whitened and lowpass filtered in the frequency domain by multiplying with the following
filter:

W (~f) = |~f | e
−
(

|~f|
f0

)4

where ~f denotes two-dimensional spatial-frequency. The exponent of 4 is chosen in the lowpass filter so as to
provide a sharper cutoff. The cutoff frequency f0 is set to 200 cycles/image and the central 512x512 region of the
frequency domain is extracted and inverse Fourier transformed to yield a 512x512 image that is down sampled
by a factor of two from the original. The set of images obtained this way is then multiplied by single scale factor
so that the variance of the entire ensemble is 1.0.
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original image

image + noise

denoised 1.25x, 5.27 dB

denoised 2.5x, 5.45 dB

denoised 5x, 5.57 dB

denoised 10x, 5.61 dB

Figure 5. Denoising examples. Shown are 25 image patches in their original and noisy states, and their reconstructions
for the optimal value of λ for each dictionary.

APPENDIX B. FULL 10X DICTIONARY

See Figure 7.

ACKNOWLEDGMENTS

I thank Charlies Cadieu for discussions and sharing with me the result of his 100x overcomplete representation,
which motivated this study. Mayur Mudigonda provided assistance with computer simulations. This work builds
on work started by David Warland,7 which initially pointed me in this interesting direction. Work supported by
grants from the National Geospatial Intellgence Agency (HM1582-08-1-0007), the National Science Foundation
(IIS-1111765) and the Canadian Institute for Advanced Research.

REFERENCES

[1] Simoncelli, E., Freeman, W., Adelson, E., and Heeger, D., “Shiftable multiscale transforms,” IEEE Trans-
actions on Information Theory 38(2), 587–607 (1992).

[2] Doi, E., Balcan, D. C., and Lewicki, M. S., “Robust coding over noisy overcomplete channels,” IEEE
Transactions on Image Processing 16, 442–52 (Feb 2007).

[3] Schmid-Saugeon, P. and Zakhor, A., “Dictionary design for matching pursuit and appliation to motion
compensated video coding,” IEEE Transactions on Circuits and Systems for Video Technology (6), 880 –
886 (2004).

[4] Rahmoune, A., Vandergheynst, P., and Frossard, P., “Flexible motion-adaptive video coding with redundant
expansions,” IEEE Transactions on Circuits and Systems for Video Technology 16(2), 178–190 (2006).

[5] Barlow, H. B., “The ferrier lecture, 1980. critical limiting factors in the design of the eye and visual cortex.,”
Proceedings of the Royal Society of London Series B 212, 1–34 (1981).

Proc. of SPIE Vol. 8651  86510S-7

Downloaded From: http://spiedigitallibrary.org/ on 04/20/2013 Terms of Use: http://spiedl.org/terms



!
7 j

f f}
, flk:.'

.

l

rt
/ Ì

\{: ld.l

w,,,,.:, r
Vh,. i .7.
(`i'+Y'tl

a.}oa

i

'17

}ÌF l
PI i

l
: . K

, `1,

<
N

v;d!

...r //Fp,;
7 ' Y7Vi/ ,:.,'.:

1slx.
\7 \

p`J,0 ^'B7ß373
yr!!

TJaP`194C°

r '! ,o.'x,

\.`i
` L'

1

_.'1
'?{

. iq Fi

N. -

r.} Y;.`
r , A'\Fi .frg1 .

4

ir`7r

yM^`tY
w

` '17

\ '

.,

r

r)Ar J
,

}

r - -

yyt q

3. r1:i\f¡`
i

re 414,¡ i..
`r¡

0 M;

-- ---- . -,. -

Jï4,.

! ir,', 1f °

, ":
3d1..

r v r,
.

.

1,
: -. .

! A

k '

,

f
3 (

S' ) 1

c

:
_

9

-._
t

w4 ;1JH`

.._ ..
-í±r'

```y

-
j

1L .

-

^' ; "a..h.
,C.

Fl i

..

r.j

Figure 6. 35 images from the van Hateren database that were used in training

[6] Olshausen, B. A. and Field, D. J., “Learning efficient linear codes for natural images: the roles of sparseness,
overcompleteness, and statistical independence,” Proc. SPIE 2657, Human Vision and Electronic Imaging,
132 (April 22, 1996) (1996).

[7] Olshausen, B. A., Cadieu, C. F., and Warland, D. K., “Learning real and complex overcomplete represen-
tations from the statistics of natural images,” Wavelets XIII, Proc. of SPIE Vol. 7446 (2009).

[8] Olshausen, B. A. and Field, D. J., “Emergence of simple-cell receptive field properties by learning a sparse
code for natural images,” Nature 381(381), 607–609 (1996).

[9] Olshausen, B. A. and Field, D. J., “Sparse coding with an overcomplete basis set: a strategy employed by
V1?,” Vision Research 37(23), 3311–25 (1997).

[10] Rozell, C. J., Johnson, D. H., Baraniuk, R. G., and Olshausen, B. A., “Sparse coding via thresholding and
local competition in neural circuits,” Neural Computation 20, 2526–2563 (2008).

[11] van Hateren, H., “Natural image dataset,” http://bethgelab.org/datasets/vanhateren/ .

[12] van Hateren, J. H. and van der Schaaf, A., “Independent component filters of natural images compared
with simple cells in primary visual cortex,” Proceedings: Biological Sciences 265, 359–366 (Mar 1998).

[13] Olshausen, B. A., “Sparsenet software and images (images.mat),”
http://redwood.berkeley.edu/bruno/sparsenet .

[14] Bell, A. J. and Sejnowski, T. J., “The independent components of natural scenes are edge filters,” Vision
Res. 37, 3327–3338 (1997).

[15] Candes, E. J. and Donoho, D. L., “Ridgelets: a key to higher-dimensional intermittency?,” Phil. Trans. R.
Soc. Lond. A 1 357, 2495–2509 (1999).

[16] Ruderman, D. L., “The statistics of natural images,” Network: Computation In Neural Systems 5, 517–548
(Nov. 1994).

Proc. of SPIE Vol. 8651  86510S-8

Downloaded From: http://spiedigitallibrary.org/ on 04/20/2013 Terms of Use: http://spiedl.org/terms



11lQ
E

er1I1li11E
lllM

!iE
 IN

N
i!N

!
u
i
e
i
v
!
M
s
!

E
SI11M

M
C

M
C

E
iE

!1114/1ll
11E

111111ai1iE
!lE

N
iE

11N
lllii!E

iiM
IE

i
\ i1\ii®

!ii!i!l11i1!N
iIi

11.1iirJiiai,N
!1ev1111G

11!!
E

N
11II10!I/if1ii1i11111111I1C

E
iNA

S
les11ii

11!!M
11iE

M
®

E
iE

E
i11E

E
E

i'el1
N
 
G
i
r
r
i
i
e
i
o
s
i

E
1111i11r11E

M
i11\1!vier!©

M
eIIlii!E

i
G

\v1111N
!N

N
l!1L

1E
N

IriiiIiilliN
!M

11!i
!
,
i
!
i
!
I
I
i
A
i
C
i
i
i
1
1
i
1
1
i
0
1
C
i

M
!E

iIIO
!flll!M

11N
!!\IM

iiM
iiY

!G
11

11\iiC
lillE

IJ\\ea!M
C

íiIM
IO

roe111i-.-.o_!E
_e11

11iE
M

liiicl10N
11ii\M

C
i!li

1111111iiO
E

E
iM

lM
iE

M
E

M
ilN

E
M

i
i
®
!
i
i
i
!
i
\
C
1
i
i
!
E
I
I
E
E
!
I
O
C
i

iri!iM
N

M
iiiE

ie110i11C
C

M
11oiM

®
 !I1e!E

E
N

E
N

11iM
11R

iE
M

B
 riiiE

ii7\E
N

IliiIliilliIl!Iil
11111111111111111r\E

N
M

1N
N

N
M

0N
M

IN
iM

Sll®
i!i

IM
1N

IlE
iliN

iE
iii\lG

ltlioI!
1!iiiiiilE

i1ìi1!!iw
iC

\
11Ji11siiiil!IE

E
Ia!I11ii11!!isi:l1E

Q
Iii11

ílieE
C

Ii!!IO
illleiiiiidlR

1I IO
!eJi

iio!L
'\i=

E
\i4i1Jii0iSiii®

m
C

i1111
11rIilisiillE

iiiE
11iiiillilJi!!N

ii111i!
i11!!!E

ii1i1'iM
®

lIM
iN

E
M

E
Ili

M
!1!!iIliE

E
1iG

l17iiIO
i\ i7N

N
,\E

A
M

IN
I\iIO

rlaie11II!!iN
J011ri!I!J11

N
!
l
ì
l
D
!
r
i
v
E
U
i
i
\
i
l
l
i
!
!
i
i
!

IM
E

N
Ii11E

IO
N

E
lilleoeM

,E
C

O
E

11E
A

E
rliii11C

ioN
l1!110iioN

N
\iiM

iill1111\M
!
l
r
s
u
C
i
N
o
!
e

o
 
s
r
I
O
a
n
o
s
1
J
i
e
e

11i!iiil\01iii11iC
iii\!i/an

111!11M
iiE

!\M
,iM

!N
M

iG
i11111111!i

11IM
\iillui.1iiIl11M

e!IO
11A

1E
IIE

C
N

 M
alliE

E
eisN

IM
M

sN
IlE

iN
:E

E
!i!E

iM
E

iM
S11E

ioilM
0IO

®
11

Figure 7. The full set of 2048 bases of the 10x overcomplete dictionary
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