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ABSTRACT
Previous work on unsupervised learning has shown that it is possible to learn Gabor-like feature representations,
similar to those employed in the primary visual cortex, from the statistics of natural images. However, such
representations are still not readily suited for object recognition or other high-level visual tasks because they
can change drastically as the image changes to due object motion, variations in viewpoint, lighting, and other
factors. In this paper, we describe how bilinear image models can be used to learn independent representations
of the invariances, and their transformations, in natural image sequences. These models provide the foundation
for learning higher-order feature representations that could serve as models of higher stages of processing in the
cortex, in addition to having practical merit for computer vision tasks.
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1. INTRODUCTION
The problem of feature extraction—i.e., parsing an image into a set of local descriptors which reflect its
structure—is central to both neurophysiological investigations of vision and computer vision. Neuroscientists
have traditionally probed the response properties of visual neurons by asking what features of the visual scene
they encode. Early studies began with spots of light, and later Hubel and Wiesel discovered orientation selectivity
in neurons within the primary visual cortex (area V1) which shifted the emphasis toward shape and other local
image properties. In the field of computer vision, the most successful methods for object recognition and tracking
depend upon extracting key feature points from an image, which are then matched to an object (represented
in terms of the same features).1 For example, the popular method of SIFT2 (scale-invariant feature transform)
utilizes a bank of multiscale, oriented gradient filters to find keypoints which are candidates for matching to an
object.

Despite the initial successes of the feature-based approach in both realms, investigators in neuroscience and
computer vision are increasingly faced with the question of how to choose the features to be extracted to be-
gin with. In both realms this process has mostly been guided by good intuitions and guesswork (e.g., Hubel
and Wiesel’s discovery of orientation selectivity was more accidental than the purposeful test of an hypothesis).
Beyond V1, though, there is very little agreement and few concrete ideas about what features are being repre-
sented. And although SIFT features appear to be robust to changes in viewpoint and other variations, it begs
the question of whether there is a more principled set of features or method for extracting them that would
exhibit even greater robustness.

In recent years, a growing community of researchers in both biological and machine vision has been addressing
the question of what features to represent by asking, what is the structure of natural images? This problem
may be approached within the principled framework of density estimation, or maximum likelihood, in which one
attempts to derive, via unsupervised learning, a model that best captures the statistical structure of natural
scenes. Using this approach, for example, it has been possible to account for the feature selective properties of
neurons in primary visual cortex in terms a sparse coding strategy adapted to the statistics of natural images.3–5
Our goal in this paper is to build upon this work in order to learn higher-order representations that could serve
as models of higher stages of processing in the cortex, in addition to having practical merit for computer vision
tasks.
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Figure 1. a. Features learned from sparse coding of natural images. Each patch shows a different basis function, φi,
and together the entire set of functions can be used to describe a 12×12 pixel image patch. b. An example image patch
(bottom) and its representation in terms of the coefficients, ai, shown as a bar chart (top).

The previous work on sparse coding models utilized a linear generative model of the form:

I(x) =
∑

i

ai φi(x) + ν(x) (1)

The image, I(x), is represented in terms of a set of basis functions, or feature descriptors, φi, and the presence or
absence of these features (or degree to which they are present in the image) is indicated by the coefficients, ai. The
term ν is taken to be Gaussian noise and is small relative to the first term. The basis functions, φi, are adapted
to the statistics of natural images so as to minimize the number of non-zero coefficients needed to represent an
image (on average), thus forming a sparse code. The basis functions that emerge from this optimization are
localized, oriented, and bandpass, in a manner that both qualitatively and quantitatively resembles the spatial
receptive field properties of V1 simple cells3 (see figure 1).

Although the features learned from sparse coding reflect intrinsic structural properties of natural images (i.e.,
edges), the resulting code is still not readily suited for object recognition or other high-level visual tasks because
the coefficients, ai, can change drastically as the image changes to due object motion, variations in viewpoint,
lighting, and other factors. What is really desired, then, is to represent invariant properties of the environment
(i.e., structural properties of surfaces and objects) independently from the factors causing the change (i.e.,
motion, changes in viewpoint, etc.).

Most attempts at achieving invariant representations utilize successive stages of feature extraction and pool-
ing.6–8 A major drawback of these models, however, is that they attempt to represent only the invariant part
without modeling the transformations that created the change in the image. Many aspects of perception, such
as scene segmentation and figure-ground assignment, rely on high-level knowledge to resolve ambiguity at lower
levels of representation, and if higher cortical areas are to send meaningful expectations to lower areas then they
need to know where to send it. A high-level representation that achieves invariance by throwing away information
about transformations will not be able to do this.

In order to preserve information about both the invariances and transformations that occur in images, a
number of theorists have been exploring a more powerful class of models, called bilinear models, for image rep-
resentation. These models are called ‘bilinear’ because the hidden variables combine via pairwise multiplication,
thus they are linear in one set of hidden variables when the others are held constant. In previous work, we and
others have described how neural architectures with bilinear forms could be used to remap visual information into
an object-based reference frame at higher levels of representation.9–11 At each stage of processing, information



(a) (b)

C 0

C 1

C 2
I3

I2

I1

I0
 0

 1

 2

Figure 2. Hierarchical remapping circuit composed of three bilinear stages. The units at each level l, Il
i , compute their

values from a weighted sum of units in the level below, Il
i =

∑
j
W l

ij Il−1
j . The weights in turn are dynamically modulated

by the control neurons, C, via W l
ij =

∑
k
Γl

ijk Cl
k. Shown in a. and b. are two different settings of the weights which

allow different instantiations of the same pattern to be remapped into a common pattern at higher levels.

from one layer (I0) is dynamically gated by a set of control neurons (c) as it goes to the next layer (I1):

I1
i =

∑

j

∑

k

Γijk ck I0
j (2)

where the term Γijk is a three-way weight that determines how much the k-th control neuron modulates the
connection from unit j in the input layer to unit i in the output layer. When these remapping circuits are
combined into a hierarchical network composed of multiple stages, it is possible to implement remappings covering
a large range of positions and scales with a manageable number of three-way connections,10 as shown in figure 2.

While it is relatively straightforward to set the three-way weights Γijk so as to achieve a certain class of
remappings, we aim to learn these parameters by observing the class of transformations that objects actually
undergo in time-varying natural images. In addition, we would like to incorporate the features learned by sparse
coding into the representation at each level, rather that simply remapping pixels.

Recently, Grimes and Rao,12 building upon earlier work by Tenenbaum & Freeman,13 proposed a method for
learning both the features as well as their remappings via sparse coding. They proposed a bilinear generative
model in which the image is described in terms of a superposition of basis functions Bik(x) with two sets of
coefficient multipliers, ai and ck:

I(x) =
∑

i

∑

k

ai ck Bik(x) + ν(x) (3)

The ai’s play the same role as before—i.e., they indicate the presence or absence of features in the image. The
ck’s now represent the local transformation. During learning, sparseness is imposed upon both the ai’s and ck’s,
and the ai’s are clamped as a local scene fragment is translated by a small number of pixels over the image
array, I(x), thus forcing the ck’s to represent the transformation. After training on many such image sequences
extracted from natural scenes, the basis functions Bik(x) converge to a set of localized, oriented shape features,
indexed by i (similar to those above), and they take on different positions, indexed by k. Somewhat similar
approaches have been employed by Frey & Jojic14 and Vasilescu & Terzopoulos,15 although in both cases strong
assumptions are made about the class of transformations to be implemented.

While this model allows for an invariant representation in the ai’s, with respect to local transformations, the
training scheme was still somewhat supervised in that a teacher signal was used to specify when the ai’s are to
be unclamped and recomputed due to a scene change vs. being clamped during the translation of the image. In
addition, the model was trained on image patch sequences obtained by scanning a window over static natural
scenes, moving in discrete, integer steps. Not suprisingly then, the Bik simply learn shifted versions of the same
set of features. As mentioned earlier, what we really desire is to learn the transformations that actually occur
in time-varying natural images, and we would like the model to discover what these are in a fully unsupervised
manner.



In this paper, we explore two different types of bilinear models for learning separate representations of the
invariances and their transformations in time-varying natural images. The first, based on remapping, has the
same bilinear form of equation 3 but makes explicit the manner in which invariant and variant components are
being modeled, which also suggests how the model can be made more efficient. This leads to the development
of the second model, which is based on interpolation among the basis function coefficients via phase shifting,
utilizing fewer multiplicative couplings. This model also points the way toward learning higher-order feature
representations which could provide rich descriptions of the invariant and variant components in natural images.

2. BILINEAR MODELS
2.1. Remapping
We first consider the problem of modeling the small transformations that occur from one frame to the next in
natural image sequences. Let us assume that each frame of the image sequence may be described as a remapping
of the previous frame via

I(x, t + 1) =
∑

x′

T (x,x′, t) I(x′, t) + ν(x, t) (4)

where ν is included to account for residual structure not well described by remapping. The map, T , is modeled
using a basis function decomposition:

T (x,x′, t) =
∑

k

ck(t) ψk(x,x′) (5)

The problem of modeling transformations in natural image sequences thus amounts to one of finding a good
set of basis functions {ψk} for generating the appropriate remappings T (x,x′). By “good” we mean intuitively
that the ψk should be well-matched to describe the transformations that typically occur. That is, only a small
number of non-zero ck should be needed to describe any given transformation. In the same way that we learned
a sparse code of image content, then, we seek to learn a sparse representation of the space of transformations.

Sparseness is enforced on the coefficients, ck, by imposing a cost function on their activity. The basis functions
ψk(x,x′) are then adapted to an image sequence by forcing each frame transition to be described using the fewest
non-zero coefficients ck. This is accomplished by the following optimization procedure:

{ψ̂k} = arg min
{ψk}

〈
min

c




∑

x,t

[I(x, t + 1)−
∑

x′

∑

k

ck(t) ψk(x,x′) I(x′, t)]2 +
∑

k,t

S(ck(t))




〉

where 〈 〉 denotes ‘average over many image sequences.’ The sparseness penalty S is of the form S(x) = log(1+x2).
The minimization with respect ot the basis functions ψk and coefficients ck may be accomplished via gradient
descent methods similar to those described previously.3

Now, if we represent the image at each time, t, using the basis function decomposition of the sparse coding
model:

I(x, t) =
∑

i

ai(t) φi(x)

we obtain from equations 4 and 5:

I(x, t + 1) =
∑

x′

∑

k

ck(t) ψk(x,x′)
∑

i

ai(t) φi(x′) (6)

=
∑

i

∑

k

ai ck Bik(x) (7)

where Bik(x) =
∑

x′ ψk(x,x′) φi(x′). Thus, it can be seen that the remapping model is equivalent to the
bilinear model of Grimes & Rao, described above (eq. 3), when the image being remapped is represented by the
coefficients of a basis function expansion. The difference here is that we are learning the remapping components



ψk explicitly, whereas in Grimes & Rao’s model they are learned implicitly, along with the invariant components
φi, via the Bik. Also, in lieu of using a teacher signal during learning we are imposing a form of “perceptual
stability” on the ai’s by essentially clamping their values for each pair of adjacent frames in the image sequence,
similar in spirit to ‘slow feature analysis’ methods.16–19

This analysis helps to clarify how the bilinear model factors an image into ‘what’ and ‘where’ components—
i.e., in terms of transformation components ψk(x,x′) and shape components φi(x). At the same time, it shows
that it may actually be disadvantageous to collapse the φi and ψk bases into a single function Bik(x), because
in doing so you lose the ability to learn structure independently from the transformations. By keeping them
separate, you can learn new shape features without having to relearn all the transformations for those features.
While this may not be a concern at lower levels of representation since the shape features are likely to be rather
generic, it could prove to be important at higher levels.

A potential problem with this approach is that the dimensionality of the transformation bases, ψk, can be
extremely large. Even for an 8 × 8 pixel image patch, each ψk is of dimension 642, and if we wish to learn
many such bases the number of parameters to learn, and thus local minima, could prove intractable. One way
to reduce the complexity is to exploit the compact representation provided by the sparse coding model. That is,
we can model the transformations in terms of the basis function coefficients, rather than directly on the image
pixels, which we turn to next.

2.2. Phase-shifting
Looking back at figure 1a, one of the striking properties of the features learned by sparse coding is that they
resemble Gabor functions—i.e., Gaussian modulated sines and cosines. An interesting property of Gabor func-
tions, for our purposes, is that they allow for shift in the image domain to be modeled simply via interpolation
among the coefficients, as shown in figure 3a. One way of understanding the solution discovered by sparse coding,
then, is that the model is attempting to describe edges or other features that occur over a continuum of different
positions, and since it is being forced to do so using a linear generative model it has essentially learned a good
set of interpolating functions. Our task then is to make explicit the transitions among coefficient values that
occur as the result of translation (or other transformations) in the image, rather than treating the coefficients as
independent variables.

A natural way to model these transitions among the coefficients is via phase-shifting. Consider a complex
basis function with real and imaginary parts as follows:

φi(x) = φR
i (x) + jφI

i (x)

Multiplying φi(x) by a complex coefficient zi and taking the real part of the product essentially interpolates
between the real and imaginary parts according to the phase of zi:

%{z∗
i φi(x)} = σi [cos αi φR

i (x) + sin αi φI
i (x)]

where %{ } denotes ‘real part,’ and σi and αi are the amplitude and phase of zi:

zi = σi ej αi

Thus, we have constructed a ‘shiftable’ feature descriptor in which the amplitude of the coefficient, σi, indicates
its presence or absence and is invariant with respect to some local transformation, and the phase of the coefficient,
αi, indicates the transformation. Note that in general a phase shift in zi need not correspond only to translation in
the image domain. If the real and imaginary basis functions are Gaussian derivatives with orthogonal orientations,
for example, then shifting the phase of zi will rotate the combined function.20

Now we can construct a complete representation of the image using a full set of such complex basis functions
as follows:

I(x, t) =
∑

i

%{z∗
i φi(x)}

=
∑

i

σi(t) [cos αi(t) φR
i (x) + sin αi(t) φI

i (x)] + ν(x, t) (8)
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Figure 3. a. Phase-shifting via interpolation in the coefficients. At left is shown a bar chart of the coefficients cor-
responding to two different basis functions (in this case, Gabor functions in quadrature phase). At right is shown the
combined function that is formed by adding the basis functions weighted by the amounts shown at left. b. Complex basis
function model. The real and imaginary coefficients for each basis function, ui, vi, are controlled by amplitude and phase
variables, σi, αi. The σi’s are invariant to local transformations, and the αi’s represent those transformations.

This model is illustrated graphically in figure 3b. Each complex basis function has two parameters that describe
how it used. The amplitude, σ, describes the locally invariant part, while the phase, α, represents the local
transformation.

Note that we can also recast the model in the same form as the original sparse coding model (eq. 1) as follows:

I(x, t) =
∑

i

ui(t) φR
i (x) + vi(t)φI

i (x) + ν(x, t)

where

ui(t) = σi(t) cos αi(t)
vi(t) = σi(t) sin αi(t)

This allows us to see that the model is essentially bilinear in the amplitudes σi and the cosine or sine of the
phase αi. However, the model here is much more constrained and there are no longer any three-way weights,
thus reducing the number of parameters that need to be learned.

The model is adapted to time-varying natural image sequences by imposing both sparseness and slowness
on the amplitudes, σi(t), in order to encourage the model to learn invariant features in the images. This is
accomplished by the following optimization procedure:

{φ̂i} = arg min
{φi}

〈
min
σ,α




∑

x,t

[
I(x, t)−

∑

i

σi(t) [cos αi(t) φR
i (x) + sin αi(t) φI

i (x)]

]2

+
∑

i,t

S(σi(t)) + |σ̇i(t)|2



〉

where the sparseness penalty S is the same as before. Note that there is no penalty on the phases variables,
which allows them to spin as needed in order to best match structure in the image.

3. RESULTS
3.1. Remapping
Figure 4 shows a sample of some of the bases ψk(x,x′) learned by training the remapping model on image
sequences extracted from a natural movie (in this case, a nature documentary). Interestingly, one of them learns
the identity mapping, which simply maps each pixel into itself, while the others learn to compute directional



Figure 4. Four of the remapping bases, Ψk(x,x′), learned from the transformations contained in natural image sequences.
Each basis function shows how a pixel in one frame is mapped into the next frame—i.e., each patch within a basis function
corresponds to a pixel within the originating frame (ordered according to its position in the frame), and the values within
the patch denote how it is weighted into the next frame. For example, the identity function (third from left) simply maps
each pixel into itself.

gradients with different orientations. This solution to can be understood as a first-order approximation to the
Lie group operator for translation.21 That is, one can approximate a translated image as

I(x + ∆x) ∼= I(x) + ∆x ·∇xI(x)

Thus, the model has essentially learned the basis functions needed to translate an image patch by adding a copy
of the image patch to its derivative along a certain direction (∆x).

3.2. Phase-shifting
Figure 5a shows two examples of complex basis functions learned as a result of adapting the model to natural
image sequences. The basis functions take on a similar form as before (localized, oriented, bandpass), except
now they come in pairs that appear roughly in quadrature. When added together weighted by the cosine and
sine of the phase, αi, they combine to form a set of shiftable basis functions. One can see the range of variation
expressed by each function by holding the amplitude of its coefficient fixed and spinning the phase from 0 to
2π (see http://redwood.berkeley.edu/bruno/complexbfs). As can be seen from the joint histograms of real
and imaginary coefficients in figure 5b, the phases have a uniform distribution over the interval 0 : 2π, indicating
that each complex basis function is being utilized in all of its shifts.

Figure 6 shows the result of coding a time-varying natural image sequence using the complex basis function
model. Note that the local invariances are now made explicit via the complex amplitudes, σi(t), which change
relatively slowly over time, typically sustaining their value over 5-10 frames. By comparison, the real and imagi-
nary coefficients, ui(t), vi(t), tend to undulate with each frame. In addition, motion is explicitly represented as a
linear ramp in phase during the periods when the corresponding amplitude is significant. Importantly, the joint
distribution of the amplitudes and phases of neighboring complex basis functions exhibits strong dependencies
(fig. 5c), suggesting that another layer of sparse coding could learn higher-order features based on this structure.

4. DISCUSSION
We have shown in this work how bilinear models may be used to learn independent representations of ’what’
(invariances) and ’where’ (transformations) components of time-varying natural images. In constrast to previous
models that focus either on forming invariant representations of objects6–8 or representations of motion and optic
flow,22–24 our approach combines both of these into the same model. Moreover, computing the transformations is
necessary for extracting the invariances, and vice-versa. Together, both the invariances and their transformations
provide a complete description of the content of time-varying images.

Interestingly, the complex basis function model bears a strong resemblance to models of ‘complex cells’ in
primary visual cortex. However the models are actually very different in terms of how they achieve invariance. In



Figure 5. a. Each row shows a different complex basis function pair learned in the shiftable basis function model. The
real part of each function is shown at left, and the corresponding imaginary part is shown at right. b. Joint histogram
of the real and imaginary coefficients, ui, vi for each complex pair. c. Joint histograms of log-amplitude (left) and phase
(right) for the pair of complex basis functions shown at left.

Figure 6. Coding of a 100-frame image sequence in terms of magnitude (left) and phase (right). Vertical axis is coefficient
index and horizontal axis is time. Phase is displayed for only those points in time when the corresponding amplitude is
significant.



the standard “energy model” of complex cells,22 invariance is achieved by simply pooling over a set of simple-cell
subunits. By contrast, in the complex basis function model, invariance is achieved by dynamically changing the
linkages with the simple-cell subunits (real and imaginary components, ui, vi) via the phase variables, αi (fig. 3b).
The phase variables contain information about relative spatial relationships, which is important to preserve and
represent explicitly since it contains useful, structural information about the content of images. For example, the
state of the art method for iris recognition encodes the phase (and discards the amplitudes) of complex Gabor
wavelet filters to form the feature vector used for pattern matching.25

The complex basis function model is also similar to the linear subspace model of Hyvarinen & Hoyer26 when
the subspace size is two. Again, however, the major difference here is that we are explicitly representing and
exploiting the phase variables in order to provide a sparse, locally invariant representation of image content.

The manner in which both the remapping model and complex basis function model are trained has much in
common (and in fact was inspired by) slow feature analysis methods.16–19 The idea behind these models is to learn
about the invariances in natural image sequences by imposing “perceptual stability” on the representation, since
objects and other invariant properties of the visual environment tend to change slowly over time (by definition),
in contrast to the pixels which typically change rapidly. However, a major drawback of most of these models is
that they attempt to represent only the invariant part, without modeling the transformations that created the
changes in the image. As emphasized earlier, the philosophy driving our approach is that the information about
the transformations is equally important and should be explicitly represented along with the invariant part so
that higher levels can generate specific predictions about content at lower levels of representation.

As it currently stands, the complex basis function model is somewhat contrived in that it relies upon grouping
pairs of basis functions together in order to model the transitions among their coefficients. However, this
particular model is intended merely as a starting point, to demonstrate what can be gained in a generative
model that utilizes multiplicative interactions among hidden variables. Generalizing this model beyond simple
pairs, so as to learn the groupings from the statistics of natural images, is the subject of current research. We
believe this approach holds great promise for learning higher-order feature representations within a hierarchical
architecture that mirrors the ’what’ and ’where’ streams of visual cortex.
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