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Learning Bimodal Structure in Audio–Visual Data
Gianluca Monaci, Pierre Vandergheynst, Senior Member, IEEE, and Friedrich T. Sommer

Abstract—A novel model is presented to learn bimodally infor-
mative structures from audio–visual signals. The signal is repre-
sented as a sparse sum of audio–visual kernels. Each kernel is a
bimodal function consisting of synchronous snippets of an audio
waveform and a spatio–temporal visual basis function. To repre-
sent an audio–visual signal, the kernels can be positioned indepen-
dently and arbitrarily in space and time. The proposed algorithm
uses unsupervised learning to form dictionaries of bimodal ker-
nels from audio–visual material. The basis functions that emerge
during learning capture salient audio–visual data structures. In ad-
dition, it is demonstrated that the learned dictionary can be used
to locate sources of sound in the movie frame. Specifically, in se-
quences containing two speakers, the algorithm can robustly lo-
calize a speaker even in the presence of severe acoustic and visual
distracters.

Index Terms—Audio–visual source localization, dictionary
learning, matching pursuit (MP), multimodal data processing,
sparse representation.

I. BACKGROUND AND SIGNIFICANCE

T O SMOOTHLY interact with our environment we must
be able to analyze and understand complex relationships

between the inputs to different sensory modalities. Not surpris-
ingly, this behavioral requirement of multimodal processing is
reflected by corresponding observations in brain research. A
fast growing body of experimental evidence suggests that dif-
ferent sensory modalities in the brain do not operate in isolation
but exhibit interactions at various levels of sensory processing
[1]–[8]. Also the fields of signal processing and computer vi-
sion have recently seen the development of perception-inspired
audio–visual fusion algorithms. Examples include methods for
speech-speaker recognition [9] and speaker detection aided by
video [10], [11], audio filtering and separation based on video
[12]–[16], or audio–visual sound source localization [17]–[26].

Typically, algorithms for audio–visual fusion exploit syn-
chronous co-occurrences of transient structures in the different
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modalities. In their pioneering work, Hershey and Movellan
[17] localized sound sources in the image frame by computing
the correlation between acoustic energy and intensity change in
single pixels. Recently, more sophisticated feature representa-
tions have been proposed, for example, audio features derived
from audio energy [20], [21], [23] or cepstral representations
[11], [18], [19], [22] and video features based on pixel inten-
sities [19], [20], [23] or on temporal signal changes [11], [18],
[19], [21], [22]. Another line of research relevant for this work
is sparse coding of audio or video signals with overcomplete
bases which has been shown to yield excellent results in signal
compressing and denoising [27]–[32]. Recently, these methods
have been proposed for analyzing audio–visual signals [16],
[24], [25].

The methods of audio–visual signal analysis mentioned so far
can be characterized by the two following steps. First, fixed and
predefined unimodal features are used to encode the essential
structures in the audio and video stream separately. Second, cor-
relations between the resulting feature representations of audio
and video signal are analyzed, for example, by estimating joint
distributions of audio–visual features [11], [19], [20], [22], [23],
using canonical correlation analysis (CCA) [18], [21] or de-
tecting temporal coincidences of audio–visual structures [16],
[24], [25].

Alternatively, we have recently suggested a different ap-
proach to sensor fusion [26]. The idea is to analyze the
audio–visual data jointly by extracting typical templates of
audio–visual features; see Fig. 1 for an example. These tem-
plates represent synchronous transient structures that co-occur
in both modalities. Simple template matching can then be used
for solving sensor fusion tasks, such as speaker localization.
The audio–visual template in Fig. 1 was extracted from a movie
showing a speaker: the audio part is the waveform of a spoken
digit in English, while the corresponding video part shows
a moving edge that could represent the lower lip during the
utterance of the digit. The direct extraction of audio–visual
templates is interesting because it focuses on relevant bimodal
structure rather than first computing the full representations in
both modalities separately and then analyzing the joint statistics
of features. However, the efficiency of the algorithm in [26]
was limited because the template extraction and matching is
brittle in the presence of accidental superpositions of separate
transient structures.

Here we present a novel model of audio–visual fusion that
combines the advantages of joint bimodal signal analysis
[26] and sparse coding, e.g., [27]–[32]. To combine the two
approaches we build on previous work that used unsupervised
learning of efficient sparse codes to understand response prop-
erties of neurons in various sensory systems. Efficient coding
(redundancy reduction) has served as an important compu-
tational objective for unsupervised learning on sensory input
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Fig. 1. Audio–visual function composed of an audio (top) and a video part
(bottom), which are time locked. Video frames are represented as a succession
of images.

[33]. This principle led to the design of learning algorithms
capable of matching the responses of the visual system, e.g.,
[34] and [35], and of the auditory system, e.g., [36]. Learning
methods used in these approaches typically get their input
from local data patches, and as a consequence, the emerging
features are usually redundant with respect to translation, rota-
tion, or scale. Recently, a family of sparse generative models
has arisen, motivated by the observation that natural stimuli
typically exhibit characteristics that are shift-invariant, that is,
they can occur and reoccur at any spatio–temporal location.
The original sparse coding models have been thus extended in
many different ways to build shift-invariant sparse codes for
sound [37]–[41], images [41]–[43], and video [44].

In the model we propose, the bimodal signal structure is cap-
tured by a shift-invariant sparse generative model. The bimodal
signal structure is the audio–visual signal component that is in-
formative for sensor fusion. Conversely, signal structure that is
uncorrelated in both modalities is less informative and therefore
only incompletely encoded. The new model uses unsupervised
learning for forming an overcomplete dictionary adapted to ef-
ficiently and sparsely encode the informative signal component.
It will be demonstrated that the new method avoids the problems
of template matching used in [26] and thus has significantly im-
proved performance for speaker localization in movies.

This paper is organized as follows. Section II describes the
proposed audio–visual signal model. Section III presents the
audio–visual matching pursuit (AV-MP) algorithm for coding
bimodal signals. Section IV introduces the algorithms for
learning bimodal data structure. In Section V, experimental
results based on synthetic and natural audio–visual data are
shown. Section VI concludes the paper with a summary of the
achieved results and with the outline of future developments of
this approach.

II. CONVOLUTIONAL GENERATIVE MODEL FOR

AUDIO–VISUAL SIGNALS

Audio–visual data is a quite unequal couple of sig-
nals. First, the dimensions differ: while the audio signal is a 1-D
stream , the video sequence is a 3-D signal with

the pixel position. Second, because the temporal resolu-
tion of auditory and visual perception differs by orders of mag-
nitude, the audio signal is usually sampled at much higher rate
(typically 6–60 kHz) than the video signal (typically 15–60 Hz).

Extending the sparse coding approach for movies [44],
one can formulate a generative model for audio–visual
signal as a linear sum of audio–visual kernels or atoms

taken from a dictionary

. Each atom consists of an audio component
and a video component with unitary norm each. In the repre-
sentation of the audio–visual signal, an atom can be placed in
any point in space and time. To place an audio–visual function

at a spatio-temporal position , we introduce the shift
operator

(1)

Note that the shift operator shifts audio and visual components
of by the same amount of time and thus relative timing is
preserved. Using the shift operator, an audio–visual signal can
be expressed

(2)

where is used as compact notation for .
The index is the number of instances the kernel is used
and the pair specifies the weights for the audio
and visual components of at instance . The use of two co-
efficients per instance allows us to use the same kernel function
irrespective of the relative power of audio and visual signal. This
invariance in the coding is important because audio–video pat-
terns may be stereotyped although the relative intensities in the
two modalities can vary.

Typically [34], [35], [37], [44], [45], the free parameters in
(2) are adjusted by two interleaved optimization procedures.

• Sparse coding: To represent a particular signal with (2),
the translation and the coefficients and
have to be chosen in order to optimize the approxima-
tion of the signal. In addition, to provide a sparse code,
the coefficients have to also satisfy a sparseness constraint,
for example, have few nonzero entries or have a kurtotic,
heavy-tailed distribution centered at zero [27]–[32], [34].

• Learning: The efficiency of the described coding proce-
dure with (2) can be optimized by adapting the dictionary
of audio–visual kernels to
the data.

The model is schematically illustrated in Fig. 2.

III. SPARSE CODING

A. Simultaneous Matching Pursuit Algorithm

In the coding procedure described by (2), the coefficients and
spatio-temporal translations of dictionary elements have to be
determined to approximate a given audio–visual input. It has
been shown, in general, that finding the optimal sparse represen-
tation of arbitrary signals is an NP-hard problem [46]. There are
many approximate methods to encode a signal given a certain
dictionary [27], [29], [39], [44], [47]. Because of their compu-
tational complexity, however, most of these techniques are too
slow for high-dimensional signals such as audio–visual data.

Matching pursuit (MP) algorithm [27] is a simple, relatively
fast iterative method to build signal approximations in (2) by se-
lecting at each step one atom from the dictionary and by using
the selected atom to improve the signal approximation. More
formally, the two steps involved in each iteration of convolu-
tional MP can be described as follows.
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Fig. 2. Schematic representation of the audio–visual code. The signal
(bottom) is modeled as a sum of kernels ,

being a 1-D audio function and a 3-D video function. Each kernel is
localized in space and time and may be applied at any spatio-temporal position

within the signal (top).

1) Projection step: For a selected atom taken from dic-
tionary , coefficients and position are deter-
mined and used to compute a signal approximation

and a residual
.

2) Selection step: Based on a similarity criterion
between the current residual and dictionary elements, the
best matching atom is selected for the next projection step.

Here we will use an extension to audio–visual signals of MP.
MP has been successfully used to compute sparse codes for uni-
modal audio signals [37] and images [35]. Tropp et al. have re-
cently proposed simultaneous orthogonal MP (S-OMP), an MP
algorithm for jointly encoding multichannel signals [48]. How-
ever, S-OMP was designed for signals of the same type, while
for capturing the bimodally informative structure in audio–vi-
sual data the method has to be extended. To overcome S-OMP
limitations, we introduce here the AV-MP method.

B. Audio–Visual Matching Pursuit

Our motivation in this study is the question whether percep-
tual effects of sensor fusion could be modeled by joint encoding
of audio–visual signals. The general idea is that if coding of
both channels is not independent, one modality could influ-
ence and thereby alter and improve the encoding of the other
modality. Such a cross-modal influence might explain effects
of sensory fusion, such as cross-modal denoising, cross-modal
alterations of perception (e.g., McGurk effect [6], bouncing
illusion [5]), source localization, etc. In audio–visual signals,
some signal structures are more important for sensor fusion
than other structures. Specifically, transient substructures that
co-occur synchronously in both modalities are particularly in-
dicative of common underlying physical causes; they are what
Barlow coined “suspicious coincidences” [49]. As an example,
think of a spoken syllable in the audio signal occurring in syn-
chrony with a person’s lip movement in the video. Conversely,

transient signals that are uncorrelated across modalities are
less informative for multimodal signal analysis. Thus, although
coding and learning could be designed so that (2) captures
the entire structure in the signal, the goal here is to design a
generative model for simultaneously capturing the bimodal
signal structure that is informative in sensor fusion.

Because audio and video signals have different dimension-
ality and different temporal sampling rate, plain S-OMP cannot
encode them. Another extension that is required in order to
capture the bimodally informative signal structure is to intro-
duce the concept of synchrony between audio–visual events in
the coding. The next paragraph describes the core algorithm of
AV-MP. Subsequently, in Section III-B2, we describe possible
similarity measures to combine the audio and video projections
for selecting audio–visual atoms in AV-MP.

1) The Core Algorithm: In MP, the coding is based on the
best match between the signal and the translated kernel func-
tion. Since in digital signals the different modalities are sam-
pled at different rates over time, we define a discretized version
of the translation operator in (1) that temporally shifts the two
modalities by different integer number of samples. The discrete
audio–visual translation is defined as

(3)

with

Here and denote the audio and video temporal sam-
pling rates, respectively. and are the translation op-
erators for shifting the audio and visual signals by and
samples, respectively. The nearest integer function is denoted by

. In practice, the audio is sampled at higher rates than the
video, i.e., , and therefore, every video frame corre-
sponds to about audio samples.1 Thus,
the shift operator in (3) is somewhat “sloppy” in preserving
audio–visual synchrony since it shifts the audio kernel at much
finer steps than the visual kernel. In fact, the following rela-
tionship holds between audio translation and video temporal
translation

with

However, this sloppiness coincides well with human perception
and thereby introduces a desired quasi invariance in the repre-
sentation, as will be explained in Section IV.

AV-MP approximates a multimodal signal with
successive projections onto the audio–visual dictionary . Let
us initialize ; then the first step of AV-MP decomposes

as

(4)

1In our experiments, values of the sampling rates are for
audio signals at 8 kHz and for videos at 29.97 frames/s, and
consequently .
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Fig. 3. responses for values of going from 0.1 to infinity. The plots are in
polar coordinates on a plane whose axes represent audio and video projections
as in (6). Audio and video projections vary defining a circular sector of uni-
tary radius. (continuous line) favors audio–visual kernels, favors uni-
modal kernels (dotted–dashed), while attributes equal chances to unimodal
and multimodal coding (dashed line).

with

In (4), is the residual after projecting in the
subspace spanned by . The pair of values

represents the pair of coeffi-
cients . The function and its spatio-temporal
translation are chosen maximizing the similarity
measure .

Recursively applying this procedure, after iterations, we
can approximate with as

(5)

where we split the sum over , into two sums
over and , with . The algorithm can be stopped
either after a fixed number of iterations or when the max-
imum value of the similarity measure between residual and
dictionary elements falls below a certain threshold. Note that the
number of iterations is equal to the number of nonzero coeffi-
cients in the signal representation. Thus, a given sparseness
can be enforced simply by limiting the number of iterations.

2) Similarity Measure for Audio–Visual Coding: The critical
question for processing audio–visual signals is how to define
the similarity measure in the selection step of AV-MP. It is
important that the selection step reflects some basic properties of
human perception. From psychophysics, it is known that relative
shifts between audio and visual signals that are smaller than the
duration of a video frame are essentially imperceptible and do
not seem to affect audio–visual integration [4], [50], [51]. Thus,
the selection of audio–visual kernels should also be unaffected
by small relative time shifts. Fortunately, the “sloppiness” of the
shift operator in (3) we described earlier allows this perceptive
invariance to be introduced in the selection step as follows. As
described in Section III-B1, for each video frame, there are

corresponding audio samples. The first video frame is associated
with audio samples from 1 to , the second with audio samples
from to , and so on. Thus, .

We define then the similarity measure for AV-MP as

subject to (6)

At each iteration, AV-MP selects the audio–visual kernel
and its spatio–temporal translation that maximize (6).
Note that the two addends in (6) are defined at different time
resolutions but the time shifts and are linked by the simple
constraint in (6). This constraint expresses the fact that for each
video translation there are possible audio translations as-
sociated. Thus, for each value of , we have to check the cor-
responding values of , and select
the couple of translations that maximizes (6). More formally,
translation indexes and are selected as

where is expressed by (6). Interestingly, a similar constraint
was introduced in the learning algorithm [38] to avoid the se-
lection of slightly shifted audio features having high correlation
with themselves.

The sum in (6) represents the norm of the matches between
the audio and visual atoms and the residual. In the literature,
different values of have been used in simultaneous sparse ap-
proximation algorithms. For example, the norm was used in
[48] and [52], while norm was used in [53]. Leviatan and
Temlyakov [54] proposed several algorithms that used and

norms. To understand the consequences of these different
choices of , we represent the audio and video matches in a polar
plane, the audio match along the 0 direction, and video match
along the 90 direction. Each pair of audio and video matches is
a point on this plane. To assess how different values affect the
weighing between unimodal and bimodal matches, Fig. 3 shows
the geodesic lines for different , with in the range from 0.1
to infinity, on the unit circle in the plane of audio and video
matches. Three values stand out: (dashed line in Fig. 3)
is constant which means that this measure weighs unimodal
matches (0 and 90 ) and bimodal matches (45 ) evenly.
(continuous line) favors the selection of kernels that contribute
energy to both audio and video signal over kernels that con-
tribute energy exclusively to one modality. (dotted–dashed
line) favors the selection of kernels that contribute mainly to a
single modality. Values of larger than 2 seem useful to en-
courage unimodal coding even more strongly than . How-
ever, values cannot be used to put stronger emphasis on
bimodal coding than ; for , the curves become flatter
and more resembling to . To summarize, the setting of can
either promote independent unimodal encoding or bimodal en-
coding of audio–visual structure. Since we want to model events
that are essentially multimodal (i.e., that are reflected by rele-
vant signal structures in both audio and video streams), we will
use and compare the similarity measures and .
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IV. LEARNING

The AV-MP algorithm provides a way to encode signals given
a set of audio–visual kernel functions. To optimize the kernel
functions to a given set of audio–visual data, we compare two
algorithms that have been successful for unimodal data: gra-
dient-based method [44] and the K-SVD algorithm [45]. The
gradient-ascent (GA) method has been used to demonstrate that
biologically plausible codes can be learned from natural statis-
tics, such as acoustic stimuli [37], static natural images [34],
[35], and time-varying visual stimuli [44]. The K-SVD algo-
rithm, which is similar in principle, has been introduced more
recently and has been reported to exhibit fast convergence [45].

A. Gradient-Ascent Learning

Following [37] and [44], one can rewrite (2) in probabilistic
form as , with a sparse prior on
the usage of dictionary elements. It is common to approximate
the integral by the maximum of the integrant (its mode), i.e.,

(7)

Here the optimal code is approximated by the AV-MP decom-
position of the signal . Note that in this case, is a prior on
the sparseness of the representation that is imposed by lim-
iting the number of AV-MP iterations. Assuming the noise in
the likelihood term to be Gaussian with variance ,
the log probability can be expressed

(8)

The kernel functions can be updated through GA on (8)

(9)

where indicates the residual error over the
extent of kernel at position . Thus, the functions

are updated with a “delta” learning rule, that is, the product
of neural activity and residual.

To summarize, the GA method suggests the following itera-
tive update of the kernel functions:

where indexes the learning algorithm iteration and is a con-
stant learning rate. is the update step

(10)

After each update step, the norm of the audio–visual kernels
components is normalized to 1.

B. The K-SVD Algorithm

Like GA, K-SVD learns the basis functions maximizing
the approximate log probability of (8) [actually, it minimizes

]. The idea here is to update only one atom at
a time, together with its corresponding coefficient. Then, the
penalty term in (8) can be rewritten as

(11)

where the subscript of the translation operator has
been omitted to simplify the notation. In (11), is the repre-
sentation error when the th kernel is removed, while the second
term is a weighed combination of function . K-SVD, how-
ever, does not minimize this function, since this would lead to a
“nonsparse” solution because no sparsity constraint is imposed
on the coefficients at this dictionary update step [45]. Instead,
K-SVD minimizes a penalty term that is estimated by taking
into account only those signal portions over which the kernel

is placed, so that at the update step the number of nonzero
coefficients can only decrease. The K-SVD algorithm learns the
kernel functions minimizing

(12)

where , , and denotes the modality.
is the residual matrix whose columns are vec-

tors of length obtained by reshaping the residuals
, where the notation is the same as in the

previous paragraph. is a row vector of the coef-
ficients and is the column vector representing
the th kernel in modality .

Equation (12) is easily minimized by computing the
singular value decomposition (SVD) of ,

, where has the same dimension of
, with nonnegative diagonal elements in decreasing order

[i.e., ]. Equation (12) is mini-
mized by updating the coefficients with the first column of

, , multiplied by , and the function
with the first column of , .

To summarize, K-SVD iteratively updates the basis functions
using the rule

where the operator rearranges the column vectors in
order to obtain the correct kernel dimensions. At the same time,
the coefficients corresponding to are also updated. Due to
the form of the solution, each kernel component remains nor-
malized.
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Fig. 4. Synthetic example. The top plot is the spectrogram of the audio part, consisting of three sine pulses at different frequencies. The bottom plot shows the
video part consisting of 30 video frames. The sequence shows four black geometric shapes on a white background. There are five events embedded in this sequence,
one audio–only structure (dashed line box), two visual-only structures (dotted line box), and two audio–visual structures (continuous line box).

Fig. 5. Two audio–visual kernels learned for the synthetic sequence shown in
Fig. 4. Audio components are on the top and video components are on the bottom
(each image is a video frame). Time is displayed on the horizontal axes.

Two major differences between GA and K-SVD algorithms
should be emphasized. First, K-SVD updates each function
with the principal component of the residual errors at position

over the extent of (discarding the contribution
of ), while GA computes at each iteration an incremental
update that is the weighed sum of the residuals. Second, the
K-SVD algorithm sweeps through the kernels and uses always
the updated coefficients as they emerge from preceding SVD
steps, while GA updates the coefficients only at the successive
coding steps. This should lead to a faster convergence of the
algorithm [45].

V. SIMULATION EXPERIMENTS

In this section, we demonstrate the proposed framework on
synthetic and natural sequences. To illustrate how the proposed
audio–visual sparse coding model works, we start with a simple
synthetic example. In the second experiment, we show that the
learning algorithm is capable of discovering salient audio–vi-
sual patterns from training data. Finally, we will demonstrate
that by detecting the learned multimodal patterns in audio–vi-
sual sequences exhibiting severe acoustic and visual distracters,
it is possible to robustly localize the audio–visual sources.

Experiment I: Synthetic Data

We build a 30-frames-long audio–visual sequence: the sound-
track consists of three sine waves at different frequencies (top
of Fig. 4), while the video shows four simple black shapes,
static or moving on a white background (bottom of Fig. 4).
The sequence represents three possible audio–visual patterns:
audio-only structure (dashed line box), visual-only structures
(dotted line box), and audio–visual structures (continuous line
box).

The AV-MP algorithm is used to learn an audio–visual dictio-
nary of ten functions for this scene. The kernels have an audio
component lasting 1602 samples and a video component of size
8 8 pixels and 6 frames in time. After few iterations, the algo-
rithm yields to learn two audio–visual functions that are shown
in Fig. 5 (the remaining eight were not trained). For brevity, only
the results are shown that were obtained with similarity measure

and GA for learning.

It is obvious that the learned audio–visual bases shown in
Fig. 5 represent the two cross-modal structures highlighted
in as continuous line boxes in Fig. 4. Kernel 1 represents the
audio–visual pattern on frames 26–27, with the static rectangle
and the synchronous sine wave, while kernel 2 represents the
moving square with the short sinusoidal pulse associated ap-
pearing on frames 8–12. This experiment demonstrates that our
learning algorithm can extract meaningful bimodal structures
from data. The algorithm focuses on audio–visual structures,
suppressing audio-only and video-only components.

Experiment II: Audio–Visual Speech

The next experiment demonstrates the capability of AV-MP
to recover audio–visual patterns in natural signals. The perfor-
mance is assessed using two different training sets. The first

consists of five audio–visual sequences representing the
mouth of one speaker uttering the digits from zero to nine in
English. The mouth region has been manually cropped form
the first portion of sequence s01m of the individuals section of
the CUAVE database [55]. Data set is composed of six clips
representing the mouth of six different persons pronouncing
the digits from zero to nine. The mouths have been manually
cropped from random sequences of the CUAVE database.
Training audio tracks are sampled at 8 kHz and the gray-scale
videos are at 29.97 frames/s and at a resolution of 35 55
pixels. The total length of the sequences is 1310 video frames
(approximately 44 s) for and 1195 video frames (approxi-
mately 40 s) for . The audio signal is directly encoded while
the video is whitened using the procedure described in [44] to
speed up the training.

For each training set, we learn four dictionaries using the sim-
ilarity measures or for coding and GA or K-SVD for
learning. The dictionaries learned on , denoted as ,

, , and , should represent collections
of basis functions adapted to a particular speaker, while those
learned on , , , , and aim
at being more “general” sets of audio–video atoms.

Dictionaries are initialized with 30 random audio–visual ker-
nels with an audio component of 2670 samples and a video
component of size 12 12 10. Since all training and test se-
quences have the same spatial dimension of 35 55 pixels, we
define the sparsity of an audio–visual signal representation as
the number of atoms used to encode it divided by the duration
in frames of its video component, i.e., . For
coding, the signal is decomposed with AV-MP using
audio–visual atoms for and for , so that for both
data sets . Note that very few elements are used to rep-
resent the signals because we are interested in the audio–visual
structure informative for sensor fusion. For learning, we fixed
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the maximum number of iterations to 1000 both for K-SVD and
GA. For the GA algorithm, as suggested in [34], the learning
rate was set to 5.0 for the first 333 iterations, then 2.5 for the
successive 333, and finally, 1 for the remainder.

Using a 2-GHz processor with 1 GB of RAM, our Matlab
code takes about 150 h to learn a dictionary on and slightly
longer on . However, we want to stress that learning is, in
general, an offline procedure; hence, it is not dramatic if the al-
gorithm is complex. Furthermore, the computation can be con-
siderably accelerated using multithreading on a multicore archi-
tecture. Matlab now supports multithreading and every PC has
several central processing units (CPUs). The computational bot-
tleneck of the algorithm is the projection of dictionary elements
on the training signal at the coding step. Since these projections
are computed as products of the Fourier transforms of atoms and
signal, and multithreading significantly speeds up the computa-
tion of the Fourier transform, the learning can be made much
faster. On informal tests, we have measured a speedup factor
close to 4 on a 4 CPUs architecture.

1) Coding Quality and Learning Convergence: Here we in-
vestigate how the behavior of AV-MP depends on the choice
of the similarity measure ( versus ) and on the learning
strategy (GA or K-SVD). First, we measured the coding effi-
cacy of the learned dictionaries. We use the four dictionaries
learned on the more general data set to encode five audio–vi-
sual sequences representing mouths uttering digits in English.
These sequences have the same characteristics of those used for
learning: resolution of 35 55 pixels and length between 150
and 195 frames.

Fig. 6(a) shows the audio and video signal-to-noise ratio
(SNR) as a function of the AV-MP iterations (results for one
test sequence and dictionary ). The arrow indicates
the sparsity chosen for learning, . The sparseness
level is chosen to focus on bimodally informative audio–visual
structure. Obviously, the SNR values are far from acceptable
for encoding the entire audio–visual signal. In fact, the plot
shows that it requires 3000 iterations to achieve a representation
of the entire signal at moderate quality.

Each test sequence is approximated with AV-MP using a
number of kernels such that for all decompositions the sparsity
is , as shown in Fig. 6(a). The scatter plot in Fig. 6(b)
summarizes the SNR values for audio and video modalities for
the five test clips and the four dictionaries. Each point in the
plot represents one sequence. Different dictionaries are repre-
sented using different markers: circles for , triangles
for , squares for , and upsidedown triangles
for .

Although the low SNR values would not allow complete
signal reconstruction, they can be used to compare the different
encoding methods. has the lowest SNR values in
both audio and visual components (squares grouped around
the lower left corner of the plot). This low performance is
presumably due to the considerably smaller number of func-
tions constituting this dictionary (see Table I). Compared to

, the dictionary achieves higher SNR for the
video component but even lower SNR for the audio component
(upsidedown triangles on the upper left corner). Interestingly,
the dictionaries trained with the measure ( and

Fig. 6. (a) Evolution of audio and video SNR with the number of functions used
for the approximation. The -axis is in logarithmic scale to ease readability. The
plot is for one sequence and one dictionary . The arrow indicates the
sparsity level used for learning . (b) Summary of audio–visual coding
behavior. Points represent the five test sequence encoded with four different dic-
tionaries. The SNR of the audio approximation is on the -axis and the SNR of
the video approximation is on the -axis. Each dictionary is identified by a dif-
ferent marker. Similarity measure provides better audio–visual approxima-
tion results (points on the upper right part of the plot) than methods (points
on the left of the figure).

) have the best overall performance; they occupy the
upper right corner in the scatter plot (circles and triangles).
The relative performances depicted in Fig. 6(b) are also rep-
resentative for other sparseness levels (data not shown). This
comparison suggests that the similarity measure encourages
the encoding of joint audio–visual structures and provides
better approximation results than the methods.

Next the learning convergence of the different algorithms is
assessed by tracking the evolution of the norm of the error
between training signals and their reconstructions (8). Fig. 7(a)
shows the error decrease during learning when dictionaries are
learned on data set . In the coding step, the signal is decom-
posed with AV-MP using audio–visual atoms

. The error decreases faster with K-SVD, no matter which
similarity measure, or , is used (this result also holds for

). Fig. 7(b) shows convergence results for GA and K-SVD
(similarity measures ) in a regime of reduced sparseness,
when the approximation uses kernels .
In this regime, the K-SVD error drops as quickly as in the case
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Fig. 7. Evaluation of different algorithmic settings for learning audio–visual
codes. The plots show the evolution of the norm of the residual versus the
learning iteration number. (a) Results using 180 audio–visual functions for the
decomposition and (b) results using 360 audio–visual functions (only curves for
matching measure are shown).

TABLE I
SUMMARY OF THE DICTIONARIES CHARACTERISTICS: NUMBER OF KERNELS

(FIRST NUMBER) AND PERCENTAGE OF AUDIO DIGITS PRESENT
IN THE DATA CAPTURED IN THE DICTIONARY

of higher sparseness, with , whereas GA reduces the
error initially more slowly. However, after 50 learning itera-
tions, the GA error drops below the plateau of the K-SVD error
and reaches error values that are significantly lower as K-SVD.
Thus, these results confirm that K-SVD is a very fast and effi-
cient learning method. Nevertheless, in some regime of sparse-
ness and with enough learning iterations, the softer and less “ag-
gressive” learning method GA can outperform K-SVD.

2) Learned Structures in Dictionaries: For all methods, we
started the training with a dictionary of 30 randomly initialized
kernels. It depended on the method how many kernels were
actually selected for coding and ultimately trained. Therefore,
first important characterization of the methods is the effective
dictionary size, that is, how many kernels were trained during
learning; see Table I. Another indicator of the “goodness” of a

dictionary is the number of recognizable structures in the data
that are captured by dictionary elements. Here we consider only
the audio part, and count the percentage of words present in the
data set (digits in English from zero to nine) that are recovered
by the learning algorithm (Table I).

It is obvious that K-SVD yields generally larger dictionaries.
Further, for any given training set and learning method, the
similarity measure yields larger dictionaries than . All
methods produce dictionaries with elements that represent in-
telligible digits or parts of digits and capture a high percentage
of data structures (the ten digits). The percentage values of GA
learning are somewhat higher than for K-SVD learning. As an
example, Fig. 8 shows a selection of elements from dictionary

. Visual basis functions are spatially localized and ori-
ented edge or line detectors moving over time. They represent
parts of the mouths making distinctive movements during the
speech. The audio components can be perceived as intelligible
speech signals; a few represent a part of a digit. If the same
digit is captured by several kernels they usually correspond to
different audio characteristics, like length or frequency content
(e.g., functions 8, 9, and 10 all feature a “five”), or different
associated video components (e.g., functions 13 and 14). Cu-
riously, function 11 captures two digits, “six” and “eight,” one
after the other. This might be due to the fact that the audio–vi-
sual representation of number “six” has both low acoustic en-
ergy and small corresponding lip motion and thus it is associated
with the number that reoccurs more often after it in the database,
i.e., “eight.”

It has to be emphasized that the set of functions shown in
Fig. 8 is qualitatively different from the dictionary, learned with
another method (MoTIF, see below) on the same data set [26].
The audio–visual kernels that our AV-MP method produces are
more heterogeneous and distributed in space and time. The al-
gorithm in [26], due to decorrelation constraints between atoms,
learns some spurious audio–visual kernels that do not represent
any real data structure. It should be also emphasized that the ker-
nels learned here are invariant under temporal and spatial shifts,
while those learned in [26] are only time-invariant.

Overall, the AV-MP algorithm, unlike the older methods,
seems to reflect the informative audio–visual structure in the
data. The reason for this improvement is presumably because
AV-MP integrates learning and coding in a way that is statisti-
cally more consistent and also biologically more plausible than
in the previous model [26].

3) Audio–Visual Speaker Localization: There is biological
evidence that auditory–visual integration plays a major role in
sound source localization [2]. Audio–visual source localization
is also one of the primary objectives of cross-modal signal anal-
ysis and it has several practical applications [17]–[26]. In this
experiment, we show that by utilizing the learned kernels in
audio–visual sequences exhibiting strong acoustic and visual
distracters, it is possible to robustly localize the audio–visual
source. This allows us to quantify the performances of the pro-
posed approach and to compare them to those of our previous
method [26].

For the localization task, we build challenging clips using
movie snippets from the groups section of the CUAVE data set
[55]. The test sequences consist of two persons in front of the
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Fig. 8. Eighteen learned audio–visual kernels for . Video components are in the second column and are represented as a succession of video frames.
Audio components are in the third column. Time is displayed on the horizontal axes. The meaning of the perceived audio component is given in the fourth column.

camera arranged as in Fig. 9(a). One person (the one on the
left here) is uttering digits in English, while the other one is
mouthing exactly the same words. As illustrated by Fig. 9(b),
both persons pronounce the same words at the same time,

making it impossible to identify the sound source observing
only visual motion (strong visual distracter). In addition, se-
vere noise is mixed with the audio track, introducing a strong
acoustic distracter [for example, see Fig. 9(c)].
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Fig. 9. (a) Sample frame of one test sequence. The white cross correctly pinpoints the position of the estimated audio–visual source. (b) Average motion on the
clip in (a): gray levels represent the temporal mean over the whole sequence of the absolute value of the difference between successive frames. Black pixels indicate
thus no motion. Observing only the visual motion, it is not possible to localize the sound source. (c) Audio signal with the speech of the real speaker (continuous
line) and noise signal with SNR 0 dB (dashed line). The test audio track is the sum of the two waveforms.

Audio–visual filtering for localization: The learned
audio–visual kernels are detected on the test sequences to
pinpoint the audio–visual sound source applying the procedure
used in [26]. The audio track of the test clip is filtered with
the audio component of each learned function. For each audio
function, the temporal position of the maximum projection is
kept and a window of 31 frames around this time position is
considered in the video. This restricted video patch is filtered
with the corresponding video component and the spatio-tem-
poral position of maximum projection between video signal
and video kernel is kept. Thus, for each learned audio–visual
function, we obtain the location of the maximum projection
over the image plane. The maxima locations on the video
frames are grouped into clusters using a hierarchical clustering
algorithm, as described in [26].2 The centroid of the cluster
containing the largest number of points is the estimated location
of the sound source. The mouth center of the correct speaker
has been manually annotated on the test sequences. The sound
source location is considered to be correctly detected if it falls
within a circle of radius 25 pixels centered in the labeled mouth.

Audio–visual speech dictionaries: Localization is per-
formed with the eight AV-MP dictionaries described in the
previous section. Performances are compared with those of
our previous algorithm, multimodal MoTIF [26]. The MoTIF
algorithm extracts typical templates from audio–visual data sets
representing synchronous co-occurring audio and video events.
Although not a generative model (meaning that the coding is
not taken into account during the learning process), the MoTIF
algorithm demonstrated to achieve excellent localization results
in challenging audio–visual sequences [26], outperforming
previously proposed methods [24], [25]. The algorithms in [24]
and [25] have shown the state-of-the-art localization results on
the CUAVE database when compared to the work of Nock et al.
[19] on the same data, and they have only recently been slightly
outperformed by more complex methods that moreover re-
quired training [22] or face detection [23]. The MoTIF method
represents thus a valid baseline for assessing the performances
of the proposed framework.

2The MATLAB function was used. Clusters are formed
when the distance between groups of points is larger than 25 pixels. We
tested several clustering thresholds and the results showed that localization
performances do not critically depend on this parameter.

Using the MoTIF algorithm, we learn two audio–visual
dictionaries and . and are
learned on the data sets used in Section V-B, and , re-
spectively. Thus, represents a set of functions adapted
to one speaker, while is intended to be a more general
audio–video dictionary. The dictionaries have the same char-
acteristics of those learned here, that is, they are composed
of the same number of audio–visual basis functions of size
12 12 10 video samples and 2670 audio samples. Learning
with MoTIF is faster than with the method proposed in this
paper: it takes about 2 h to build one of the dictionaries using
a 2-GHz processor with 1 GB of RAM. There are two good
reasons for that. First, in this paper, we do not use small
signal patches for training as it is done for MoTIF [26], but
we consider the whole audio–visual data set to learn temporal
and position invariant basis functions. This clearly slows down
the computation. Second, we learn here a whole audio–visual
code at once, while MoTIF learns the basis functions one after
the other imposing a decorrelation constraint on the learning
objective. While being computationally efficient, this strategy
produces artifacts in the resulting set of audio–visual functions
[26].

Audio–visual test set: Test sequences contain audio tracks
at 8 kHz and gray-level video components at 29.97 frames/s
and at a resolution of 240 360 pixels. For testing, we use nine
different video sequences built employing clips taken from the
groups section of the CUAVE database [55]. Three audio–vi-
sual clips show persons talking, the Speakers in Fig. 10(a)–(c),
and are extracted, respectively, from clips g01 (first connected
utterance), g01 (second utterance), and g04 (first utterance) of
CUAVE. Three videos show persons only mouthing digits, the
Distracters in Fig. 10(d)–(f), and are extracted, respectively,
from the first part of clips g08, g17, and g20 of CUAVE. In all
clips, Speaker and Distracter pronounce the same words, except
for Speaker2 who pronounces the same digits but in a different
order. Speaker1 is the same subject whose mouth was used to
build data set ; however, training and test sequences are dif-
ferent. Data set is made of six clips, each one featuring the
mouth of one subject in Fig. 10.

Audio noise with average SNR of 0, 5, and 10 dB is
mixed with the audio track. The SNR is calculated considering
the signal as is, i.e., the speech with intervening silences. We
use two types of noise: additive white Gaussian noise and the
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Fig. 10. Three speakers used for testing (a)–(c) and the three subjects used
as video distracters (d)–(e). (a) Speaker1. (b) Speaker2. (c) Speaker3. (d) Dis-
tracter1. (e) Distracter2. (f) Distracter3.

TABLE II
SUMMARY OF THE SOURCE LOCALIZATION RESULTS FOR AV-MP (ALL TESTED

LEARNING SETTINGS) AND MOTIF. RESULTS IN PERCENTAGE
OF CORRECT LOCALIZATION

signal of a male voice pronouncing numbers in English [shown
in Fig. 9(c)]. This second audio distracter has very similar char-
acteristics to the target speech as it is the speech of the male
speaker in sequence g12 of the groups section of the CUAVE
database. In addition, we test a no-noise condition for each video
sequence, obtaining thus seven different audio test conditions.
Considering all the possible combinations of audio and video
distracters, we use a test set of 63 sequences. We want to stress
that no previous work in the field considers such a broad and
challenging test set.

Localization results: Fig. 9(a) shows a sample frame of one
test sequence where the white cross indicates the estimated po-
sition of the sound source over the image plane using .
Indeed the found location coincides with the mouth of the ac-
tual speaker. Localization results are summarized in Table II.
Values are in percentage of correct detection over the whole test
set of 63 audio–visual sequences. Localization performances
achieved by the dictionaries learned using AV-MP are clearly
superior to those obtained using the audio–visual dictionaries
learned with the MoTIF algorithm.

GA used with achieves the best performances with both
and data sets. All methods proposed in this paper ob-

tain perfect localization results when using the more general
training set . Overall, all combinations of matching measures
and learning methods allow to obtain very accurate localization
results, showing the robustness of the proposed framework. The
learned codes can detect synchronous audio–visual patterns, al-
lowing confident localization of sound source in complex mul-
timodal sequences.

Fig. 11. Comparison between the average speaker localization performances
using the dictionaries learned with the AV-MP method ( and

) and with the MoTIF algorithm ( and ). Bars
are grouped according to the speaker present in the sequence. Bars express
localization accuracy for the two audio noise conditions (uniformly colored
bars: additive white Gaussian noise; checked bars: added speech) using the four
learned dictionaries (first four bars: MoTIF; last four bars: AV-MP). Each bar
is the average result over 12 sequences obtained using three video distracters
and four audio noise levels (no noise, SNR 0, 5, 10 dB). Results are
in percentage of correct localization. The improvement obtained with the
proposed method is evident.

It is interesting to compare more in details the performances
of the AV-MP algorithm and of the MoTIF method. For
AV-MP, we use the best settings, i.e., dictionaries
and . Localization results expressed in terms of per-
centage of correct speaker localization for the two methods are
shown in Fig. 11. Bars are grouped according to the speaker
in the sequence. Bars express localization accuracy for the
four dictionaries and for the two types of acoustic noise. Each
bar is the average result over 12 sequences obtained using
the three video distracters and the four audio noise levels. As
already underlined, using and , the speaker
is correctly localized in all tested conditions. On the other hand,

and exhibit poor localization performances
on such a challenging database. The only exceptions are se-
quences involving Speaker1 analyzed using . This is
not surprising since the audio–visual speech used for training

is extracted from sequences of Speaker1. Sequences
involving Speaker2 can be better interpreted than those fea-
turing Speaker3, which again is not surprising since Speaker2
is not uttering the digits in the same order of the Distracters.
These sequences have thus a lower degree of visual noise. The
most challenging audio distracter is the added speech, which is
very similar to the target audio signal. These results strongly
indicate that using AV-MP the algorithm learns audio–visual
features that are more robust to strong acoustic and visual noise
and that it is able to generalize better to different speakers.

VI. SUMMARY

We have investigated algorithms to extract bimodally infor-
mative data structures from audio–visual training. This paper
contains the following new results.
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• AV-MP is described: a method for coding audio–visual sig-
nals and learning bimodal structure in audio–visual data
that is informative for tasks such as speaker localization
and other fusion tasks.

• Different audio–visual similarity measures and different
learning algorithms are implemented in AV-MP and com-
pared: in their ability to encode and learn characteristic
audio–visual structure in synthetic and natural data.

• AV-MP is tested in a challenging speaker localization task
with audio and visual distracters and compared to the
MoTIF algorithm: all tested versions of AV-MP outper-
form MoTIF significantly.

Applications of the proposed approach can range from robust
cross-modal source localization, to audio–visual source separa-
tion [16] or joint encoding of multimedia streams.

The presented model can be extended introducing the notion
of scale invariance in the representation. If in the test sequences
shown here the mouth regions had significantly different dimen-
sions, or if the speech was pronounced at a different enough rate,
the localization performance would probably degrade because
of the fixed space-time scale of the audio–visual code. To ac-
count for spatial and temporal scale invariance, a more complex
architecture of the one presented here will be required. Such ar-
chitecture will probably involve a multilayer hierarchical model
of audio–visual representation, in the line of recent studies on
image [56], [57] and speech modeling [58]. Furthermore, a hier-
archical framework seems appropriate to define a model with a
slow-varying layer accounting for audio–visual synchrony and
finer layers capturing audio and video details.

Interestingly, the framework developed here relies upon
techniques that have been successfully employed for modeling
unimodal perceptual mechanisms [35], [37], [44]. Thus, it
is an intriguing possibility that our model might relate to
mechanisms of audio–visual perception. It is unresolved what
computation is performed by early audio–visual interactions
that have been recently reported in different species [1]–[4].
The audio–visual learning model presented here can provide a
starting point for biologically constraint models that study the
computational function of early audio–visual interactions.
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