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Abstract Predictive rate-distortion analysis suffers from the curse of dimensionality: cluster-
ing arbitrarily long pasts to retain information about arbitrarily long futures requires resources
that typically grow exponentially with length. The challenge is compounded for infinite-
order Markov processes, since conditioning on finite sequences cannot capture all of their
past dependencies. Spectral arguments confirm a popular intuition: algorithms that cluster
finite-length sequences fail dramatically when the underlying process has long-range tempo-
ral correlations and can fail even for processes generated by finite-memory hidden Markov
models. We circumvent the curse of dimensionality in rate-distortion analysis of finite- and
infinite-order processes by casting predictive rate-distortion objective functions in terms of
the forward- and reverse-time causal states of computational mechanics. Examples demon-
strate that the resulting algorithms yield substantial improvements.

Keywords Optimal causal filtering · Computational mechanics · Epsilon-machine ·
Causal states · Predictive rate-distortion · Information bottleneck

1 Introduction

Biological organisms and engineered devices are often required to predict the future of
their environment either for survival or performance. Absent side information about the
environment that is inherited or hardwired, their only guide to the future is the past. One
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strategy for adapting to environmental challenges, then, is to memorize as much of the past
as possible—a strategy that ultimately fails, even for simple stochastic environments, due to
the exponential growth in required resources, a curse of dimensionality.

One way to circumvent resource limitations is to identify minimal sufficient statistics
of prediction, or the forward-time causal states S+. Storing these states costs on average
C+

μ = H[S+] bits of Shannon information, a quantity more popularly known as the statistical
complexity [1–3]. However, for most processes [4,5], statistical complexity is infinite and so
storing the causal states themselves exceeds the capacity of any learning strategy.

As such, one asks for approximate, lossy features that predict the future as well as pos-
sible given resource constraints. Shannon introduced rate-distortion theory to analyze such
trade-offs [6,7]. When applied to prediction, rate-distortion theory provides a principled
framework for calculating the function delineating achievable from unachievable predictive
distortion for a given amount of memory. In practice, one typically compresses finite-length
pasts to retain information about finite-length futures [8,9]. This can yield reasonable esti-
mates of predictive rate-distortion functions at sufficient lengths, but how long is long
enough?

We introduce a new theory and algorithm for calculating predictive rate-distortion func-
tions and lossy predictive features when given a model of a process. The heart of this is a new
theorem that identifies lossy predictive features as lossy causal states, an extension of a pre-
vious result identifying lossless predictive features as causal states [8,9]. The theorem allows
us to calculate lossy predictive features and predictive rate-distortion functions directly from
bidirectional models, without ever having to calculate trajectory probabilities—effectively
leveraging the mechanistic information supplied by the model to obtain only the needed
information about the process’ statistics. This ameliorates, and sometimes eliminates, the
aforementioned curse of dimensionality.

Most research in this area is primarily focused on new techniques for building predictive
models from data, suggesting the question: why build an optimal approximate predictive
model when a maximally predictive model is known? We envision at least two applications.
Accurate calculation of lossy predictive features has already found utility in testing the
predictive capabilities of biological sensory systems [10]. As such, the results presented here
expand the range of stimuli for which an organism’s predictive capabilities can be tested.
And, more broadly, this or similar work might aid computation of optimally coarse-grained
dynamical models, which can be useful when one wants to interpret the results of large-scale
simulations.

The usefulness of the algorithms presented here naturally depends on the quality of the
model with which one starts. The examples analyzed suggest that when one’s model is
accurate, and when the underlying process has relatively long-range temporal correlations,
the new predictive rate-distortion algorithm substantially outperforms existing algorithms.

Section 2 reviews minimal maximally predictive models and predictive rate-distortion
theory. Section 3 describes fundamental limitations to current predictive rate-distortion
algorithms. Section 4 introduces a new theorem that reformulates predictive rate-distortion
objectives in terms of minimal sufficient statistics of prediction and retrodiction. Section
5 then describes a new class of algorithms for computing lossy causal states based on this
theorem, given amodel of a process, and illustrates its performance on several simple infinite-
order Markov processes. Section 6 summarizes outstanding issues, desirable extensions, and
future applications.
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2 Background

Whenan information source’s entropy rate falls belowachannel’s capacity, Shannon’sSecond
Coding Theorem says that there exists an encoding of the source messages such that the
information can be transmitted error-free, even over a noisy channel.

What happens, though, when the source rate is above this error-free regime? This is what
Shannon solved by introducing rate-distortion theory [6,7]. Our view is that, for natural
systems, the above-capacity regime is disproportionately more common and important than
the original error-free coding with which Shannon and followers started. This viewpoint may
be particularly important for understanding biological sensory systems; e.g., as studied in
Refs. [10–12]. Summarizing sensory information not only helps reduce demands onmemory,
but also the computational complexity of downstream perceptual processing, cognition, and
acting. For instance, much effort has focused on determining memory and the ability to
reproduce a given time series [13], but that memory may only be important to the extent that
it affects the ability to predict the future; e.g., see Refs. [4,10,14,15].

We are interested, therefore, as others have been, in identifying lossy predictive features.
First, we review the calculus of minimal maximally predictive models. These, finally, lead

us to describe what we mean by lossy causal states. The following assumes familiarity with
information theory at the level of Ref. [16].

2.1 Processes and Their Causal States

When predicting a system the main object is the process P it generates: the list of all of a
system’s behaviors or realizations {. . . x−2, x−1, x0, x1, . . .} as specified by their joint proba-
bilities Pr(. . . X−2, X−1, X0, X1, . . .). We denote a contiguous chain of random variables as
X0:� = X0X1 · · · X�−1. Left indices are inclusive; right, exclusive. We suppress indices that
are infinite. In this setting, the present Xt :t+� is the length-� chain beginning at t , the past is
the chain X :t = . . . Xt−2Xt−1 leading up the present, and the future is the chain following the
present Xt+�: = Xt+�+1Xt+�+2 · · · . When being more expository, we use arrow notation;

for example, for the past
←−
X = X :0 and future

−→
X = X0:. We refer on occasion to the space

←−
X

of all pasts. Finally, we assume a process is ergodic and stationary—Pr(X0:�) = Pr(Xt :�+t )

for all t ∈ Z—and the measurement symbols xt range over a finite alphabet: x ∈ A. Wemake
no assumption that the symbols represent the system’s states—they are at best an indirect
reflection of an internal Markov mechanism. That is, the process a system generates is a
hidden Markov process [17].

Forward-time causal states S+ are minimal sufficient statistics for predicting a process’s
future [1,2]. This follows from their definition as sets of pasts grouped by the equivalence
relation ∼+:

x:0 ∼+ x ′:0 ⇔ Pr(X0:|X :0 = x:0) = Pr(X0:|X :0 = x ′:0) . (1)

As a shorthand, we denote a cluster of pasts so defined, a causal state, as σ+ ∈ S+. We
implement Eq. (1) via the causal state map: σ+ = ε+(

←−x ). Through it, each state σ+
inherits a probability π(σ+) from the process’s probability over pasts Pr(X :0). The forward-
time statistical complexity is defined as the Shannon entropy of the probability distribution
over forward-time causal states [1]:

C+
μ = H[S+] . (2)
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A generative model—the process’s ε-machine—is built out of the causal states by endowing
the state set with a transition dynamic:

T x
σσ ′ = Pr(S+

t+1 = σ ′, Xt = x |S+
t = σ) ,

matrices that give the probability of generating the next symbol xt and ending in the next
state σt+1, if starting in state σt . (Since output symbols are generated during transitions there
is, in effect, a half time-step difference in index. We suppress notating this.) For a discrete-
time, discrete-alphabet process, the ε-machine is its minimal unifilar Hidden Markov Model
(HMM) [1,2]. (For general background on HMMs see Refs. [18–20]. For a mathematical
development of ε-machines seeRef. [21].)Note that the causal-state set of a process generated
by even a finite HMM can be finite, countable, or uncountable. Minimality can be defined
by either the smallest number of causal states or the smallest statistical complexity Cμ [2].
Unifilarity is a constraint on the transition matrices such that the next state σt+1 is determined
by knowing the current state σt and the next symbol xt .

A similar equivalence relation ∼− can be applied to find minimal sufficient statistics for
retrodiction [22]. Futures are grouped together if they have equivalent conditional probability
distributions over pasts:

x0: ∼− x ′
0: ⇔ Pr(X :0|X0: = x0:) = Pr(X :0|X0: = x ′

0:) . (3)

A cluster of futures—a reverse-time causal state—defined by ∼− is denoted σ− ∈ S−.
Again, each σ− inherits a probability π(σ−) from the probability over futures Pr(X0:). And,
the reverse-time statistical complexity is the Shannon entropy of the probability distribution
over reverse-time causal states:

C−
μ = H[S−] . (4)

In general, the forward- and reverse-time statistical complexities are not equal [22,23]. That
is, different amounts of informationmust be stored from the past (future) to predict (retrodict).
Their difference� = C+

μ −C−
μ is a process’s causal irreversibility and it reflects this statistical

asymmetry.
The amount of information in the future that is predictable from the past is the past-future

mutual information or excess entropy:

E = I[←−X ;−→
X ] .

The forward- and reverse-time causal states play a key role in prediction. First, one must
track the causal states in order to predict the E bits of future information that are predictable.
Second, they shield the past and future from one another. That is:

Pr(
←−
X ,

−→
X |S+) = Pr(

←−
X |S+)Pr(

−→
X |S+) and

Pr(
←−
X ,

−→
X |S−) = Pr(

←−
X |S−)Pr(

−→
X |S−),

even though S+ and S− are functions of
←−
X and

−→
X , respectively. Thus, the excess entropy

vanishes if one conditions on the causal states: I[←−X ;−→
X |S+] = 0.

2.2 Lossy Predictive Features

Lossypredictive features are naturally definedviapredictive rate-distortionor its information-
theoretic instantiations [8,9,24]. Interested readers can refer to Refs. [6,7,25] or Ref. [16,
Ch.10] for more detailed expositions of rate-distortion theory. The admittedly brief presen-
tation here is adapted to serve our focus on prediction.

123



1316 S. E. Marzen, J. P. Crutchfield

The basic setting of rate-distortion theory requires specifying two items: an information
source to encode and a distortion measure d that quantifies the quality of an encoding. The

focus on prediction means that the information source is a process’s past
←−
X with realizations

←−x and the relevant variable is its future
−→
X . That is, we enforce the Markov chain R →←−

X → −→
X when looking for states R coarse-grained at a level determined by d .

Our distortion measures have the form:

d(
←−x , r) = d

(
Pr(

−→
X |←−X = ←−x ),Pr(

−→
X |R = r)

)
.

This form is atypical for distortions and, technically, an extension of traditional rate-distortion
theory.More typical distortions would include, for example, a normalized Hamming distance
between a given ←−x and the estimated past from the codeword r ∈ R. However, these
“predictive distortions” are well adapted to the applications described earlier. The minimal
code rate R at expected distortion D is given by the predictive rate-distortion function:

R(D) = min
〈d(

←−x ,r)〉←−
X ,R≤D

I[R;←−
X ] . (5)

Determining the optimal lossy predictive features Pr(R|←−X ) that achieve these limits, as well
as the predictive rate-distortion function, is the goal of predictive rate distortion theory.

Among predictive distortions, predictive informational distortions of the form:

d(
←−x , r) = DKL [Pr(−→X |←−X = ←−x )||Pr(−→X |R = r)] (6)

are of special interest, as they have been well studied by others [8–10,24,26] and also satisfy
several reasonable criteria for how one might choose a good distortion measure [27]. The

expected value of a predictive information distortion is I [←−X ;−→
X |R] = E − I [R;−→

X ], so
that minimizing predictive information distortion is equivalent to maximizing I [R; −→

X ]. We
often find it useful to define the predictive information function:

R(I0) = min
I[R;−→X ]≥I0

I[R;←−
X ], (7)

which is related to the corresponding predictive rate-distortion function in a straightforward
manner.1 As in the literature, we refer to this as the predictive information bottleneck (PIB).
Previous results established that the zero-distortion predictive features are a process’s causal
states and so the maximal R(I0) = C+

μ [8,9] and this code rate occurs at an I0 = E [22,28].
The choice of method name can lead to confusion since the recursive information bot-

tleneck (RIB) introduced in Ref. [29] is an information bottleneck approach to predictive
inference that does not take the form of Eq. (7). However, RIB is a departure from the orig-
inal IB framework since its objective function explicitly infers lossy machines rather than
lossy statistics [30].

3 Curse of Dimensionality in Predictive Rate-Distortion

Let’s consider the performance of any predictive information bottleneck algorithm that
clusters pasts of length M to retain information about futures of length N . When finite-block
algorithms work, in the lossless limit they find features that capture

1 The predictive information function R(I0) is the predictive rate-distortion function R(D) evaluated at
D = E − I0.
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I[X−M :0; X0:N ] = E(M, N ) of the total predictable information I [←−X ;−→
X ] = E at a coding

cost of C+
μ (M, N ). As M, N → ∞, they should recover the forward-time causal states

giving predictability E and coding cost C+
μ . Increasing M and N come with an associated

computational cost, though: storing the joint probability distribution Pr(X−M :0, X0:N ) of
past and future finite-length trajectories requires storing |A|M+N probabilities.

More to the point, applying these algorithms at small distortions requires storing
and manipulating a matrix of dimension |A|M × |A|N . This leads to obvious practical
limitations—an instantiation of the curse of dimensionality for prediction. For example,
current computing is limited to matrices of size 105 × 105 or less, thereby restricting rate-
distortion analyses to M, N ≤ log|A| 105. (This is an overestimate, since the sparseness of
the sequence distribution is determined by a process’s topological entropy rate.) And so,
even for a binary process, when |A| = 2, one is practically limited to M, N ≤ 16. Notably,
M, N ≤ 5 are more often used in practice [8,9,31–33]. Finally, note that these estimates do
not account for the computational costs of managing numerical inaccuracies whenmeasuring
or manipulating the vanishingly small sequence probabilities that occur at large M and N .

These constraints compete against achieving good approximations of the information
rate-distortion function: we require that E − E(M, N ) be small. Otherwise, approximate
information functions provide a rather weak lower bound on the true information function
for larger code rates. This has been noted before in other contexts, when approximating
non-Gaussian distributions as Gaussians leads to significant underestimates of information
functions [34]. This calls for an independent calibration for convergence. We address this
by calculating E − E(M, N ) in terms of the transition matrix W of a process’ mixed-state
presentation.WhenW is diagonalizable with eigenvalues {λi }, Ref. [35] provides the closed-
form expression:

E − E(M, N ) =
∑

i :λi =1

λM
i + λN+1

i − λM+N+1
i

1 − λi
〈δπ |Wλi |H(WA)〉, (8)

where 〈δπ |Wλi |H(WA)〉 is a dot product between the eigenvector 〈δπ |Wλi corresponding to
eigenvalue λi and a vector H(WA) of transition uncertainties out of each mixed state.2 Here,
π is the stationary state distribution, 〈δπ | is the probability vector over mixed states with
full weight on the mixed state corresponding to the stationary state distribution, and Wλi is
the projection operator associated with λi . When W ’s spectral gap γ = 1 − maxi :λi =1 |λi |
is small, then E(M, N ) necessarily asymptotes more slowly to E. When γ is small, then
(loosely speaking) we need M, N ∼ log1−γ (ε/γ ) in order to achieve a small error ε ∼
E − E(M, N ) � 1 for the predictive information function.

Figure 1(bottom) shows E(M, N ) as a function of M and N for the Even Process, whose
ε-machine is displayed in the top panel. The process’ spectral gap γ ≈ 0.3 bits and, corre-
spondingly, we see E(M, N )/E asymptotes slowly to 1. For example, capturing 90% of the
total predictable information requires M, N ≥ 8. (The figure caption contains more detail
on allowed (M, N ) pairs.) This, in turn, translates to requiring very good estimates of the
probabilities of ≈ 104 length-16 sequences. In Fig. 3 of Ref. [9], by way of contrast, Even
Process information functions were calculated using M = 3 and N = 2. As a consequence,
the estimates there captured only 27% of the full E.

The Even Process is generated by a simple two-state HMM, so it is notable that computing
its information function (done shortly in Sect. 5) is at all challenging. Then again, the Even
Process is an infinite-order Markov process [37].

2 More precisely, each element of H(WA) is the entropy in the next observation given that one is currently
in the corresponding mixed state.
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1318 S. E. Marzen, J. P. Crutchfield

Fig. 1 Curse of dimensionality
when predicting the Even
Process: (top) The ε-machine, its
minimal unifilar HMM. Edge
labels p|x denote generating
symbol x ∈ A while taking the
transition with probability p.
(bottom) E(M, N )/E as a
function of N and M calculated
exactly using Eq. (8) and the
values of {λi },
〈δπ |Wλi |H(WA)〉 from the
Supplementary Materials for Ref.
[36]. The Even Process’s total
predictable information
E ≈ 0.9183 bits. Capturing 90%
of E requires: M = 6, N ≥ 13 or
N = 6, M ≥ 13; M = 7, N ≥ 9
or N = 7, M ≥ 9; and
M ≥ 8, N ≥ 8.
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The difficulty can easily become extreme. Altering the Even Process’s lone stochastic
transition probability can increase its temporal correlations such that correctly calculating its
information function requires massive compute resources. Thus, the curse of dimensionality
is a critical concern even for finite-Cμ processes generated by finite HMMs.

As we move away from such simple prototype processes and towards real data sets,
the attendant inaccuracies generally worsen. Many natural processes in physics, biology,
neuroscience, finance, and quantitative social science are highly non-Markovian with slowly
asymptoting or divergent E [38]. This implies rather small spectral gaps if the process has
a countable infinity of causal states—e.g., as in Ref. [39]—or a distribution of eigenvalues
heavily weighted near λ = 0, if the process has an uncountable infinity of causal states.
In short, complex processes [4,14] are those for which sequence-based algorithms are most
likely to fail.

4 Recasting Predictive Rate Distortion Theory

Circumventing the curse of dimensionality in predictive rate-distortion, even given an accu-
rate model of the process, requires an alternative approach to predictive rate distortion that
leverages the structural information about a process captured by that model. The results now
turn to describe exactly how this structural information can be exploited. Lemma 1 equates
lossy predictive features to lossy forward-time causal states. Theorem 1 shows that, for many
predictive distortion measures, reverse-time causal states can replace semi-infinite futures. A
corollary is that the predictive information bottleneck—compression of semi-infinite pasts
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to retain information about semi-infinite futures—can be recast as compression of forward-
time causal states to retain information about reverse-time causal states. The joint probability
distribution of forward- and reverse-time causal statesmay seem somewhat elusive, but previ-
ous work has shown that this joint probability distribution can be obtained given the process’
model [23,28].

The theory builds on a simple observation: any predictive codebook can be recast as a
codebookover forward-time causal states. Though the old andnewcodebooks have equivalent
predictive distortions, the new codebook is either equivalent to or “smaller” than the old
codebook. This observation is made precise by the following remark.

Remark Given any codebookPr(R|←−X ), construct a newcodebookby settingPr(R|←−X = ←−x )

to be Pr(R|S+ = ε+(
←−x )). This new codebook has equivalent predictive distortion, since

predictive distortion depends only on Pr(r, σ+):

E[d(
←−x , r)] =

∑

←−x ,r

Pr(←−x , r)d(Pr(
−→
X |←−X = ←−x ),Pr(

−→
X |R = r))

=
∑

←−x ,r

Pr(←−x , r)d(Pr(
−→
X |S+ = ε+(

←−x )),Pr(
−→
X |R = r))

=
∑

σ+,r

Pr(σ+, r)d(Pr(
−→
X |S+ = σ+),Pr(

−→
X |R = r)) .

More importantly, this new codebook has equal or smaller rate, since:

I [R;←−
X ] = I [R;S+] + I [R;←−

X |S+] ≥ I [R;S+] , (9)

with equality when we have the Markov chain
←−
X → S+ → R; as is true for the new, but

not necessarily for the old, codebook.

After the procedure implied by the remark, we can decrease not just the rate, but the
number of predictive features by clustering together r and r ′ with equivalent future morphs

Pr(
−→
X |·). (In a sense, two predictive features with equivalent future morphs are just copies of

the same object.) Then, the number of predictive features never exceeds the number of causal
states, and the entropy H [R] never exceeds the statistical complexity. While potentially

useful—some models have rate I [R;←−
X ] equivalent to the statistical complexity, despite

their nonminimality, effectively by copying one or more causal states—this second operation
is unnecessary for the statements below.

To start, inspired by the previous finding that PIB recovers the forward-time causal states

in the lossless limit [8,9], we argue that compressing either the past
←−
X or forward-time causal

states S+ should yield the same lossy predictive features. In other words, lossy predictive
features are lossy causal states, and vice versa.

Lemma 1 Compressing the past
←−
X to minimize expected predictive distortion is equivalent

to compressing the forward-time causal states S+ to minimize expected predictive distortion.

Proof A codebook that optimally compresses the past to achieve at most a distortion of

E[d] ≤ D minimizes rate I [R;←−
X ], while a codebook that optimally compresses forward-

time causal states to achieve atmost a distortion ofE[d] ≤ Dminimizes a rate I [R;S+]. (See
Eq. (5) and accompanying text.) Clearly, a codebook that optimally compresses forward-time
causal states to minimize expected predictive distortion also optimally compresses pasts to
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1320 S. E. Marzen, J. P. Crutchfield

minimize expected predictive distortion, since for such a codebook, the objective functions

are equivalent: I [R;←−
X ] = I [R;S+]. In the other direction, suppose that some codebook

optimally compresses the past to minimize expected predictive distortion, in that it has the

smallest possible rate I [←−X ;R] given distortion E[d] ≤ D. From the above remark, this
codebook can be conceptualized as a codebook over forward-time causal states and has

rate I [R;←−
X ] = I [R;S+]. Hence, the corresponding codebook over forward-time causal

states also optimally compresses forward-time causal states to minimize expected predictive
distortion, since for such a codebook, the objective functions are again equivalent. ��

This lemma already provides a form of dimensionality reduction: semi-infinite pasts are
replaced with the (potentially finite) forward-time causal states. Interestingly, in a nonpredic-
tion setting, Ref. [40] states Lemma 1 in their Eq. (2.2) without conditions on the distortion

measure. However, a distortion measure that is not of the form d(
←−x , r) = d(Pr(

−→
X |←−X =←−x ),Pr(

−→
X |R = r)) can still look like a predictive distortion measure, but actually incor-

porate potentially unnecessary information about the past, e.g., by penalizing the difference
between an estimated and true future trajectories. In those situations, Lemma 1 may not
apply, depending on the particular future trajectory estimator. In other situations, further
dimensionality reduction is possible depending on the predictive distortion; e.g., as in Ref.
[41].

When the distortion measure takes a particular special form, then we can simplify the
objective function further. Our inspiration comes from Refs. [22,28,42] which showed that
themutual information between past and future is identical to themutual information between

forward and reverse-time causal states: I[←−X ;−→
X ] = I[S+;S−]. In other words, forward-time

causal states S+ are the only features needed to predict the future as well as possible, and
reverse-time causal states S− are features one can predict about the future.

Theorem 1 Compressing the past
←−
X to minimize expected distortion of the future

−→
X is

equivalent to compressing the forward-time causal states S+ to minimize expected distortion
of reverse-time causal states S−, if the predictive distortion measure is an f -divergence.

Proof If d(·, ·) is an f -divergence, then it takes the form:

d(
←−x , r) =

∑

−→x
Pr(

−→
X = −→x |←−X = ←−x ) f

(
Pr(

−→
X = −→x |←−X = ←−x )

Pr(
−→
X = −→x |R = r)

)

,

for some f [43]. Reverse-time causal states S− are functions of the future
−→
X that shield the

future from the past and the representation: we have the Markov chain R → ←−
X → S− →−→

X . And, so:

Pr(
−→
X = −→x |←−X = ←−x ) = Pr(

−→
X = −→x |S− = ε−(

−→x ))Pr(S− = ε−(
−→x )|←−X = ←−x )

and:

Pr(
−→
X = −→x |R = r) = Pr(

−→
X = −→x |S− = ε−(

−→x ))Pr(S− = ε−(
−→x )|R = r) .
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In this way, predictive distortions that are f -divergences can also be expressed as:

d(
←−x , r) =

∑

−→x
Pr(

−→
X = −→x |S− = ε−(

−→x ))Pr(S− = ε−(
−→x )|←−X = ←−x )

× f

(
Pr(S− = ε−(

−→x )|←−X = ←−x )

Pr(S− = ε−(
−→x )|R = r)

)

=
∑

σ−
Pr(S− = σ−|←−X = ←−x ) f

(
Pr(S− = σ−|←−X = ←−x )

Pr(S− = σ−|R = r)

)

.

Given this fact and Lemma 1, we recover the theorem’s statement. ��
Distortion measures that are not f -divergences, such as mean squared-error distortion

measures, implicitly emphasize predicting one reverse-time causal state over another. The
Kullback-Leibler divergence given in Eq. (6), though, is an example of an f -divergence. It
follows that informational predictive distortions treat all reverse-time causal states equally.
Corollary 1 then follows as a particular application of Theorem 1. It recasts the predictive
information bottleneck in terms of forward- and reverse-time causal states.

Corollary 1 Compressing the past
←−
X to retain information about the future

−→
X is equivalent

to compressing S+ to retain information about S−.

Naturally, there is an equivalent version for the time-reversed setting in which past and
future are swapped and the causal state sets are swapped. Also, any forward- and reverse-
time prescient statistics can be used in place of S+ and S− in any of the statements above.
(Prescient statistics are essentially refinements of causal states [2].)

These proofs follow almost directly from the definitions of forward- and reverse-time
causal states. Variations or portions of Lemma 1, Theorem 1, and Corollary 1 are, hopefully,
intuitive. That said, to the best of our knowledge, they are also new.

Throughout, we cavalierly manipulated semi-infinite pasts and futures and their condi-

tional and joint probability distributions—e.g., Pr(
−→
X |←−X ). This is mathematically suspect,

since then many sums should be measure-theoretic integrals, our codebooks seemingly have
an uncountable infinity of codewords, many probabilities vanish, and our distortion measures
apparently divide 0 by 0. So, a more formal treatment would instead: (i) consider a series of
objective functions that compress finite-length pasts to retain information about finite-length
futures for a large number of lengths, giving finite codebooks and finite sequence probabil-
ities at each length; (ii) trivially adapt the proofs of Lemma 1, Theorem 1 and Corollary 1
for these objective functions with finite-time causal states; and (iii) take the limit as those
lengths go to infinity; e.g., as in Ref. [42]. As long as the finite-time forward- and reverse-time
causal states limit to their infinite-length counterparts, which seems to be the case for ergodic
stationary processes but not for nonergodic processes, one recovers Lemma 1, Theorem 1
and Corollary 1. We leave the task of an expanded measure-theoretic development to those
with greater mathematical fortitude.

These statements nominally reduce the numerically intractable problem of clustering in

the infinite-dimensional sequence space (
←−
X ,

−→
X ) to the potentially tractable one of clustering

in (S−,S+). This is hugely beneficial when a process’s causal state set is finite. However,
many processes have an uncountable infinity of forward-time causal states or reverse-time
causal states [4,5]. Is Theorem 1 useless in these cases? Not necessarily. Predictive rate-
distortion functions can be approximated to any desired accuracy by a finite or countable
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ε-machine. Additional work is required to understand how approximations of a process’
minimal maximally predictive model map to approximations of its predictive rate-distortion
function.

5 Examples

Theorem 1 suggests a new objective function to define lossy predictive features and predictive
rate-distortion functions. It is unclear from theory alonehowuseful this newobjective function
might be. We now compare the results of an algorithm suggested by Corollary 1 to results of
more commonly used PIB algorithms for several simple stochastic processes to investigate
when and why moving to bidirectional model space proves useful.

To date, PIB algorithms cluster finite-length pasts to retain information about finite-length
futures. For simplicity’s sake, we assume that lengths of pasts and futures are both L . These

algorithms find Pr(R|←−X L) that maximize:

Lβ = I
[
R;−→

X L
]

− β−1I
[←−
X L ;R

]
, (10)

andvary theLagrangemultiplierβ to achieve different distortions.We refer to such algorithms
as optimal causal filtering (OCF). Using Corollary 1, we can instead search for a codebook
Pr(R|S+) that maximizes:

Lβ = I[R;S−] − β−1I[S+;R] , (11)

and again vary the Lagrange multiplier β to achieve different distortions. We refer to
procedures that maximize this objective function as causal information bottleneck (CIB)
algorithms. At large enough L , the approximated predictive features become indistinguish-
able from the true predictive features. However, several examples below give a rather sober
illustration of the substantial errors that arise for OCF when operating at finite-L and do so
for surprisingly simple processes. In such circumstances, CIB is the method of choice.

We calculate solutions to both objective functions following Ref. [26]. For example,
given Pr(S+,S−), then, one solves for the Pr(R|S+) that maximizes the objective function
in Eq. (11) at each β by iterating the dynamical system:

Prt (r |σ+) = Prt−1(r)

Zt (σ+, β)
e−βDKL[Pr(σ−|σ+)||Prt−1(σ

−|r)] (12)

Prt (r) =
∑

σ+
Pr
t
(r |σ+)Pr(σ+) (13)

Prt (σ
−|r) =

∑

σ+
Pr(σ−|σ+)Prt (σ

+|r) , (14)

where Zt (σ
+, β) is the normalization constant for Prt (r |σ+). Iterating Eqs. (12) and (14)

at fixed β gives (i) one point on the function (Rβ, Dβ) and (ii) the explicit optimal lossy
predictive features Pr(R|S+).

We used a similar procedure to calculate finite-L approximations of information functions,
but where σ+ and σ− are replaced by x−L:0 and x0:L , which are then replaced by finite-time
causal states S+

L ,L and S−
L ,L using a finite-time variant of Corollary 1. The joint probability

distributionof thesefinite-time causal stateswas calculated exactly by (i) calculating sequence
distributions of length 2L directly from the ε-machine transition matrices and (ii) clustering
these into finite-time causal states using the equivalence relation described in Sect. 2.1, except
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when the joint probability distribution was already analytically available. This procedure
avoids the complications of finite sequence samples. As a result, differences between the
algorithms derive entirely from a difference in objective function.

We display calculations in two ways. The first is the information function, a rate-distortion

function that graphs the code rate I [←−X ;R] versus the distortion I [←−X ;−→
X |R].3 The second

is a feature curve of code rate I [←−X ;R] versus inverse temperature β. We recall that at zero

temperature (β → ∞) the code rate I [←−X ;R] = C+
μ and the forward-time causal states are

recovered:R → S+. At infinite temperature (β = 0) there is only a single state that provides

no shielding and so the information distortion limits to I [←−X ;−→
X |R] = E. As suggested by

Sect. 3, these extremes are useful references for monitoring convergence.
For each β, we chose 500 random initial Pr0(r |σ+), iterated Eqs. (12)–(14) 300 times,

and recorded the solution with the largest Lβ . This procedure finds local maxima of Lβ ,
but does not necessarily find global maxima. Thus, if the resulting information function
was nonmonotonic, we increased the number of randomly chosen initial Pr0(r |σ+) to
5000, increased the number of iterations to 500, and repeated the calculations. This brute
force approach to the nonconvexity of the objective function was feasible here only due to
analyzing processes with small ε-machines. Even so, the estimates might include subopti-
mal solutions in the lossier regime. A more sophisticated approach would leverage other
results; e.g., using those of Refs. [44–46] to move carefully from high-β to low-β solu-
tions.

Note that in contrast with deterministic annealing procedures that start at low β (high
temperature) and add codewords to expand the codebook as necessary, we can also start
at large β with a codebook with codewords S+ and decrease β, allowing the represen-
tation to naturally reduce its size. This is usually “naive” [47] due to the large number
of local maxima of Lβ , but here, we know the zero-temperature result beforehand. More
importantly, we are usually searching for the lossless predictive features at large β, but
here, we are asking different questions. Of course, we could also start at low β and
increase β. The key difference between the algorithm suggested by Corollary 1 and tra-
ditional predictive information bottleneck algorithms is not the algorithm itself, but the
joint probability distribution of compressed and relevant variables—causal states versus
sequences.

Section 5.1 gives conditions on a process that guarantee that its information functions can
be accurately calculated without first having a maximally-predictive model in hand. Section
5.2 describes several processes that have first-order phase transitions in their feature curves
at β = 1. Section 5.3 describes how information functions and feature curves can change
nontrivially under time reversal. Finally, Sect. 5.4 shows how predictive features describe
predictive “macrostates” for the process generated by the symbolic dynamics of the chaotic
Tent Map of the unit interval.

5.1 Unhidden and Almost Unhidden Processes

Predictive information bottleneck algorithms that cluster pasts of length M ≥ 1 to retain
information about futures of length N ≥ 1 calculate accurate information functions when
E(M, N ) ≈ E. (Recall Sect. 3.) Such algorithms work exactly on order-R Markov processes
when M, N ≥ R, since E(R, R) = E. However, there are many processes that are “almost”
order-R Markov, for which these algorithms should work quite well.

3 These information functions are closely related to the more familiar information curves seen in Refs. [8,9]
and elsewhere, as the informational distortion is the excess entropy less the predictable information captured.
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The quality of a process’s approximation can be monitored by the convergence error E−
E(M, N ), which is controlled by the elusive information σμ(L), defined as I [←−X ; XL:|X0:L ]
[35]. To see this, we apply the mutual information chain rule repeatedly:

E = I[X :0; X0:]
= I[X :0; X0:N−1] + σμ(N )

= E(M, N ) + I[X :−M−1; X0:N−1|X−M−1:0] + σμ(N ) .

The last mutual information is difficult to interpret, but easy to bound:

I[X :−M−1; X0:N−1|X−M−1:0] ≤ I[X :−M−1; X0:|X−M−1:0] = σμ(M) ,

And so, the convergence error is upper-bounded by the elusive information:

0 ≤ E − E(M, N ) ≤ σμ(N ) + σμ(M) . (15)

The inequality of Eq. (15) suggests that, as far as accuracy is concerned, if a process has
a small σμ(L) relative to its E for some reasonably small L , then sequences are effective
states. This translates into the conclusion that for this class of process calculating information
functions by first moving to causal state space is unnecessary.

Let’s test this intuition. The prototypical example with σμ(1) = 0 is the Golden Mean
Process, whose HMM is shown in Fig. 2(top). It is order-1 Markov, so OCF with L = 1 is
provably equivalent to CIB, illustrating one side of the intuition.

A more discerning test is an infinite-order Markov process with small σμ. One such
process is the Simple Nonunifilar Source (SNS) whose (nonunifilar) HMM is shown in
Fig. 2(bottom). As anticipated, Fig. 3(top) shows that OCF with L = 1 and CIB yield very
similar information functions at low code rate and low β. In fact, many of SNS’s statistics
are well approximated by the Golden Mean HMM.

The feature curve in Fig. 3(bottom) reveals a slightly more nuanced story, however.
The SNS is highly cryptic, in that it has a much larger Cμ than E. As a result, OCF
with L = 1 approximates E quite well but underestimates Cμ, replacing an (infinite)
number of feature-discover transitions with a single transition. (More on these transitions
shortly.)

This particular type of error—missing predictive features—only matters for predicting
the SNS when low distortion is desired. Nonetheless, it is important to remember that the
process implied byOCFwith L = 1—theGoldenMeanProcess—is not the SNS.TheGolden
Mean Process is an order-1 Markov process. The SNS HMM is nonunifilar and generates an
infinite-order Markov process and so provides a classic example [4] of how difficult it can
be to exactly calculate information measures of stochastic processes.

Fig. 2 (top) Golden Mean
HMM, an ε-machine. (bottom)
Simple Nonunifilar Source HMM
presentation; not the SNS
process’ ε-machine

A B1
2 |1

1
2 |0

1|1

A B1
2 |0

1
2 |0

1
2 |0

1
2 |1
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Fig. 3 Simple Nonunifilar Source: (Top panel) Information function: coding cost versus distortion. (Bottom
panel) Feature curve: coding cost as a function of inverse temperature β. (Blue solid line, circles) CIB with a
10-state approximate ε-machine. (Green dashed line, crosses) OCF at L = 1 (Color figure online)

Be aware that CIB cannot be directly applied to analyze the SNS, since the latter’s causal
state space is countably infinite; see Ref. [48]’s Fig. 3. Instead, we used finite-time causal
states with finite past and future lengths and with the state probability distribution given in
App. B of Ref. [48]. Here, we used M, N = 10, effectively approximating the SNS as an
order-10 Markov process.

5.2 First-Order Phase Transitions at β = 1

Feature curves have discontinuous jumps (“first-order phase transitions”) or are nondiffer-
entiable (“second-order phase transitions”) at critical temperatures when new features or
new lossy causal states are discovered. The effective dimension of the codebook changes at
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these transitions. Symmetry breaking plays a key role in identifying the type and temperature
(β here) of phase transitions in constrained optimization [46,49]. Using the infinite-order
Markov Even Process of Sect. 3, CIB allows us to explore in greater detail why and when
first-order phase transitions occur at β = 1 in feature curves.

There are important qualitative differences between information functions and feature
curves obtained via CIB and via OCF for the Even Process. First, as Fig. 4(top) shows, the
Even Process CIB information function is a simple straight line, whereas those obtained
from OCF are curved and substantially overestimate the code rate. Second, as Fig. 4(bottom)
shows, the CIB feature curve is discontinuous at β = 1, indicating a single first-order phase
transition and the discovery of highly predictive states. In contrast, OCF functions miss that
key transition and incorrectly suggest several phase transitions at larger βs.

The first result is notable, as Ref. [9] proposed that the curvature of OCF information
functions define natural scales of predictive coarse-graining. In this interpretation, linear
information functions imply that the Even Process has no such intermediate natural scales.
And, there are good reasons for this.

So, why does the Even Process exhibit a straight line? Recall that the Even Process’
recurrent forward-time causal states code for whether or not one just saw an even number
of 1’s (state A) or an odd number of 1’s (state B) since the last 0. Its recurrent reverse-time
causal states (Fig. 2 in Ref. [28]) capture whether or not one will see an even number of 1’s
until the next 0 or an odd number of 1’s until the next 0. Since one only sees an even number
of 1’s between successive 0’s, knowing the forward-time causal state uniquely determines the
reverse-time causal state and vice versa. The Even Process’ forward causal-state distribution
is Pr(S+) = (

2/3 1/3
)
and the conditional distribution of forward and reverse-time causal

states is:

Pr(S−|S+) =
(
1 0
0 1

)
.

Thus, there is an invertible transformation between S+ and S−, a conclusion that follows
directly from the process’s bidirectional machine. The result is that:

I[R;S+] = I[R;S−] . (16)

And so, we directly calculate the information function from Eq. (7):

R(I0) = min
I[R;S−]≥I0

I[R;S+]
= min

I[R;S−]≥I0
I[R;S−]

= I0 ,

for all I0 ≤ E. Similar arguments hold for periodic process as described in Ref. [8,9] and for
general cyclic (noisy periodic) processes aswell. However, periodic processes are finite-order
Markov, whereas the infinite Markov-order Even Process hides its deterministic relationship
between prediction and retrodiction underneath a layer of stochasticity. This suggests that the
bidirectional machine’s switching maps [28] are key to the shape of information functions.

The Even Process’s feature curve in Fig. 4(bottom) shows a first-order phase transition
at β = 1. Similar to periodic and cyclic processes, its lossy causal states are all-or-nothing.
Iterating Eqs. (12) and (14) is an attempt to maximize the objective function of Eq. (11).
However, Eq. (16) gives:

Lβ = (1 − β−1)I[R;S+] .
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Fig. 4 Even Process analyzed with CIB (solid line, blue circles) and with OCF (dashed lines, colored crosses)
at various values of M = N = L: (right to left) L = 2 (green), L = 3 (red), L = 4 (light blue), and L = 5
(purple). (top) Information functions. (bottom) Feature curves. At β = 1, CIB functions transition from
approximating the Even Process as IID (biased coin flip) to identifying both causal states (Color figure online)

Recall that 0 ≤ I[R;S+] ≤ Cμ. For β < 1, on the one hand, maximizing Lβ requires
minimizing I[R;S+], so the optimal lossy model is a biased coin approximation of the Even
Process—a single-state HMM. For β > 1, on the other, maximizingLβ requires maximizing
I[R;S+], so the optimal lossy features are the causal states A and B themselves. At β = 1,
though,Lβ = 0, and any representationR of the forward-time causal states S+ is optimal. In
sum, the discontinuity of coding cost I[R;S+] as a function of β corresponds to a first-order
phase transition and the critical inverse temperature is β = 1.

Both causal states in the Even Process are unusually predictive features: any increase in
memory of such causal states is accompanied by a proportionate increase in predictive power.
These states are associated with a one-to-one (switching) map between a forward-time and
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reverse-time causal state. In principle, such states should be the first features extracted by any
predictive rate-distortion algorithm. More generally, when the joint probability distribution
of forward- and reverse-time causal states can be permuted into diagonal block-matrix form,
there should be a first-order phase transition at β = 1 with one new codeword for each of
the blocks.

Many processes do not have probability distributions over causal states that can be per-
muted, even approximately, into a diagonal block-matrix form; e.g., most of those described
in Refs. [48,50]. However, we suspect that diagonal block-matrix forms for Pr(S+,S−)

might be relatively common in the highly structured processes generated by low entropy-rate
deterministic chaos, as such systems often have many irreducible forbidden words. Restric-
tions on the support of the sequence distribution easily yield blocks in the joint probability
distribution of forward- and reverse-time causal states.

For example, the Even Process forbidswordswith an odd number of 1s, which is expressed
by its irreducible forbiddenword listF = {012k+10 : k = 0, 1, 2, . . .}. Its causal states group
pasts that end with an even (state A) or odd (state B) number of 1s since the last 0. Given
the Even Process’ forbidden words F , sequences following from state A must start with an
even number of ones before the next 0 and those from state B must start with an odd number
of ones before the next 0. The restricted support of the Even Process’ sequence distribution
therefore gives its causal states substantial predictive power.

Moreover, many natural processes are produced by deterministic chaotic maps with added
noise [51]. Such processes may also have Pr(S+,S−) in nearly diagonal block-matrix form.
These joint probability distributions might be associated with sharp second-order phase tran-
sitions.

However, numerical results for the “four-blob” problem studied in Ref. [46] suggest the
contrary. The joint probability distribution of compressed and relevant variables is “a dis-
cretization of a mixture of four well-separated Gaussians” [46] and has a nearly diagonal
block-matrix form, with each block corresponding to one of the four blobs. If the joint proba-
bility distribution were exactly block diagonal—e.g., from a truncated mixture of Gaussians
model—then the information function would be linear and the feature curve would exhibit
a single first-order phase transition at β = 1 from the above arguments. The information
function for the four-blob problem looks linear; see Fig. 5 of Ref. [46]. The feature curve
(Fig. 4, there) is entirely different from the feature curves that we expect from our earlier
analysis of the Even Process. Differences in the off-diagonal block-matrix structure allowed
the annealing algorithm to discriminate between the nearly equivalent matrix blocks, so that
there are three phase transitions to identify each of the four blobs. Moreover, none of the
phase transitions are sharp. So, perhaps the sharpness of phase transitions in feature curves
of noisy chaotic maps might have a singular noiseless limit, as is often true for information
measures [50].

5.3 Temporal Asymmetry in Lossy Prediction

As Refs. [22,28] describe, the resources required to losslessly predict a process can change
markedly under time reversal. The prototype example is the Random Insertion Process (RIP),
shown in Fig. 5. Its bidirectional machine is known analytically [22]. Therefore, we know
the joint Pr(S+,S−) via Pr(S+) = (

2/5 1/5 2/5
)
and:
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Pr(S−|S+) =

⎛

⎜
⎜
⎝

0 1
2 0 1

2

0 1
2

1
2 0

1 0 0 0

⎞

⎟
⎟
⎠ .

There are three forward-time causal states and four reverse-time causal states. And, the
forward-time statistical complexity and reverse-time statistical complexity are unequal, mak-
ing the RIP causally irreversible. For instance,C+

μ ≈ 1.8 bits andC−
μ ≈ 1.5 bits, even though

the excess entropy E ≈ 1.24 bits is by definition time-reversal invariant.
However, it could be that the lossy causal states are somehowmore robust to time reversal

than the (lossless) causal states themselves. Let’s investigate the difference in RIP’s infor-
mation and feature curves under time reversal. Figure 6 shows information functions for the
forward-time and reverse-time processes. Despite RIP’s causal irreversibility, information
functions look similar until informational distortions of less than 0.1 bits. RIP’s tempo-
ral correlations are sufficiently long-ranged so as to put OCF with L ≤ 5 at a significant
disadvantage relative to CIB, as the differences in the information functions demonstrate.
OCF greatly underestimates E by about 30% and both underestimates and overestimates the
correct Cμ.

The RIP feature curves in Fig. 7 reveal a similar story in that OCF fails to asymptote
to the correct Cμ for any L ≤ 5 in either forward or reverse time. Unlike the information
functions, though, feature curves reveal temporal asymmetry in the RIP even in the lossy
(low β) regime.

Both forward and reverse-time feature curves show a first-order phase transition at β = 1,
at which point the forward-time causal state C and the reverse-time causal state D are added
to the codebook, illustrating the argument of Sect. 5.2. (Forward-time causal state C and
reverse-time causal state D are equivalent to the same bidirectional causal state C/D in

Fig. 5 Random Insertion Process
(RIP): (Top) Forward-time
ε-machine. (Bottom)
Reverse-time ε-machine
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Fig. 6 Random Insertion Process (RIP) Information Functions: RIP is a causally irreversible process: C+
μ <

C−
μ . There are more causal states in reverse time than forward time, leading to more kinks in the reverse-time

process’ information function (bottom) than in the forward-time process’ information function (top). Legend
as in previous figure: (solid line, blue circles) CIB function and (dashed lines, colored crosses) OCF at various
sequence lengths.eps (Color figure online)

RIP’s bidirectional ε-machine. See Fig. 2 of Ref. [22].) This common bidirectional causal
state is the main source of similarity in the information functions of Fig. 6.

Both feature curves also show phase transitions at β = 2, but similarities end there. The
forward-time feature curve shows a first-order phase transition at β = 2, at which point both
remaining forward-time causal states A and B are added to the codebook. The reverse-time
feature curve has what looks to be a sharp second-order phase transition at β = 2, at which
point the reverse-time causal state F is added to the codebook. The remaining two reverse-
time causal states, E and G, are finally added to the codebook at β = 5. We leave solving
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Fig. 7 Random Insertion Process (RIP) Feature Curves: Having more causal states in reverse time than
forward time leads to more phase transitions in the reverse-time process’ feature curve (bottom) than in the
forward-time process’ feature curve (top). Legend as in previous figure

for the critical temperatures and confirming the phase transition order using a bifurcation
discriminator [44] to the future.

5.4 Predictive Hierarchy in a Dynamical System

Up to this point, the emphasis was analyzing selected prototype infinite Markov-order
processes to illustrate the differences between CIB and OCF. In the following, instead we
apply CIB and OCF to gain insight into a nominally more complicated process—a one-
dimensional chaotic map of the unit interval—in which we emphasize the predictive features
detected. We consider the symbolic dynamics of the Tent Map at the Misiurewicz para-

meter a = ( 3
√
9 + √

57 + 3
√
9 − √

57
)
/

3
√
9, studied in Ref. [52]. Figure 8 gives both the

Tent Map and the analytically derived ε-machine for its symbolic dynamics, from there.

123



1332 S. E. Marzen, J. P. Crutchfield

0 1
xn

0.0

0.2

0.4

0.6

0.8

1.0

x
n
+
1
=

a 2(
1

−
2|

x
n
−

1 2|
)

1.00.0 0.5

A

C

B

D1 : 1 1 : a
2a+2

0 : a+2
2a+2

1 : a+1
a+2

1 : a2+2a+2
2a2+4a+2

0 : a2+2a
2a2+4a+2

1 : 1
a+2

Fig. 8 Symbolic dynamics of the Tent Map at the Misiurewicz parameter a. (top) The map iterates points xn
in the unit interval [0, 1] according to xn+1 = a

2 (1 − 2|xn − 1
2 |), with x0 ∈ [0, 1]. The symbolic dynamics

translates the sequence x0, x1, x2, . . . of real values to a 0 when xn ∈ [0, 1
2 ) and to a 1 when xn ∈ [ 12 , 1].

(bottom) Calculations described elsewhere [52] yield the ε-machine shown. (Reproduced from Ref. [52] with
permission.)

The latter reveals that the symbolic dynamic process is infinite-order Markov. The bidirec-
tional ε-machine at this parameter setting is also known. Hence, one can directly calculate
information functions as described in Sect. 5.

From Fig. 9’s information functions, one easily gleans natural coarse-grainings, scales
at which there is new structure, from the functions’ steep regions. As is typically true, the
steepest part of the predictive information function is found at very low distortions and high
rates. Though the information function of Fig. 9(top) is fairly smooth, the feature curve (Fig.
9(bottom)) reveals phase transitions where the feature space expands a lossier causal state
into two distinct representations.
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Fig. 9 Rate distortion analysis for symbolic dynamics of the Tent Map at the Misiurewicz parameter a given
in the text. (top) Information functions. (bottom) Feature curves. Comparing CIB (solid line, blue circles) and
OCF (dashed lines, colored crosses) at several values of L . Legend same as previous (Color figure online)

To appreciate the changes in underlying predictive features as a function of inverse tem-
perature, Fig. 10 shows the probability distribution Pr(S+|R) over causal states given each
compressed variable—the features. What we learn from such phase transitions is that some
causal states are more important than others and that the most important ones are not nec-
essarily intuitive. As we move from lossy to lossless (β → ∞) predictive features, we add
forward-time causal states to the representation in the order A, B, C , and finally D. The
implication is that A is more predictive than B, which is more predictive than C , which is
more predictive than D. Note that this predictive hierarchy is not the same as a “stochastic
hierarchy” in which one prefers causal states with smaller H[X0|S+ = σ+]. The latter is
equivalent to an ordering based on correctly predicting only one time step into the future.
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Fig. 10 Tent Map predictive features as a function of inverse temperature β: Each state-transition diagram
shows the ε-machine in Fig. 8(bottom) with nodes gray-scaled by Pr(S+|R = r) for each r ∈ R. White
denotes high probability and black low. Transitions are shown only to guide the eye. The four β are chosen
to be close to the “critical β” at which the number of predictive features increases, shown by the β at which
the feature curve in Fig. 9(bottom) appears to jump discontinuously. a β = 0.01: one state that puts unequal
weights on states C and D. b β = 1.9: two states identified, A and a mixture of C and D. c β = 3.1: three
states are identified, A, B, and the mixture of C and D. d β → ∞: original four states identified, A, B, C ,
and D

Such a hierarchy privileges causal state C over B based on the transition probabilities shown
in Fig. 8(bottom), in contrast to how CIB orders them.

6 Conclusion

We introduced a new relationship betweenpredictive rate-distortion theory and computational
mechanics [3]. Theorem 1 of Refs. [8,9] say that the predictive information bottleneck can
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Fig. 11 Prescientmodels and inferring information properties: Estimating informationmeasures directly from
sequence data encounters a curse of dimensionality or, in other words, severe undersampling. Instead, one can
calculate information measures in closed-form from (derived or inferred) maximally predictive (prescient)
models [36]. Rate-distortion functions are now on the list of information properties that can be accurately
calculated. Alternate generative models that are not prescient cannot be used directly, as Blackwell showed in
the 1950s [56]

identify forward-time causal states, in theory. The analyses and results in Sects. 3-5 suggest
that in practice, when studying time series with longer-range temporal correlations, we calcu-
late substantially more accurate lossy predictive features and predictive rate-distortion func-
tions by deriving or inferring an ε-machine first andworking entirely within that model space.

The culprit is the curse of dimensionality for prediction: the number of possible sequences
increases exponentially with their length. The longer-ranged the temporal correlations, the
longer sequences need to be. And, as Sects. 3 and 5 demonstrated, a process need not have
very long-ranged temporal correlations for the curse of dimensionality to rear its head. These
lessons echo that foundwhen analyzing aprocess’s large deviations [53]:Estimate a predictive
model first and use it to estimate the probability of extreme events, events that almost by
definition are not in the original data used for model inference.

This result is part of a larger bodyofwork [35,36,54] that suggests prediction-related infor-
mation properties are more accurately and more easily calculable from maximally predictive
models, when available—the ε-machine or other prescient models [2]—than directly from
trajectory distributions. These information measures are sometimes of interest to researchers,
even when a model of the process is already known, because they summarize the intrinsic
“uncertainty” or “predictability” of the process with a single number. A great deal of effort
has been spent trying to correctly estimate such quantities from trajectory distributions [55].
Figure 11 outlines an alternative scheme to estimate such quantities: a theoretically derived,
inferred, or already known model of the process is converted into a maximally predictive
model using the mixed-state operator, and information measures are then estimated directly
from labeled transition matrices of the maximally predictive model. In some cases, working
with the so-obtained maximally predictive model may not be tractable, or the process may
be effectively low-order Markov. Then, one will likely prefer to estimate information mea-
sures from trajectory distributions, simulating the process if one is initially given its model.
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In other cases—in particular, when the process is generated or approximately generated by
finite ε-machines—the new scheme likely will outperform the latter.

That said, cumbersome maximally predictive models are likely the norm, rather than the
exception, and using approximate ε-machines can only yield approximate lossy predictive
features. For instance, we approximated the SNS in Sect. 5.1 by a 10-state unifilar HMM,
even though the SNS technically has an infinite-state ε-machine. This approximation inmodel
space led to incorrect information functions only at very low expected distortions. Future
research could focus on relating distortions in model space (e.g., such as a distance between
model and sequence data distributions) to errors in the rate-distortion functions. Such bounds
will be important for applying CIB when only approximate ε-machines are known.

Section 4methods can be directly extended to completely different rate-distortion settings,
such as when the underlying minimal directed acyclic graphical model between compressed
and relevant random variables is arbitrarily large and highly redundant. Also, though we
mainly focused on informational distortions, Theorem 1 places fewer restrictions on the dis-
tortion measure. This opens up a wider range of applications; for example, those in which
other properties, besides structure or prediction, are desired [41], including utility function
optimization.

At first glance, the results presented here may seem rather unsurprising. It seems intuitive
that one should be able to calculate more accurate lossy predictive features given lossless
predictive features. Even so, until now, no theory or examples underlay this intuition.

At second glance, these results may also seem rather useless. Why would one want lossy
predictive features when lossless predictive features are available? Accurate estimation of
lossy predictive features could and have been used to further test whether or not biological
organisms are near-optimal predictors of their environment [10]. Perhaps more importantly,
lossless models can sometimes be rather large and hard to interpret, and a lossy model might
be desired even when a lossless model is known.

Viewed in this way, the causal information bottleneck (CIB) is a new tool for accurately
identifying emergent macrostates of a stochastic process [4]—lossy features relevant to inter-
preting biological, neurobiological, and social science phenomena in which the key emergent
features are not known a priori or from first-principles calculation. In the context of neuro-
biological data, for example, such macrostates can provide approximately predictive models
of neural spike trains [57,58], perhaps eventually reducing large-scale simulations to more
manageable models. In the context of social science data, in which “lossless” networks are
often known, lossy features of various kinds might be related to new kinds of community
organization.While it is encouraging to look forward, we appreciate that natural processes are
quite complicated and that there is some way to go before we have fully automated detection
of emergent macrostates.
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