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Abstract: A stochastic nonlinear dynamical system generates information, as measured
by its entropy rate. Some—the ephemeral information—is dissipated and some—the
bound information—is actively stored and so affects future behavior. We derive analytic
expressions for the ephemeral and bound information in the limit of infinitesimal time
discretization for two classical systems that exhibit dynamical equilibria: first-order
Langevin equations (i) where the drift is the gradient of an analytic potential function and
the diffusion matrix is invertible and (ii) with a linear drift term (Ornstein–Uhlenbeck),
but a noninvertible diffusion matrix. In both cases, the bound information is sensitive to
the drift and diffusion, while the ephemeral information is sensitive only to the diffusion
matrix and not to the drift. Notably, this information anatomy changes discontinuously as
any of the diffusion coefficients vanishes, indicating that it is very sensitive to the noise
structure. We then calculate the information anatomy of the stochastic cusp catastrophe and
of particles diffusing in a heat bath in the overdamped limit, both examples of stochastic
gradient descent on a potential landscape. Finally, we use our methods to calculate and
compare approximations for the time-local predictive information for adaptive agents.

Keywords: Langevin equation; entropy rate; ephemeral information; bound information;
time-local predictive information
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1. Introduction

If we track the position of a particle diffusing on an unchanging potential long enough, we can
estimate the probability of observing a sequence of positions [1]. From that, we can quantitatively
answer questions about the process’s behavior using a range of information statistics that answer specific
questions:

• How random is it? The entropy rate hµ, which is the entropy in the present observation conditioned
on all past observations [2].
• What must be remembered about the past in order to optimally predict the future? The causal

states, which are groupings of pasts that lead to the same probability distribution over future
trajectories [3,4].
• How much memory is required to store these causal states? The statistical complexity Cµ, or the

entropy of the causal states [3].
• How much of the future is predictable from the past? The excess entropy E, which is the mutual

information between the past and the future [5].
• How much of the generated information (hµ) is relevant to predicting the future? The bound

information bµ, which is the mutual information between the present and future observations
conditioned on all past observations [6].
• How much of the generated information is useless (neither affects future behavior nor contains

information about the past)? The ephemeral information rµ, which is the entropy in the present
observation conditioned on all past and future observations [6].

These informational quantities usually cannot be deduced from a bifurcation diagram, so we see them as
providing a complementary view of a process’s structure and behavior.

In applications, such informational characterizations of a time series are useful for monitoring good
sensory coding [7], cognitive modalities [8], brain coherence [9], hidden Markov model structural
inference [10], action policies of autonomous agents [11,12], structure in disordered materials [13,14],
dynamical phase transitions [15,16] and intrinsic information processing in deterministic chaos [17,18]
and cellular automata [19,20].

Here, we focus on continuous stochastic nonlinear dynamical systems, the theory for which has a
long and venerable history, has met with a number of successful predictions, and has identified a number
of principles describing how noise interacts with nonlinearity [21]. For nonlinear systems transitioning
to chaos, to take just one example, noise plays the role of a “disordering” field, just as the magnetic field
is an ordering field for spin systems at critical transitions [22,23]. Though their history substantially
predates that of the wide range of complex systems applications just cited, relatively fewer analyses of
their information processing components—their information anatomy—have been carried out. As a start,
we demonstrate how to calculate the quantities above for continuous-time, continuous-state stochastic
nonlinear systems exhibiting dynamical equilibria, yielding intuition for the properties these measures
capture in simpler, and perhaps more familiar, physical models.

Throughout, we focus on a ubiquitous and simple nonlinear generative model: stochastic gradient
descent or, in other words, diffusion on a potential surface. We assume infinite precision in our
observation of the state space. The first calculation assumes that the diffusion matrix is invertible and
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drift is analytic; the second assumes that the drift term is linear, but allows for a noninvertible diffusion
matrix. All calculations assume that the time between measurements is nonzero, but arbitrarily small,
and that all derived information anatomy quantities are finite at finite temporal coarse-graining.

There are alternative ways to frame information analyses of continuous stochastic processes [24].
The one we take is rather prosaic, paralleling the “physics” approach laid out by Gaspard and
Wang [25], who coarse-grain time at a finite, but small, time scale τ and state-space at a similar spatial
scale ε. This discretizes the calculations and then one takes the limits τ → 0 and ε → 0. Crucially,
the limits often reveal divergences in the informational quantities. For example, it is well known that
the (ε, τ)-entropy of a broad family of continuous stochastic processes diverges [25]. However, as
Gaspard and Wang demonstrate and as is familiar in other fundamental physics domains, the form of
the divergences captures important structural properties. The main deviation here from their approach is
that we employ the Shannon differential entropy to side-step state-space (ε) coarse-graining.

An alternative, and insightful, framing considers the divergences to be unnatural; in particular, with
naive coarse-graining, it is difficult to establish ergodic theorems key to information theory. In this
view, the main concern translates into a search for tractable definitions of information measures that
finitely quantify information processing in continuous stochastic systems. To address divergences,
one investigates a given stochastic process relative to Brownian motion. In a crude sense, the known
Brownian base case carries the divergences. To factor them out of the given process, one employs
Girsanov’s theorem to transform the given process to a canonical Brownian motion with the same
diffusion [26]. Properties of the transformation then characterize the given process’s informational
properties; for example, giving a relative entropy rate. This strikes us as an important avenue for future
investigation; one that, to be clear, is not yet completed, as far as we know, and one that eventually will
be related to the more prosaic, physics framing that we address here.

To get started, background is given in Section 2. Results are presented in Section 3 and stated
more succinctly in Table 1. To illustrate how to apply those formulae, we calculate the information
anatomy of the stochastic cusp catastrophe in Section 4.1 and of coupled particles diffusing in a heat bath
in Section 4.2.

We provide a suite of appendices that are home to technical details necessary for completeness, but
that would otherwise distract. Several appendices also draw out implications of information anatomy
analysis. Appendix A shows that the information anatomy of a Markov system requires looking only one
time step into the future and past, as expected from a similar calculation in [6]. Appendix B establishes
that the causal states of a first-order Langevin equation with an analytic drift are isomorphic to the
present position. Appendix C justifies why, given an infinitesimal time resolution τ , the conditional
entropy of the measurement at a future time step given the present measurement can be approximated
arbitrarily well by using a linearized drift term when the diffusion matrix is invertible. Appendix D then
demonstrates that the entropy of the Green’s function of a linear Langevin equation with a noninvertible
diffusion matrix differs from that when the diffusion matrix is invertible. Finally, Appendix E applies
the formulae in Appendices A–C to explore estimates of the time-local predictive information and
related alternatives, used as optimization principles to choose action policies for adaptive autonomous
agents [12].
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Table 1. Information anatomy of first-order, n-dimensional nonlinear Langevin dynamics:
ẋ = −D∇U(x) + η(t), where U(x) is analytic in x and η(t) is zero-mean white noise with
invertible diffusion matrix D, 〈η(t)η(t′)>〉 = Dδ(t− t′). Stationary distribution ρeq(x) ∝
exp(−2U(x)) is assumed normalizable.

Information Rates Definition
Terms

O(τ−1 log τ) O(τ−1) O(1)

Stored H0 = Cµ(τ) H[X0]
τ

0 −
∫
ρeq(x) log ρeq(x)dx 0

τ -Entropy hµ(τ) H[X0|X:0]
τ

n
2

log
√

2πe| detD|+ n log
√

2 − 1
2

∫
∇ · (D∇U(x))ρeq(x)dx

Bound bµ(τ) I[X0;Xτ:|X:0]
τ

0 n log
√

2 − 1
2

∫
∇ · (D∇U(x))ρeq(x)dx

Ephemeral rµ(τ) H[X0|X:0,Xτ:]
τ

n
2

log
√

2πe|detD| 0

Enigmatic qµ(τ) I[X:0;X0;Xτ:]
τ

−n
2

−
∫
ρeq(x) log ρeq(x)dx −

n log 2 − log
√

2πe| detD|
∫
∇ · (D∇U(x))ρeq(x)dx

Elusive σµ(τ) I[X:0;Xτ:|X0]
τ

0 0 0

2. Background

Let us first recall the information anatomy analysis of discrete-time, discrete-state processes
introduced in [6]. The main object of study is a process P: the list of all of a system’s behaviors
or realizations {. . . x−2, x−1, x0, x1, . . .} and their probabilities, specified by the joint distribution
Pr(. . . X−2, X−1, X0, X1, . . .). We denote a contiguous chain of random variables as X0:L =

X0X1 · · ·XL−1. We assume the process is ergodic and stationary (Pr(X0:L) = Pr(Xt:L+t) for all t ∈ Z)
and the measurement symbols range over a finite alphabet: x ∈ A. In this setting, the present X0 is the
random variable measured at t = 0, the past is the chain X:0 = . . . X−2X−1 leading up the present and
the future is the chain following the present X1: = X1X2 · · · . (We suppress the infinite index in these.)

Shannon’s various information quantities—entropy, conditional entropy, mutual information, and the
like—when applied to time series are functions of the joint distributions Pr(X0:L). Importantly, they
define an algebra of information measures for a given set of random variables [27]. James et al. [6]
used this to show that the past and future partition the single-measurement entropy H(X0) into several
measure-theoretic atoms. These include the ephemeral information:

rµ = H[X0|X:0, X1:] ,

which measures the uncertainty of the present knowing the past and future; the bound information:

bµ = I[X0;X1:|X:0] ,

which is the information shared between present, and future conditioned on past; and the enigmatic
information:

qµ = I[X0;X:0;X1:] ,

which is the co-information between past, present and future.
For a stationary time series, the bound information is also the shared information between present and

past conditioned on the future:
bµ = I[X0;X:0|X1:].
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One can also consider the amount of predictable information not captured by the present:

σµ = I[X:0;X1:|X0].

which is called the elusive information. It measures the amount of past-future correlation not contained
in the present. It is nonzero if the process has “hidden states” and is therefore quite sensitive to how the
state space is “observed” or coarse-grained.

The total information in the future predictable from the past (or vice versa) is the excess entropy:

E = I[X:1;X1:] = bµ + σµ + qµ .

The process’s Shannon entropy rate hµ can also be written as a sum of atoms:

hµ = H[X0|X:0] = rµ + bµ .

Thus, a portion of the information (hµ) a process spontaneously generates is thrown away (rµ) and a
portion is actively stored (bµ). Putting these observations together gives the information anatomy of a
single measurement:

H[X0] = qµ + 2bµ + rµ . (1)

These quantities were originally defined for stationary processes, but easily carry over to a nonstationary
process of finite Markov order. (See Appendix A.)

The burden of the following is to analyze the limit from the discrete-time, discrete-value processes
just discussed to continuous-time, continuous-value processes. Suppose that observations are made at
very small intervals of duration τ . Then, the observation at time tn = nτ is now labeled Xnτ , and the
pastX:0 is now denoted . . . X−2τX−τ instead of . . . X−2X−1. Rather than entropy or mutual information
per observed symbol, as in the discrete time setting, we define an entropy or mutual information per
elapsed time unit; that is, informational rates. A step in this direction is to normalize the information
measures defined above by the observation interval:

rµ(τ) = H[X0|X:0, Xτ :]/τ ,

bµ(τ) = I[Xτ :;X0|X:0]/τ ,

qµ(τ) = I[X:0;X0;Xτ :]/τ ,

σµ(τ) = I[X:0;Xτ :|X0]/τ ,

and
H0(τ) = H[X0]/τ .

We normalize the entropy H[X0] of a single symbol by the time resolution τ to preserve the form of the
information-theoretic relationship given in Equation (1). In doing so, we no longer interpret H0(τ) as
the entropy of a single measurement symbol, but rather as the number of bits per unit time required to
encode the time series in a model-free manner.

In contrast with the original information anatomy interpretation given in [6], we think of hµ(τ)

as the minimal achievable coding rate, were we to build a maximally predictive model. In this time



Entropy 2014, 16 4718

normalization, terms of order τ or higher are ignored. These definitions then lead to the τ -entropy rate
familiar in the discrete-time, continuous-value setting [2,25,28]:

hµ(τ) = H[X0|X:0]/τ .

More natural definitions of these quantities might involve a fully continuous-time development that
avoids the log τ divergences of the τ entropy rate [29]. As noted in the Introduction, however, we
leave alternative developments for the future. When considering continuous-value processes, we use the
differential entropy, thereby regularizing away the log ε divergences seen in the (ε, τ )-entropy rate [25].

Figure 1. Information anatomy of a stationary continuous-time process graphically depicted
using information diagrams. Although the past entropy H[X:0] and the future entropy
H[Xτ :] typically are infinite, space limitations constrain us to draw them with finite areas.
(a) Information diagram for the anatomy of a process’s single observation X0 in the context
of its past X:0 and its future Xτ : (after [6], with permission). (b) Information diagram for the
anatomy of a Markov process, in which the present X0 causally shields the past from future.
The elusive information σµ(τ) vanishes.

H[X:0] H[X1:]

H[X0]

τrµ(τ)

τbµ(τ)τbµ(τ)

τqµ(τ)

τσµ(τ)

H[X:0] H[X1:]

H[X0]

τrµ(τ)

τbµ(τ)τbµ(τ)

τqµ(τ)

(a) (b)

Figures 1(a) and 1(b) give information diagrams that illustrate the algebra of the information measure
atoms just defined. There, the entropy of a set is the sum of the entropy of its atoms. This reveals several
useful linear dependencies that were originally noted in [6]:

H0(τ) = rµ(τ) + 2bµ(τ) + qµ(τ) ,

hµ(τ) = rµ(τ) + bµ(τ) ,

and E/τ = qµ(τ) + σµ(τ) + bµ(τ) .

For a Markov process, illustrated in Figure 1b, the elusive information vanishes:

σµ(τ) = 0 .

Therefore, in this case, if we find expressions for H0(τ), hµ(τ) and bµ(τ), then we can find rµ(τ), qµ(τ)

and E/τ via:
qµ(τ) = H0(τ)− hµ(τ)− bµ(τ) , (2)

rµ(τ) = hµ(τ)− bµ(τ) , (3)

and
E/τ = H0(τ)− hµ(τ) . (4)
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3. Information Anatomy of Stochastic Dynamical Systems

To determine a process’s information anatomy, one must calculate entropies and conditional entropies
of the joint probability distribution of the entire past, the present, and the entire future. In the general
case, this is challenging. However, since the first-order Langevin equations we consider are Markov,
we have:

τhµ(τ) = H[Xτ |X0] (5)

and
τbµ(τ) = H[Xτ ;X−τ ]−H[Xτ ;X0] . (6)

(Appendix A provides the derivation.) Therefore, to calculate a Markov process’s information anatomy,
we need only the joint probability distribution of three successive measurements instead of the joint
probability distribution of the present and semi-infinite past and future. To further simplify the
calculation of conditional entropies, we assume that τ is small enough that the entropy of the Green’s
function—i.e., the transition probabilities P (x′, t + τ |x, t)—is well approximated by the entropy of a
corresponding Gaussian. This is exactly true for a linear Langevin equation. For a nonlinear Langevin
equation, the Gaussian approximation is valid in the limit of infinitesimal τ . (Appendix C calculates
small-τ approximations for the variance of this Gaussian.) We do not approximate the stationary
distribution of a nonlinear Langevin equation by a Gaussian, however, and this means that the joint
probability distribution over successive measurements is in general highly non-Gaussian. Finally,
we assume that all derived information anatomy quantities are finite (at finite τ ) and that there is a
normalizable stationary probability distribution.

Appendix B shows that, for first-order Langevin dynamics, the single-measurement entropy H[X0]

is the process’s statistical complexity Cµ [3,4]. The result is that the information anatomy analysis
decomposes this causal-state information into:

• that useful for prediction or retrodiction beyond the information provided by the causal states at
the previous time step—the bound information bµ;
• that useful for both prediction and retrodiction—the co-information qµ; and
• that useless for both prediction and retrodiction—the ephemeral information rate rµ.

This is a similar, but finer Cµ decomposition than considered in [30]. There, and more generally,
Cµ = E + χ. That is, the state information consists of that shared with the future (E) and information
not shared with the future, but that must be stored to implement optimal prediction—the crypticity
χ [31]. Together with these observations, Equation (4) reminds us that χ = hµ for Markov processes, as
originally noted for finite-range one-dimensional spin systems [32].

3.1. Nonlinear Langevin Dynamics

Consider an n-dimensional nonlinear Langevin equation:

dx

dt
= −D∇U(x) + η(t) ,
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where x ∈ Rn, U(x) is an analytic potential function and η(t) is zero-mean white noise with diffusion
matrixD: 〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = Dijδ(t−t′). The diffusion coefficientsDij = Dji are assumed
to be independent of x and such that detD 6= 0. The following (well known) stationary distribution is
derived by converting the stochastic differential equation into its Fokker–Planck equation form:

ρeq(x) =
1

Z
exp (−2U(x)) , (7)

where Z =
∫
e−2U(x)dx. We assume that this is the stationary probability distribution experienced by

the particle and that it is normalizable: Z <∞. (See Figure 2 for simulation results in one dimension.)

Figure 2. (a) Particle diffusing according to ẋ = −x+η(t) with diffusion coefficientD = 1.
A finite-time trajectory x(t) followed by the diffusing particle. (b) Over infinite time, the
particle experiences positions distributed according to the probability density function ρeq(x)

in Equation (7), calculated as a normalized histogram of particle positions. (c) If the previous
particle position is known, a future position can be determined with less uncertainty than if
no previous particle position is known. The probability Pr(x, t|0, 0) of being in position x at
a time t differs from the equilibrium probability distribution ρeq(x), if we know the position
of the particle at a previous time; e.g., x(0) = 0.
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The time-discretization normalized entropy of a measurement is:

H0 = −1

τ

∫
ρeq(x) log ρeq(x)dx . (8)

The conditional entropies H[Xτ |X0] and H[Xτ |X−τ ] in Equations (5) and (6) can be calculated,
simplifying if the conditional probabilities Pr(Xτ |X0) and Pr(Xτ |X−τ ) are Gaussians, using:

H[Xτ |X0] =

∫
ρeq(x

′)H[Xτ |X0 = x′]dx′

and
H[Xτ |X−τ ] =

∫
ρeq(x

′)H[Xτ |X−τ = x′]dx′ .

This yields:
H[Xτ |X0 = x′] = 1

2
log(2πe| det Var(Xτ )p(Xτ |X0=x′)|) (9)

and
H[Xτ |X−τ = x′] = 1

2
log(2πe| det Var(Xτ )p(Xτ |X−τ=x′)|) . (10)
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Appendix C gives a plausibility proof that the conditional distributions Pr(Xτ |X0) and Pr(Xτ |X−τ )
are Gaussian to o(τ) over a region of Rn with measure arbitrarily close to one. The entropies of these
Gaussians are calculable to leading and subleading order in τ using a linearized version of the nonlinear
Langevin equation about the initial position:

dx

dt
= ∇U(x)|x=x′ + A(x′)(x− x′) + η(t) +O(||x− x′||2) ,

where A(x′) is a matrix with entries (A(x′))ij = ∂(D∇U)j/∂xi. (This is similar, but not identical
to the approximation used in [12]. Appendix E comments on the differences.) From Appendix C,
we have that:

Var(Xτ )p(Xτ |X0=x′) = Dτ +
∇µ(x)D +D(∇µ(x))>

2
τ 2 +O(τ 3) (11)

and, similarly,

Var(Xτ )p(Xτ |X−τ=x′) = 2Dτ + 2(∇µ(x)D +D(∇µ(x))>)τ 2 +O(τ 3) . (12)

Substituting Equations (11) and (12) into Equations (9) and (10), respectively, gives, with some algebra:

H[Xτ |X−τ ] = −τ
∫
ρeq(x)∇ · (D∇U(x))dx+ log

√
2n+1πe| detD|τn (13)

and:

H[Xτ |X0] = −τ
2

∫
ρeq(x)∇ · (D∇U(x))dx+ log

√
2πe| detD|τn . (14)

Substituting Equation (14) into Equation (5), we find that:

hµ(τ) =
n log

√
2τ

τ
+

log
√
πe| detD|
τ

− 1

2

∫
ρeq(x)∇ · (D∇U)dx+ o(1) . (15)

The leading order term is recognizable as an (ε, τ)-entropy rate of the Ornstein–Uhlenbeck process [25],
except that the ε has been regularized away, since we used Shannon’s differential entropy. Substituting
Equations (13) and (14) into Equation (6), we find the bound information rate:

bµ(τ) =
n log

√
2

τ
− 1

2

∫
ρeq(x)∇ · (D∇U(x))dx+ o(1) . (16)

Thus, the rate of active information storage depends on the dimension of the state space to leading order
in τ , but its nondivergent part depends on the average curvature of the potential.

From these quantities, all other anatomy measures follow. Substituting Equations (15) and (16) into
Equation (3), we find that the ephemeral information is:

rµ(τ) =
n log

√
τ

τ
+

log
√

2πe| detD|
τ

+ o(1) . (17)

Unsurprisingly, the dissipated information—that entropy created in the present useful for neither
predicting nor retrodicting—depends only on the noisiness of the dynamics and not on the drift.
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Finally, the enigmatic information—that shared between past, future, and present—follows by
substituting Equations (8)–(16) into Equation (2):

qµ(τ) = −1

τ

∫
ρeq(x) log ρeq(x)dx− n log(2

√
τ)

τ
−

log
√
πe| detD|
τ

−
∫
ρeq(x)∇ · (D∇U)dx+O(τ) .

It is interesting to consider how qµ changes as the stochasticity of the system increases: the stationary
distribution ρeq(x) flattens out, leading to an unbounded increase in H0. This is counteracted by an
unbounded increase in the entropy rate.

We can also bound the bound information rate when ∇U grows more slowly than e−2U with ||x||.
Then, integration by parts applied to Equation (16) gives:

bµ(τ) =
n log

√
2

τ
− 1

2

∫
(∇U)>D(∇U) ρeq(x)dx .

When D is positive semidefinite, with D = v>v for some vector v, then:

bµ(τ) ≤ n log
√

2

τ
.

Therefore, bµ(τ) is maximized when the potential well is as flat as possible, while maintaining Z <∞.

3.2. Linear Langevin Equation with Noninvertible Diffusion

What if the invertibility of the diffusion matrix is relaxed? In particular, do we still have qualitatively
the same information anatomy if a subsystem of the stochastic dynamical system evolves deterministi-
cally? How does this affect the information generation and storage properties? To this end, suppose
x = (xd xn)> with x ∈ Rk and m = dim(xd), where xd evolves deterministically and
xn stochastically:

dxd
dt

= Ad +Bddxd +Bdnxn (18)

dxn
dt

= An +Bndxd +Bnnxn + η(t) . (19)

Again, η(t) is white noise with 〈η(t)〉 = 0 and 〈η(t)η(t′)>〉 = Dδ(t− t′), where D is invertible. Taken
together, though, this is a linear Langevin equation for x with a noninvertible diffusion matrix. Naively
assuming that the deterministic subsystem evolves with a small amount of noise, Equation (16) would
apply and give, for example, to O(τ):

bµ =
(n+m) log 2

2τ
+

tr(Bdd) + tr(Bnn)

2
.

However, this assumption is incorrect; the noiseless limit is singular.
Since Equations (18) and (19) specify a linear Langevin equation for x, its Green’s function is

Gaussian. For simplicity’s sake, we assume that BdnDnnB
>
dn is invertible, though it is certainly possible

to derive more complicated expressions for information anatomy quantities if this does not hold. From
Appendix D, to O(τ) the entropy rate is:

hµ(τ) =
(n+ 3m) log τ

2τ
− m log

√
12

τ
+

log
√

2πe| detDnn|| detBdnDnnB>dn|
τ

+
tr(Bdd) + tr(Bnn)

2
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and the bound information is:

bµ(τ) =
(n+ 3m) log 2

2τ
+

tr(Bdd) + tr(Bnn)

2
. (20)

Applying Equation (3), the ephemeral information rate is to O(τ):

rµ(τ) =
n+ 3m

2

log(τ/2)

τ
− m log

√
12

τ
+

log
√

2πe| detDnn|| detBdnDnnB>dn|
τ

. (21)

These answers are very different from those derived assuming that x’s deterministic subsystem xd

evolves with an infinitesimal amount of noise. The bound information in Equation (20) differs from that
found from naive application of Equation (16), because the pre-factor for the log 2/τ divergence is (n+

m)/2+m rather than (n+m)/2. That is, the difference counts the dimension m of the deterministically
evolving state space xd. Thus, the deterministic subsystem allows for the active storage of more of the
spontaneously generated stochasticity.

The ephemeral information in Equation (21) differs from a naive application of Equation (17)
in two new ways. First, the expression in Equation (21) has an additional O(1/τ) factor that
is linearly proportional to the dimension m of the deterministic subsystem. Second, the term
log(2πe| detDnn|| detBdnDnnB

>
dn|) can be interpreted by supposing that BdnDnnB

>
dn is the effective

diffusion matrix felt by the deterministically evolving states.
These information anatomy quantities are therefore sensitive to the process’s underlying

noise architecture.

4. Examples

To illustrate how the information measures are helpful and interesting summaries of nonlinear
Langevin dynamics, let us consider several examples.

4.1. Stochastic Gradient Descent in One Dimension

Consider a first-order nonlinear Langevin dynamics for x ∈ R in which:

dx

dt
= −dU(x)

dx
+ η(t) ,

where 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = 2Dδ(t− t′). The stationary distribution is:

ρeq(x) =
1

Z
e−U(x)/D ,

with Z a normalization factor:

Z =

∫ ∞
−∞

e−U(x)/Ddx .

We require that Z <∞.
This process’s elusive information is zero, and the ephemeral information rate is the strength of the

noise. However, the bound information is:

bµ(τ) =
log
√

2

τ
− 1

2Z

∫ ∞
−∞

e−U(x)/D d
2U(x)

dx2
dx . (22)
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Using integration by parts, this can be rewritten:

bµ(τ) =
log
√

2

τ
− 1

2D

∫ ∞
−∞

(
dU

dx

)2
e−U(x)/D

Z
dx .

Therefore, bµ is sensitive to the average curvature of the potential or, equivalently, to the average squared
drift normalized by the diffusion constant.

In the deterministic limit, this expression simplifies. Suppose that {x∗1, ..., x∗m} are the global minima
of the potential function: U(x∗i ) = minx U(x), for i = 1, ...,m. It follows that limD→0 e

−U(x)/D/Z =∑m
i=1 δ(x− x∗i )/m. Applying this limit to Equation (22), we have:

lim
D→0

bµ(τ) =
log
√

2

τ
− 1

2m

m∑
i=1

d2U(x)

dx2
|x=x∗i

.

This limit is a little strange. If D = 0 exactly, so that we have deterministic gradient descent, then
the stationary time series consists of a single measurement. The information anatomy becomes rather
trivial. There is no uncertainty in the present measurement, and the past, present, and future share
no information. If D is nonzero, no matter how small, however, then there is finite uncertainty in a
measurement, and the past, present and future share information with one another.

As a concrete example, consider the canonical form for the cusp catastrophe [33]:

dx

dt
= h+ rx− x3 + η(t) ,

with additive noise where 〈η(t)η(t′)〉 = 2Dδ(t− t′). The potential function is U(x) = 1
4
x4− 1

2
rx2−hx,

and the corresponding bound information in the noiseless limit is:

lim
D→0

bµ(τ, r, h) =
log
√

2

τ
+
r − 3(x∗(r, h))2

2
.

The global minimum x∗(r, h) is not everywhere differentiable in r and h, and this appears also in
bµ(τ, r, h). See Figure 3. The contour of nondifferentiability is h = 0 for r > 0. Along the contour, the
potential is symmetric, there are suddenly two global minima of U(x) with x∗1 = −x∗2, and so, the sign
of x∗ changes discontinuously across h = 0.

Interestingly, for double-well potentials and asymmetric single-well potentials, bµ(τ) is maximized at
a nonzero noise level D > 0. This is counterintuitive: adding noise only serves to decrease the process’s
predictability. However, adding noise in the present affects the future in a way that cannot be predicted
from the past. Since bµ(τ) measures the amount of information shared between the present and future
not shared with the past, there is a level of stochasticity that maximizes bµ(τ) for some values of r and
h. This is shown in Figure 3c.
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Figure 3. Information anatomy of the stochastic cusp catastrophe: (a) Shifting from a
double-well to single-well potentials as r and h are varied. Example potentials U(x) for
various r and h: blue/dark line, r = 2 and h = −1; purple/medium line, r = 2 and h = 0;
and yellow/light line, r = 2 and h = 1. (b) Contour plot of the system-dependent part of the
bound information rate bµ(τ) as a function of r and h, highlighting the global minimum x∗

changing discontinuously as hmoves through zero. limD→0 bµ(τ)−τ−1 log
√

2 as a function
of r and h: bµ(τ) is nondifferentiable with respect to h along h = 0 when r ≥ 0. (c) Bound
information bµ(τ) as it varies over the cusp catastrophe equilibria surface: Height gives the
fixed points as a function of r and h. Color hue is proportional to the deterministic limit
limD→0 bµ(τ)− τ−1 log

√
2 at each r and h. (d) The bound information rate is maximized at

nonzero stochasticity D for double-well potentials and asymmetric single-well potentials.
D maximizing bµ(τ) − τ−1 log

√
2 as a function of r and h: the surface is colored by

bµ(τ)− τ−1 log
√

2 at that value of D.
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4.2. Particles Diffusing in a Heat Bath

Suppose N particles with positions x1, ..., xN and masses m1, ...,mN diffuse according to the
potential function U(x1, ..., xN) in a heat bath of temperature T . Let x denote the vector of concatenated
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particle positions. When the inertial terms mid
2xi/dt

2 are negligible, an overdamped Langevin equation
can be used to approximate the particles’ trajectories:

dx
dt

=
1

γ
M−1∇U(x) + η(t)

〈ηi(t)〉 = 0

〈ηi(t)ηj(t′)〉 =
2kBT

γmi

δi,jδ(t− t′).

M is a diagonal matrix whose entries are the particle masses, and the parameter γ is a friction coefficient
that controls how strongly the particles couple to the heat bath. The stationary distribution of positions
x is the Boltzmann distribution:

ρeq(x) =
1

Z
exp

(
−U(x)

kBT

)
,

where Z is the partition function:

Z =

∫
exp

(
−U(x)

kBT

)
dx .

From Equation (8), the normalized single-measurement entropy is:

H0 =
1

τ

(
〈U(x)〉
kBT

+ lnZ

)
.

where:

〈U(x)〉 =

∫
U(x)

e−U(x)/kBT

Z
dx ,

which is simply proportional to the familiar definition of entropy in physics.
For notational ease, let m̄ denote the geometric mean of the masses:

m̄ =

(
N∏
i=1

mi

)1/N

,

ki the effective “spring constant” for the ith particle:

ki =

∫
∂2U(x)

∂x2
i

e−U(x)/kBT

Z
dx ,

and ωi the effective “oscillation frequency” for the ith particle:

ωi =
√
ki/mi .

From Equation (15), the entropy rate is:

hµ(τ) =
N log

√
4kBTτ/γm̄

τ
+

log
√
πe

τ
− 1

2γ

N∑
i=1

ω2
i + o(1) .
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From Equation (16), the bound information is to similar order:

bµ(τ) =
N log

√
2

τ
− 1

2γ

N∑
i=1

ω2
i + o(1) .

From Equation (17), the ephemeral information rate is:

rµ(τ) =
N log

√
2kBTτ/γm̄

τ
+

log
√

2πe

τ
+ o(1) .

Several information measures appear dimensionally incorrect. This is a perennial concern when
calculating the differential entropy of random variables that themselves have units. The probability
density over those variables also has a dimension, and this leads to differential entropies that involve
the log of a value with dimension. Implicitly, however, we chose a standard unit system, such that all
quantities are dimensionless.

All of these quantities are extensive in N . The normalized entropy per measurement H0 is
proportional to the Boltzmann entropy by a factor of kB/τ . The entropy rate hµ(τ) and ephemeral
information rµ(τ) increase logarithmically with the mean squared velocity

√
〈v2〉 = kBT/m. The bound

information bµ(τ) increases when there is a larger γ. That is, it increases when there is stronger coupling
between the particles and the heat bath or when there is a smaller average oscillation frequency

∑N
i=1 ω

2
i .

Since γ ≥ 0 and ω2
i ≥ 0, the bound information is bounded above by bµ(τ) ≤ τ−1N log

√
2 + O(τ).

To achieve this upper bound, the potential U(x) must be “flattened out” to decrease ki, as described
in Section 3.

There are alternative models for coupled particles diffusing in a heat bath, and there is no guarantee
that even the qualitative conclusions here hold true when particle trajectories are modeled according to a
second-order Langevin equation, for instance.

5. Conclusions

Our calculations led to general formulae for the information anatomy of stochastic equilibria in
simple, familiar systems when the time discretization was very small. We considered a first-order
nonlinear Langevin equation with a normalizable stationary distribution, invertible diffusion matrix, and
analytic drift. We do not expect the expressions in Section 3 to hold for larger time discretizations,
though Gaussian approximations could be used to upper bound conditional entropies more generally.
We also considered first-order linear Langevin equations with normalizable stationary distribution and a
noninvertible diffusion matrix in Section 3.2.

An important technical consideration is that the information anatomy of Langevin stochastic dynamics
is likely not unique, just as the pre-factors for the (ε, τ)-entropy rate of an Ornstein–Uhlenbeck
process depend on definition and approximation procedure [25,28]. However, further calculations
give us reason to believe that the qualitative scaling seen with drift and diffusion holds regardless
of the approximation method. This parallels the way that the (ε, τ)-entropy rate estimates for an
Ornstein–Uhlenbeck process all increase with the diffusion coefficient. That said, a complete
understanding of how information anatomy estimates vary with technique requires further study;
alternatives to which the Introduction alluded. We hope that our results are sufficiently compelling
to motivate further efforts.
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With this caveat in mind, let us focus on qualitative rather than quantitative conclusions. Even though
the entropy rate is typically viewed as a measure of randomness, some of that randomness is useful for
prediction, that is, the bound information (shared between present and future, but not contained in the
past), and we showed that it is sensitive to drift and the diffusion matrix. In contrast, we showed that the
ephemeral information—information in the present useless for predicting or retrodicting—is sensitive
only to the diffusion and not the drift. In short, for stochastic equilibria, the entropy rate consists of a
quantity (ephemeral information) that has to do with a process’s inherent noisiness and a quantity (bound
information) that has only to do with the underlying process regularities.

A key lesson is that information anatomy measures are sensitive to process organization. Section 3.2
showed that the divergent components of the information anatomy of linear Langevin dynamics changes
discontinuously whenever one of the diffusion coefficients vanishes. This sensitivity to underlying
process structure could also be a feature rather than a defect. For instance, if we know that the
underlying process is a first-order linear Langevin equation, then one could infer the dimension of
the deterministically evolving state space by comparing known τ -scaling relations in Section 3 with
empirically determined scaling relations.

This brings us to discuss what was learned from the several example applications. Section 4.1 showed
that the bound information picks up different features than one finds in a bifurcation diagram. In the
noiseless limit, the cusp catastrophe bµ is nondifferentiable on the line h = 0 for r ≥ 0, because the
location of the global minimum of the potential function changes discontinuously across that contour.
Moreover, this is not related to the bifurcation contour h = ±2r3/2/3

√
3 [33] where the number

of equilibria changes from two to one or vice versa, which has no apparent signature in the bound
information. However, in these calculations, we did not avoid the “ultraviolet catastrophe”. We embraced
it, since we could then evaluate the information anatomy for general nonlinear Langevin equations by
linearizing. If one evaluates the information anatomies of these types of stochastic dynamics when the
time discretization is not infinitesimal, however, then signatures of bifurcations should show up in the
bound information as they do for the finite-time predictable information or excess entropy [16,34].

Section 4.2 calculated the information anatomy of coupled particles in a heat bath. Historically,
statistical physics has been primarily concerned with H0, the entropy of a single measurement symbol,
since its changes are proportional to heat loss [35]. However, the point of this example is that alternative
information-theoretic quantities capture other behavioral properties of particles diffusing in a heat bath.
As an application of this analysis, it will be worth exploring how the information anatomy measures
reflect the trade-off between stable information storage and heat loss in the context of Maxwell-like
demons [36].

To close our discussion of applications, we briefly mention the use of information measures to express
optimization principles that guide adaptive agents. A Markov process’s bound information has been
used as an optimization measure called the time-local predictive information (TiPi) [12]. Moreover,
the class of systems used there and for which TiPi was calculated are exactly the first-order nonlinear
Langevin dynamics analyzed here. Due to the similarities in setup and approach, Appendix E compares
alternative TiPi measures. Generally, an agent that wishes to maximize its TiPi will be driven into
unstable regions of the potential landscape on which it diffuses. However, Appendix E shows that the
similarly motivated, but alternative, optimization measures lead to different adaptive strategies. More
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investigation is required to compare such strategies to those seen in biological agents before general
principles of adaptive behavior will be understood.
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Appendix

A. Information Anatomy of a Markov Process

If the system at hand is Markov, then the information anatomy simplifies tremendously since one
need only consider single time steps into the future and into the past. As a result, many of the Markov
formulae are special cases of those developed in [6] for more complex processes, but are derived here
for completeness.

For notational ease, we use the discrete-time notation in which Xt:t′ is the random variable of
measurements Xt, Xt+1, ..., Xt′−1. For a Markov process the immediately preceding observation
“shields” the future from the past:

Pr(Xn = xn|X−m:n = x−m:n) = Pr(Xn = xn|Xn−1 = xn−1) .

Additionally, it becomes relatively easy to calculate the information anatomy measures, since the
sequence probabilities simplify:

Pr(X−m:n+1 = x−m:n+1) = Pr(X−m = x−m)
n−1∏
k=−m

Pr(Xk+1 = xk+1|Xk = xk) .

For example, the entropy rate becomes:

hµ = H[X0|X:0]

= H[X0|X−1] .
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Moreover, all information shared between the past and future goes through the present:

σµ = I[X:0;X1:|X0]

= H[X1:|X0]−H[X1:|X:1]

= H[X1:|X0]−H[X1:|X0]

= 0 .

Finally, the mutual information between the present and the future conditioned on the past (bound
information) is:

bµ = I[X0;X1:|X:0]

= H[X1:|X:0]−H[X1:|X:1]

= H[X1|X:0]−H[X1|X:1] +H[X2:|X:0, X1]−H[X2:|X:2]

= H[X1|X−1]−H[X1|X0]

= I[X1;X0|X−1] .

This equality is evident from the information diagram of Figure 1b. The other information anatomy
measures follow from bµ and hµ via identities given in Section 2:

rµ = hµ − bµ
= H[X0|X−1]− I[X1;X0|X−1]

and

qµ = H[X0]− hµ − bµ
= H[X0]−H[X0|X−1]− I[X1;X0|X−1] .

The excess entropy follows as the sum:

E = σµ + qµ + bµ

= H[X0]− hµ
= H[X0]−H[X0|X−1] .

As stated in Section 2, to normalize these measures as rates (entropies per unit time rather than per
measurement), we simply divide the above by the time discretization τ :

hµ(τ) =
H[X0|X−τ ]

τ

bµ(τ) =
I[Xτ ;X0|X−τ ]

τ

rµ(τ) =
H[X0|X−τ ]− I[Xτ ;X0|X−τ ]

τ

qµ(τ) =
H[X0]−H[X0|X−τ ]− I[Xτ ;X0|X−τ ]

τ
.
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If the system is Markov, one only needs the joint distribution of three successive measurements to
calculate the information anatomy. Thus, the formulae derived here also can be used as time-local
measures for nonstationary dynamics despite the subtleties of defining a measure over bi-infinite time
series in general [37]. Similar manipulations can be applied more generally to find the information
anatomy of finite-order Markov processes.

B. Statistical Complexity is the Entropy of a Measurement

The statistical complexity Cµ is the entropy of the probability distribution over causal states. Causal
states themselves are groupings of pasts that are partitioned according to the predictive equivalence
relation ∼ε [4]:

x:0 ∼ε x′:0 ⇔ Pr(X0:|X:0 = x:0) = Pr(X0:|X:0 = x′:0) .

Although causal states can be difficult to determine for complex processes, they are particularly easy
for Markov processes (and finite-order Markov processes). Recall that a Markov process is defined by
single-time step shielding:

Pr(X0:|X:0) = Pr(X0|X−τ ) Pr(X1:|X0) .

It follows that:

Pr(X0:|X:0 = x:0) = Pr(X0:|X:0 = x′:0)⇔ Pr(X0|X−1 = x−1) = Pr(X0|X−1 = x′−1) .

Therefore, for a Markov process, groupings of pasts in which only the last measurement is recorded
constitute at least a prescient partition. If:

Pr(X0|X−1 = x) = Pr(X0|X−1 = x′)⇔ x = x′ ,

then we can conclude that the causal states are simply groupings of pasts with the same last measurement:
ε(x:0) = x−1. In that case, the causal state space S is isomorphic to the alphabet of the process A and
the statistical complexity is the entropy of a single measurement: Cµ = H[X0].

First-order Langevin equations generate Markov time series. Our claim, then, is that the stochastic
differential equations considered here produce time series for which:

Pr(X0|X−τ = x) = Pr(X0|X−τ = x′)⇔ x = x′ .

Therefore, the causal states are isomorphic to the present measurementX0, and the statistical complexity
is Cµ = H[X0]. Implicit in these calculations is an assumption that the transition probabilities
Pr(X0|X−τ ) for a given stochastic differential equation exist and are unique, which is satisfied, since
the drift term is analytic [38].

For intuition, consider linear Langevin dynamics for an Ornstein–Uhlenbeck process:

dXt = Adt+BXtdt+
√
DdWt .
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As described in Appendix D and many other places (e.g., [21]), the transition probability density
Pr(Xt|X0 = x) is a Gaussian:

Pr(Xt|X0 = x) ∼ N
(
eBtx+ eBt

∫ t

0

e−Bt
′
Adt′,

∫ t

0

eBt
′
DeB

>t′dt′
)
.

For Pr(Xt|X0 = x) = Pr(Xt|X0 = x′), the means and variances of the above probability distribution
must match, meaning that eBtx = eBtx′ ⇒ x = x′. Therefore, for an Ornstein–Uhlenbeck process,
the causal states are indeed isomorphic to the present measurement and the statistical complexity is
H[X0]. The key here is that although Pr(Xt|X0 = x) may quickly forget its initial condition x, for any
finite-time discretization, the transition probability Pr(Xt|X0 = x) still depends on x.

In the more general case, we have a nonlinear Langevin equation:

dXt = −D∇Udt+
√

2DdWt ,

where the stationary distribution ρeq exists and is normalizable. Our goal is to show that if
Pr(Xt|X0 = x) = Pr(Xt|X0 = x′), then x = x′. The transition probability Pr(Xt = x|X0 = x′)

is a solution to the corresponding Fokker–Planck equation:

∂ρ(x, t)

∂t
= −∇ · (µ(x)ρ(x, t)) +D∇2ρ(x, t) ,

with initial condition ρ(x, 0) = δ(x − x′). As in [38], we can use an eigenfunction expansion to show
that ρ(x, t|x′, 0) cannot equal ρ(x, t|x′′, 0) unless x′ = x′′ for finite time t. Therefore, Pr(Xt|X0 = x′) =

Pr(Xt|X0 = x′′) ⇒ x′ = x′′. This implies that the causal states are again isomorphic to the present
measurement and the statistical complexity is Cµ = H[X0].

To summarize, this application of computational mechanics [3,4] to Langevin stochastic dynamics
shows that the entropy of a single measurement is also the process’s statistical complexity Cµ. Recall
that the latter is the entropy of the probability distribution over the causal states which, in turn, are
groupings of pasts that lead to equivalent predictions of future behavior. Therefore, for the stochastic
differential equations considered here, causal states simply track the last measured position.

What the information anatomy analysis reveals, then, is that not all of the information required for
optimal prediction is predictable information about the future. In other words, Langevin stochastic
dynamics are inherently cryptic [30,31]. Unfortunately, as is so often the case, the necessary and the
apparent come packaged together and cannot be teased apart without effort.

C. Approximating the Short-Time Propagator Entropy

The study of stochastic differential equations and short-time propagator approximations is
mathematically rich and, as noted in the introduction, the application to nonlinear diffusion has a
long history [21]. What follows is a brief sketch, not a rigorous proof, that glosses over important
pathological cases.

Consider the nonlinear Langevin equation:

dx

dt
= −D∇U(x) + η(t) , (A1)
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with driving noise satisfying 〈η(t)〉 = 0 and 〈η(t)η>(t′)〉 = Dδ(t − t′), where detD 6= 0. Let p(x|x′)
be the transition probability Pr(Xt = x|X0 = x′) for the system in Equation (A1). From arguments
in [38], it exists and is uniquely defined. Let q(x|x′) be a Gaussian with the same mean and variance as
p(x′|x).

We show that H[p] = H[q] + o(τ) where H[p] = −
∫
p(x|x′) log p(x|x′)dx and H[q] =

−
∫
q(x|x′) log q(x|x′)dx. Note that here, and in the following, we suppress notation for the dependence

of these quantities on x′, using the shorthand H[p] ≡ H[X|X ′ = x′] and the like. First, consider:

DKL[p||q] =

∫
p(x|x′) log

p(x|x′)
q(x|x′)

dx

=

∫
p(x|x′) log p(x|x′)dx−

∫
p(x|x′) log q(x|x′)dx

= −H[p]−
∫
p(x|x′) log q(x|x′)dx .

Since q(x|x′) is the maximum entropy distribution consistent with the mean and the variance of p(x|x′),
averages of log q(x|x′) with respect to p are the same as those with respect to q. Specifically, if x̄ is
the mean:

x̄ =

∫
xp(x|x′)dx =

∫
xq(x|x′)dx

and if C(x′) is the variance:

C(x′) =

∫
(x− x̄)(x− x̄)>q(x|x′)dx

=

∫
(x− x̄)(x− x̄)>p(x|x′)dx ,

then q is the normal distribution consistent with that mean and variance:

q(x|x′) =
1√

2π| detC(x′)|
exp

(
−1

2
(x− x̄)>C(x′)−1(x− x̄)

)
.

From this, we derive:∫
p(x|x′) log q(x|x′)dx =

∫
p(x|x′) log

e−
1
2

(x−x̄)>C(x′)−1(x−x̄)√
2π| detC(x′)|

= −1

2

∫
(x− x̄)>C(x′)−1(x− x̄))p(x|x′)dx− log

√
2π| detC(x′)| .

Since the mean and variance for p and q are consistent, we have:∫
p(x|x′) log q(x|x′)dx = −1

2

∫
(x− x̄)>C(x′)−1(x− x̄))q(x|x′)dx− log

√
2π| detC(x′)|

=

∫
q(x|x′) log q(x|x′)dx

= −H[q]

and, thus:

DKL[p||q] = H[q]−H[p] .
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We wish to show that DKL[p||q] is at least of o(τ). Then, we also want to show that H[q] can be
determined to o(τ) from the linearized Langevin equation:

dx

dt
= µ(x′) +

∂µ(x)

∂x
|x=x′(x− x′) + η(t) .

Then, we would be able to approximate H[p] to o(τ) by H[qlinearized], where qlinearized is the transition
probability that results when we locally linearize the drift.

Our strategy is to construct a series expansion for the moments of p in the timescale τ , as in [39].
Immediately, with that statement, we run into a problem. Moments do not uniquely specify a distribution
unless an additional condition (e.g., Carleman’s condition) is satisfied. We will address this issue at the
end of this Appendix. The second issue we find is that the sum of higher-order terms in the moment
expansion is often divergent, but we have circumvented this limitation by working with infinitesimal
time discretizations.

The Kullback–Leibler divergence is invariant to changes in the coordinate system and, for reasons that
become apparent later, it is useful to move to the parametrization z = (x − x̄)/

√
t. In a slight abuse of

notation, p(z|x′) and q(z|x′) will be used to denote the re-parametrized distributions p(x|x′) and q(x|x′).
Our moment expansion will show that all moments of p(z|x′) and q(z|x′) differ by a quantity that is
at most of O(τ 3/2), which implies that p(z|x′) = q(z|x′) + τ 3/2δq, where δq is at most of O(1) in τ .
From that, it would follow that DKL[q + τ 3/2δq||q] = (τ 3/2)2I[q], where I[q] is the Fisher information
of a Gaussian (and hence bounded) and that H[p] = H[q] to O(τ 3). That same moment expansion
will show that the covariance and mean of p differ from the covariance and mean of qlinearized by a
correction term of at most O(τ 2). From this, it follows that H[q] is H[qlinearized] to o(τ). The bottleneck
in this approximation scheme is not approximating the transition probability as a Gaussian, but rather
approximating the covariance of that Gaussian by the covariance of the locally linearized stochastic
differential equation.

For intuition and simplicity, we start with the one-dimensional example. This is similar in flavor to
the approach in [39], but our point differs: we wish to understand how well we can approximate the full
system with a linearized drift term. The stochastic differential equation for x ∈ R is:

dx

dt
= µ(x) + η(t) ,

with noise as above. The mean 〈x〉 evolves according to:

d〈x〉
dt

= 〈µ(x)〉 .

Using an Ito discretization scheme:

x(t+ ∆t) = x(t) + µ(x(t))∆t+ dη(t) ,

where dη(t) ∼ N (0, D∆t), we have:

x(t+ ∆t)− 〈x(t+ ∆t)〉 = x(t)− 〈x(t)〉+ (µ(x(t))− 〈µ(x(t))〉)∆t+ dη(t) . (A2)

From these, we derive evolution equations for the moments 〈(x− 〈x〉)n〉 for n ≥ 2:

d〈(x− 〈x〉)n〉
dt

= lim
∆t→0

〈(x(t+ ∆t)− 〈x(t+ ∆t)〉)n

∆t
− (x(t)− 〈x(t)〉)n

∆t

〉
. (A3)
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Substituting Equation (A2) into the above and simplifying leads to:

d〈(x− 〈x〉)n〉
dt

= n〈(x− 〈x〉)n−1(µ(x)− 〈µ(x)〉)〉+

(
n

2

)
D〈(x− 〈x〉)n−2〉 . (A4)

Now, we re-express:

µ(x) = µ(x′) + µ′(x′)(x− x′) + δ(x, x′)(x− x′)2 ,

where δ is at most O(1) in x− x′. Then:

d〈(x− 〈x〉)n〉
dt

= nµ′(x′)〈(x− 〈x〉)n−1(x− 〈x〉)〉+ n〈(x− 〈x〉)n−1(δ − 〈δ〉)〉+

(
n

2

)
D〈(x− 〈x〉)n−2〉

= nµ′(x′)〈(x− 〈x〉)n〉+ n〈(x− 〈x〉)n+1(δ − 〈δ〉)〉+

(
n

2

)
D〈(x− 〈x〉)n−2〉 .

When µ′(x′) = 0 and δ = 0 the Green’s function is a Gaussian with zero mean and variance Dt, so
that 〈(x − 〈x〉)n〉 ∝ (Dt)n/2. Inspired by this base case, we consider the moments of the variable
z = (x− 〈x〉)/

√
Dt:

d〈zn〉
dt

= − n
2t
〈zn〉+ (Dt)−n/2

d(x− 〈x〉)n

dt

= − n
2t
〈zn〉+ nµ′(x′)〈zn〉+ n

√
Dt〈zn+1(δ − 〈δ〉)〉+

(
n

2

)
〈zn−2〉
t

. (A5)

We expand 〈zn〉 in terms of t, since we are interested in the small-t limit:

〈zn〉 = Cn + αn
√
t+ βnt+ γnt

3/2 +O(t2) . (A6)

In terms of these coefficients, we have:

d〈zn〉
dt

=
αn

2
√
t

+ βn +
3

2
γn
√
t+O(t) . (A7)

Substituting Equations (A6) and (A7) into Equation (A5) and matching O(1/t) terms, O(1/
√
t) terms,

and so on, yields:

0 = −n
2
Cn +

(
n

2

)
Cn−2 , (A8)

αn
2

= −n
2
αn +

(
n

2

)
αn−2 , (A9)

and

βn = −n
2
βn + nµ′(x′)Cn +

(
n

2

)
βn−2 , (A10)

for O(1/t), O(1/
√
t), and O(1), respectively. Note that none of Cn, αn, or βn have information about δ,

which encapsulates higher-order drift nonlinearities. The O(
√
t) term finally has information about δ:

3

2
γn = −n

2
γn + nµ′(x′)αn + n

√
Dtδ(x = x′)Cn +

(
n

2

)
γn−2.
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Interestingly, this implies that any dependencies of the moments on δ are O(t3/2), at most.
Equations (A8)–(A10) can be solved with the following initial conditions:

〈z0〉 = 1→ C0 = 1, α0 = 0, β0 = 0

and, by construction:

〈z1〉 = 0→ C1 = 0, α1 = 0, β1 = 0 .

Then, Cn = αn = βn = 0 for n odd, and αn = 0 for n even, as well. Some algebra shows that:

Cn =

 n!
(n/2)!2n/2

n even

0 n odd

αn = 0

βn =

n
2
Cnµ

′(x′) n even

0 n odd
.

A Gaussian with mean zero and variance C2 + α2

√
t + β2t = 1 + µ′(x′)t would also have Cn = αn =

βn = 0 for n odd, αn = 0 for n even, and 〈zn〉q = Cn(1 + β2t)
n/2 = Cn + n

2
Cnµ

′(x′)t + O(t2).
Thus, the moments zn of p(z|x′) are consistent with the moments of q(z|x′) to O(t3/2). Additionally, as
described earlier, those moments are consistent with the moments of the linearized Langevin equation to
o(t). From prior logic, H[p] can be approximated to o(t) by 1

2
log(2πe|Dt+ µ′(x′)Dt2|).

The n-dimensional case follows the same principle, but the calculations are more arduous. We start
with the stochastic differential equation for x ∈ Rn:

dx

dt
= µ(x) + η(t) ,

with the noise as before. The initial condition is x(t = 0) = x′. Since we are interested not only in
whether the distribution is effectively Gaussian, but also in how important the nonlinearities of µ(x) are,
we re-express µ(x) as:

µ(x) = µ(x′) + A(x′)(x− x′) + f(x) ,

where Aij(x′) = ∂µj/∂xi:

fi(x) =
∑
j,k

δijk(xj − x′j)(xk − x′k) , (A11)

and δijk is at most of O(1) in ||x− x′||. The evolution equation for the means is:

d〈x〉
dt

= µ(x′) + A(x′)(〈x〉 − x′) + 〈f(x)〉 .

Using an Ito discretization scheme with time step ∆t:

x(t+ ∆t) = x(t) + µ(x′)∆t+ A(x′)(x− x′)∆t+ f(x)∆t+ dη(t) ,

where dη(t) ∼ N (0, D∆t). From this, we find evolution equations for the moments of x. As before, we
subtract the mean:
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x(t+ ∆t)− 〈x(t+ ∆t)〉 = x(t)− 〈x(t)〉+ A(x′)(x(t)− 〈x(t)〉)∆t+ (f(x)− 〈f(x)〉)∆t+ dη(t) .

(A12)

For notational ease, let σ(1), ..., σ(m) be a list of integers in the set {1, ..., n} where n is the dimension
of x; repeats are allowed. We want an evolution equation for Cov(xσ(1), ..., xσ(m)):

d

dt
Cov(xσ(1), ..., xσ(m)) =

d

dt

〈
m∏
i=1

(xσ(i) − 〈xσ(i)〉)

〉
.

Using Equation (A12) and steps similar to those outlined in Equations (A3) and (A4), we find that:

d

dt
Cov(xσ(1), ..., xσ(m)) =

m∑
i=1

n∑
k=1

AikCov(xσ(k), xσ(j), j 6=i)

+
m∑
i=1

〈
(fσ(i)(x)− 〈fσ(i)(x)〉)

∏
j 6=i

(xσ(j) − 〈xσ(j)〉)
〉

+
m∑

i,j=1

Cov(xσ(k):k 6=i,j) . (A13)

Cov(xσ(k):k 6=i,j) denotes the covariance of the variables xσ(k) for all k in the integer list 1, ...,m with
the restriction that we ignore k = i and k = j. We have a base case: when f = 0, A = 0 and
Dij = Dδi,j , the Green’s function is a Gaussian with variance ∝

√
t. Therefore, again, we switch to

variable z = (x− 〈x〉)/
√
t and calculate its covariance evolution, similarly to Equation (A7), where we

employ Equation (A11) to find the appropriate t scaling of the nonlinear f term:

dCov(zσ(1), ..., zσ(m))

dt
= −m

2t
Cov(zσ(1), ..., zσ(m)) +

m∑
i=1

n∑
k=1

AikCov(zσ(k), zσ(j), j 6=i)

+
√
t
∑
i,j,k

〈δijkzσ(j)zσ(k)

∏
l 6=i

zσ(l)〉+
1

t

∑
i,j

DijCov(zσ(k):k 6=i,j) . (A14)

We expand the covariances as a series in
√
t, assuming that they are indeed expressible for short times

using such an expansion:

Cov(zσ(1), ..., zσ(m)) = ασ(1),...,σ(m) + βσ(1),...,σ(m)

√
t+ γσ(1),...,σ(m)t+O(t3/2) .

As before, we substitute the above series expansion into Equation (A14) and match terms of O(1
t
),

O( 1√
t
), and O(1) to get:

0 = −m
2
ασ(1),...,σ(m) +

∑
i,j

Di,jασ(k):k 6=i,j ,

0 = −m+ 1

2
βσ(1),...,σ(m) +

∑
i,j

Di,jβσ(k):k 6=i,j ,

and

0 = −γσ(1),...,σ(m) −
m

2
γσ(1),...,σ(m) +

∑
i,k

Aikασ(k),σ(j):j 6=i +
∑
i,j

Dijβσ(k):k 6=i,j .
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The base case is that, by definition, 〈z〉 = 0 and 〈z0〉 = 1. This implies that βσ(1),...,σ(m) = 0 for all lists
{σ(i) : i = 1, ...,m}. Since all moments are determined to at least O(t) by just the linearized version of
the nonlinear Langevin equation and since linear Langevin equations have Gaussian Green’s functions, it
follows that the Green’s function for the nonlinear Langevin equation is Gaussian to O(t). Some algebra
shows that the variance of the linearized Langevin equation’s Green’s function is:

Var(q(x|x′)) = Dt+
A(x′)D +DA(x′)>

2
t2 +O(t3) .

If D is invertible, the conditional entropy is then:

H[Xt+τ |Xt = x′] = log
√

2πe| det(Dτ)|+ 1

2
log det

(
I +

D−1A(x′)D + A(x′)>

2
τ

)
+O(τ 2)

= log
√

2πe| det(Dτ)|+ 1

2
tr
(
D−1A(x′)D + A(x′)>

2
τ

)
+O(τ 2)

= log
√

2πe| det(Dτ)|+ tr(A(x′))

2
τ +O(τ 2) .

If the matrix D is not invertible because detD = 0, then we only have the leading order term in t of
the entropy H[p] and we cannot draw any conclusions about the O(1) term in any of the information
anatomy quantities. This becomes very clear by example in Appendix D.

Now, we return to the question of whether or not we can circumvent the issue of us-
ing a moment expansion to approximate entropies of a probability distribution function whose
support is not bounded. The key idea is that we are only interested in potential functions
U(x) that grow quickly enough with ||x||, such that the partition function Z =

∫
e−U(x)dx

is normalizable. This suggests that we can approximate the potential function arbitrarily
well by a potential function whose support is bounded such that transition probabilities are
uniquely determined by moments. Consider, for instance, the sequence of potentials UL(x)

defined by:

U (L)(x) =

U(x) ||x|| ≤ L

∞ ||x|| > L
. (A15)

By construction, the transition probabilities have support over the bounded region ||x|| ≤ L. For any of
these potentials, the moment expansion above uniquely determines the transition probability distribution.
Therefore, the manipulations above give a corresponding sequence of conditional entropies:

H(L)[Xt+τ |Xt] = log
√

2πe| det(Dτ)|+
∫
||x||≤L

ρ(L)
eq (x′)

tr(A(x′))

2
τdx′ + o(τ) , (A16)

where:

ρ(L)
eq (x) =


e−U(x)∫

||x′||≤L e
−U(x′)dx′

||x|| ≤ L

0 ||x|| > L
. (A17)
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If limL→∞H
(L)[Xt+τ |Xt] = H[Xt+τ |Xt] to o(τ), then we can claim that the formulae in the main text

applies, even when the support of the transition probability distribution function is unbounded. To o(τ),
we see that:

lim
L→∞

H(L)[Xt+τ |Xt] = H[Xt+τ |Xt] + o(τ)↔ lim
L→∞

∫
||x||≤L e

−U(x)tr(A(x))dx∫
||x||≤L e

−U(x)dx
=

∫
Rn e

−U(x)tr(A(x))dx∫
Rn e

−U(x)dx
.

(A18)

Thus, we want to know the conditions under which the latter limit converges. In the main text, we limited
ourselves to certain types of potential functions, stipulating that Z =

∫
Rn e

−U(x)dx <∞, so that there is
a normalizable equilibrium probability distribution. We also stipulate that 1

Z

∫
Rn tr(A(x))e−U(x)dx <∞,

so that the bound information rate would be finite. Hence, both limL→∞
∫
||x||≤L e

−U(x)dx = Z <∞ and
limL→∞

∫
||x||≤L e

−U(x)tr(A(x))dx =
∫
Rn e

−U(x)tr(A(x))dx < ∞. Since both of these converge to finite,
nonzero values, the ratio of the limit is the limit of the ratios, and we have:

lim
L→∞

∫
||x||≤L e

−U(x)tr(A(x))dx∫
||x||≤L e

−U(x)dx
=

∫
Rn e

−U(x)tr(A(x))dx∫
Rn e

−U(x)dx
. (A19)

Therefore, this sketch suggests that we can circumvent concerns about using moment expansions. Again,
we require that the stationary probability distribution and bound information rate exist and are finite.

D. Linear Langevin Dynamics with Noninvertible Diffusion Matrix

If the stochastic differential equation is linear:

dx

dt
= A+Bx+ η(t) , (A20)

where η(t) is white noise 〈η(t)〉 = 0 and 〈η(t)η(t′)>〉 = Dδ(t− t′), then we can solve it in terms of η(t)

as follows:

dx

dt
−Bx = A+ η(t)

d

dt
(e−Btx) = e−BtA+ e−Btη(t)

e−Btx(t)− x(0) =

∫ t

0

e−Bt
′
Adt′ +

∫ t

0

e−Bt
′
η(t′)dt′ ,

yielding:

x(t) = eBtx(0) +

∫ t

0

eB(t−t′)Adt′ +

∫ t

0

eB(t−t′)η(t′)dt′ .

Since η(t) is white, x(t) is a Gaussian random variable with mean:

〈x(t)〉 = eBtx(0) +

∫ t

0

eB(t−t′)Adt′
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and variance:

Var(x(t)) = 〈(x(t)− 〈x(t)〉)(x(t)− 〈x(t)〉)>〉

=

〈∫ t

0

eB(t−t′)η(t′)dt′
∫ t

0

η(t′′)>eB
>(t−t′′)dt′′

〉
=

∫ t

0

eB(t−t′)DeB
>(t−t′)dt′

=

∫ t

0

eBt
′
DeB

>t′dt′ . (A21)

Since the Green’s function is Gaussian for all time (not approximately in the short time limit) and
since the variance of this Gaussian does not depend on the initial state, we can calculate the conditional
entropies H[Xt|X0] via:

H[Xt|X0] =
1

2
log(2πe| det Var(x(t))|) . (A22)

The goal here is to calculate this quantity for small t when the matrix D is not invertible. We assume
that it has the block matrix form:

D =

(
0 0

0 Dnn

)
,

where D>nn = Dnn. Let B have the corresponding block matrix form:

B =

(
Bdd Bdn

Bnd Bnn

)
.

(Recall subscript d stands for deterministic and subscript n for noisy.) We can rewrite the variance in
Equation (A21) as a power series in t:

Var(x(t)) =

∫ t

0

eBt
′
DeB

>t′dt′

=

∫ t

0

(
∞∑
k=0

Bk

k!
(t′)k

)
D

(
∞∑
j=0

(B>)j

j!
(t′)j

)
dt′

=
∞∑

k,j=0

BkD(B>)j

k!j!

∫ t

0

(t′)k+jdt′

=
∞∑

k,j=0

BkD(B>)j

k!j!

tk+j+1

k + j + 1

=
∞∑
m=1

tm

m!

m−1∑
k=0

(
m− 1

k

)
BkD(B>)m−1−k . (A23)

Since we are concerned about the small-t limit, we consider only the first few terms of this power series
and, for reasons that will become clear, we write all steps in block-matrix form. The first term, which is
of O(t), is the usual:

Q1 = Dt

=

(
0 0

0 Dnn

)
t . (A24)
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The second term, of O(t2), has the form:

Q2 =
t2

2
(BD +DB>)

=
t2

2

(
0 BdnDnn

DnnB
>
dn BnnDnn +DnnB

>
nn

)
. (A25)

The third term, of O(t3), has the form:

Q3 =
t3

6
(B2D + 2BDB> +D(B>)2)

=
t3

6

(
0 BddBdnDnn +BdnBnnDnn

(BddBdnDnn)> + (BdnBnnDnn)> −

)

+
t3

3

(
BdnDnnB

>
dn BdnDnnB

>
nn

BnnDnnB
>
dn −

)
. (A26)

We place a dash in the lower right block matrix entry, since, as it turns out, it does not matter for this
calculation. The fourth term, of O(t4), has the form:

Q4 =
t4

24
(B3D + 3B2DB> + 3BD(B>)2 +D(B>)3)

=
t3

6

(
(BddBdn +BdnBnn)DnnB

>
dn −

− −

)
+
t3

6

(
BdnDnn(BddBdn +BdnBnn)> −

− −

)
. (A27)

Similar to the Q3 calculation, we care only about the upper left hand entry, and so, every other matrix
entry can be ignored. Substituting Equations (A24)–(A27) into Equation (A23), we find that:

Var(x(t)) =

(
Qdd Qdn

Q>dn Qnn

)
. (A28)

where:

Qnn = Dnnt+
BnnDnn +DnnB

>
nn

2
t2 +O(t3)

Qdn =
BdnDnn

2
t2 +

BddBdnDnn +BdnBnnDnn + 2BdnDnnB
>
nn

6
t3 +O(t4)

Qdd =
BdnDnnB

>
dn

3
t3 +

(BddBdn +BdnBnn)DnnB
>
dn

8
t4 +

BdnDnn(BddBdn +BdnBnn)>

8
t4 +O(t5) .

To find the determinant of the matrix in Equation (A28), we use:

det Var(x(t)) = detQnn det(Qdd −QdnQ
−1
nnQ

>
dn) . (A29)

Since detDnn 6= 0, Dnn is invertible:

detQnn = det(Dnnt) det(I +
D−1
nnBnnDnn +B>nn

2
t+O(t2))

= det(Dnnt)(1 + tr(Bnn)t+O(t2)) . (A30)
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Again, we have used the fact that:

tr(D−1
nnBnnDnn +B>nn) = tr(BnnDnnD

−1
nn ) + tr(B>nn)

= 2tr(Bnn) .

Additionally, since Dnn is invertible and symmetric, we can also write:

Q−1
nn =

(
I +

D−1
nnBnnDnn +B>nn

2
t

)−1

D−1
nn t
−1 +O(t)

=
D−1
nn

t
− D−1

nnBnn +B>nnD
−1
nn

2
+O(t) .

Then:

QdnQ
−1
nnQ

>
dn =

(
BdnDnn

2
t2 +

BddBdnDnn +BdnBnnDnn + 2BdnDnnB
>
nn

6
t3
)

×
(
D−1
nn

t
− D−1

nnBnn +B>nnD
−1
nn

2

)
×
(
BdnDnn

2
t2 +

BddBdnDnn +BdnBnnDnn + 2BdnDnnB
>
nn

6
t3
)>

+O(t5) .

With some algebra, this becomes:

QdnQ
−1
nnQ

>
dn =

BdnDnnB
>
dn

4
t3 − BdnBnnDnnB

>
dn +BdnDnnB

>
nnB

>
dn

8
t4

+
BddBdnDnnB

>
dn + 2BdnDnnB

>
nnB

>
dn

12
t4

+
BdnDnnB

>
dnB

>
dd + 2BdnBnnDnnB

>
dn

12
t4

+
BdnBnnDnnB

>
dn + (BdnBnnDnnB

>
dn)>

12
t4 +O(t5)

=
BdnDnnB

>
dn

4
t3 +

BdnBnnDnnB
>
dn +BdnDnnB

>
nnB

>
dn

8
t4

+
BddBdnDnnB

>
dn +BdnDnnB

>
dnB

>
dd

12
t4 +O(t5) .

We assume that BdnDnnB
>
dn is invertible; i.e., det(BdnDnnB

>
dn) 6= 0. Therefore:

F = det(Qdd −QdnQ
−1
nnQ

>
dn)

= det
(BdnDnnB

>
dn

12
t3 + (Mdd −Mdn)t4

)
+O(t2)

= det
(BdnDnnB

>
dn

12
t3
) (

1 + 12tr((BdnDnnB
>
dn)−1(Mdd −Mdn))t+O(t2)

)
, (A31)

where:

Mdd =
BddBdnDnnB

>
dn +BdnBnnDnnB

>
dn +BdnDnnB

>
dnB

>
dd +BdnDnnB

>
nnB

>
dn

8

and:

Mdn =
BdnBnnDnnB

>
dn +BdnDnnB

>
nnB

>
dn

8
+
BddBdnDnnB

>
dn +BdnDnnB

>
dnB

>
dd

12
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so that:

Mdd −Mdn =
BddBdnDnnB

>
dn +BdnDnnB

>
dnB

>
dd

24
.

Liberal application of several identities—tr(XY ) = tr(Y X), tr(X) = tr(X>) and tr(X + Y ) = tr(X) +

tr(Y )—reveals:

F = det
(BdnDnnB

>
dn

12
t3
) (

1 + tr(Bdd)t+O(t2)
)
.

Substituting Equations (A30) and (A31) into Equation (A29) and substituting that into Equation (A22),
we have the conditional entropy:

H[Xt|X0] = log
√
| detDnn|+ log

√
| detBdnDnnB>dn|+ log

√
2πe

+
3m+ n

2
log t−m log

√
12 +

1

2
(tr(Bdd) + tr(Bnn)) t+O(t2) .

E. Time-Local Predictive Information

Information anatomy measures should have a broad application to monitoring and guiding the
behavior of adaptive autonomous agents. Practically, information anatomy gives a suite of semantically
distinct kinds of information [6,40] that is substantially richer and structurally more incisive than simple
uses of Shannon mutual information that implicitly assume there is only a single kind of (correlational)
information. For example, it is reasonable to hypothesize that biological sensory systems are optimized
to transmit with high fidelity information that is predictively useful about stimuli or environmental
organization. In such a setting, the bound information quantifies how much predictability is lost if one
has extracted the full predictable information E from the past, but chooses to ignore the present H[X0].
Along these lines, the time-local predictive information (TiPi) was recently proposed as a quantity that
agents maximize in order to access different behavioral modes when adapting to their environment [12].

(For clarity, we must address a persistently misleading terminology at use here, since it is critical to
correctly interpreting the benefits of information-theoretic analyses. The proposed measure is a special
case of bound information bµ. Recall that both bµ and the excess entropy E capture the amount of
information in the future that is predictable [5,6] and not that which is predictive. The latter is the amount
of information that must be stored to optimally predict, and this is given by the statistical complexity
Cµ. Therefore, when we use the abbreviation, TiPi, we mean the time-local predictable information:
information the agent immediately sees as advantageous.)

In fact, [12] does a calculation very similar to the ones above, considering discrete-time stochastic
dynamics of the form:

xt = φ(xt−1) + ηt

and calculating the TiPi:

IT [Xt;Xt−1] ≡ I[Xt;Xt−1|Xt−T = xt−T ] , (A32)

with fixed T > 1. The motivation being that, whatever the history prior to t − T , the agent knows
the environment state xt−T then. However, from that time forward, the agent, making no further
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observations, is ignorant. The stochastic dynamics then models the evolution of that ignorance from
the given state to a distribution of states at t − 1 and then at t, taking into account only the model φ the
agent has learned or is given. They report that TiPi is the difference between state information and noise
entropy:

IT [Xt;Xt−1] = 1
2

ln | det Σ| − 1
2

ln | detD| , (A33)

where:

D = 〈ηη>〉 ,

Σ =
T∑
k=1

L(xt−k)DL(xt−k)
> , (A34)

(L(x))ij =
∂φi(x)

∂xj
,

and:

L(k)(t− 1) =
k∏

m=1

L(xt−m) ,

with L(0) = I .
Since Σ depends on the states between times t− T and t− 1, the TiPi expression in Equation (A33)

also depends on the states between times t − T and t − 1. The TiPi definition in Equation (A32) does
not. Thus, even though the numerical results of [12] are quite interesting, the quantity that the behavioral
agents there were maximizing was not the stated conditional mutual information.

To address this concern and explore informational adaptation hypotheses, let us consider alternatives.
If desired, for example, one could define an averaged TiPi as:

IT1 [Xt;Xt−1] ≡ I[Xt;Xt−1|Xt−T ]

= H[Xt|Xt−T ]−H[Xt|Xt−1, Xt−T ] .

or one could define TiPi to be:

IT2 [Xt;Xt−1] ≡ H[Xt|Xt−T = xt−T ]−H[Xt|Xt−1 = xt−1] ,

so that it depends on both xt−T and xt−1.
Even with these modifications, Equation (A33) still cannot be a general expression for TiPi, since

it depends on measurements at intermediate times that must be marginalized out of the conditional
probability distribution with which we are calculating the mutual information.

Moving to discrete time with a small discretization time, let us find expressions for all three:

IN [Xt;Xt−τ ] = I[Xt;Xt−τ |Xt−Nτ = xt−Nτ ]

IN1 [Xt;Xt−τ ] = I[Xt;Xt−τ |Xt−Nτ ]

IN2 [Xt;Xt−τ ] = H[Xt|Xt−Nτ = xt−Nτ ]−H[Xt|Xt−τ = xt−τ ] .



Entropy 2014, 16 4745

Suppose that the underlying dynamical system is a nonlinear Langevin equation with invertible diffusion
matrix and an analytic potential function Uθ parametrized by θ:

dx

dt
= −D∇Uθ(x) + η(t) ,

with white noise: 〈η(t)〉 = 0 and 〈η(t)η(t′)>〉 = Dδ(t− t′). Following the argument used in Section 3:

H[Xt|Xt−Nτ ] = log
√

2πe(Nτ)n| detD| − Nτ

2

∫
∇ · (D∇Uθ(x))P (Xt−Nτ = x)dx+O((Nτ)2) ,

H[Xt|Xt−Nτ = xt−Nτ ] = log
√

2πe(Nτ)n| detD| − Nτ

2
∇ · (D∇Uθ(x))|x=xt−Nτ +O((Nτ)2) ,

H[Xt|Xt−τ ] = log
√

2πeτn| detD| − τ

2

∫
∇ · (D∇Uθ(x))P (Xt−τ = x)dx+O(τ 2) ,

and

H[Xt|Xt−τ = xt−τ ] = log
√

2πeτn| detD| − τ

2
∇ · (D∇Uθ(x))|xt−τ +O(τ 2) .

These formulae lead to the following expressions for the TiPi alternatives:

IN [Xt;Xt−τ ] = n log
√
N − Nτ

2
∇ · (D∇Uθ(x))x=xt−Nτ

+
τ

2

∫
∇ · (D∇Uθ(x))P (Xt−τ = x|Xt−Nτ = xt−Nτ )dx+O((Nτ)2) , (A35)

IN1 [Xt;Xt−τ ] = n log
√
N − Nτ

2

∫
∇ · (D∇Uθ(x))P (Xt−Nτ = x)dx

+
τ

2

∫
∇ · (D∇Uθ(x))P (Xt−τ = x)dx+O((Nτ)2) ,

and

IN2 [Xt;Xt−τ ] = n log
√
N − Nτ

2
∇ · (D∇Uθ(x))|xt−Nτ +

τ

2
∇ · (D∇Uθ(x))|xt−τ +O((Nτ)2) .

Maximizing these with respect to θ has a different effect on the action policy. Maximizing the original
TiPi IN [Xt;Xt−τ ] leads the agent to alter the landscape, so that it is driven into unstable regions.
Maximizing the averaged TiPi IN1 [Xt;Xt−τ ] leads to a flattening of the potential landscape. Additionally,
the effect of maximizing IN2 [Xt;Xt−τ ] is not yet clear.

Not surprisingly, when N is small, we recover the result that maximizing IN [Xt;Xt−τ ] has the same
effect on the potential landscape as maximizing the TiPi in [12] when T = 2. Though the model there is
set up for a discrete-time analysis, it is natural to suppose that adaptive agents in an environment move
according to a continuous-time dynamic, but receive sensory signals in a discrete-time manner. Equating
notation used here and there:

φ(x) = x−D∇U(x)τ

gives:

L(1) = I − A(xt−τ )τ ,
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where Aij = ∂(D∇U(x))i/∂xj . When N = 2, substituting this into Equation (A34) yields:

Σ = Dτ + L(1)Dτ(L(1))>

= 2Dτ − (DA(xt−τ )
> + A(xt−τ )D)τ 2 +O(τ 3) .

This then gives, upon substitution into Equation (A33):

1

2
log |Σ| − 1

2
log |Dτ | = n log

√
2− tr(A(xt−τ ))τ +O(τ 2)

= n log
√

2−∇ · (D∇U(x))|xt−τ τ +O(τ 2) .

The above expression is identical to that in Equation (A35) for all practical purposes, as derivatives of
the two with respect to θ are identical up to an unimportant multiplicative constant to subleading order
in τ . Therefore, for T = 2, many of the qualitative conclusions from numerical simulations are likely to
carry over when Equation (A35) is used as the objective function.

Finally, the difference in how these quantities were calculated is interesting to us. For instance, was
the series expansion for the coefficients of the moments of the Green’s function in Appendix C actually
necessary? Could we have used an Ito discretization scheme to write xt+∆t in terms of xt−∆t and noise
terms and use that expression to evaluate bµ? This is related to the approach taken in [12]. However,
the answer obtained using the moment series expansions is a factor of two different than what would
have been obtained with such a discretization scheme. Additionally, by keeping track of the order of the
approximation errors in Appendix C, we found that these formulae for both bound information and TiPi
would only hold for invertible diffusion matrices. As suggested by Appendix D, our estimates for such
conditional mutual information change qualitatively when the diffusion matrix is not invertible. That, in
turn, may be relevant to environments that are hidden Markov, settings for which the agent’s sensorium
does not directly report the environmental states.
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