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SUMMARY

It is widely assumed that mosaics of retinal ganglion
cells establish the optimal representation of visual
space. However, relay cells in the visual thalamus
often receive convergent input from several retinal
afferents and, in cat, outnumber ganglion cells. To
explore how the thalamus transforms the retinal im-
age, we built a model of the retinothalamic circuit
using experimental data and simple wiring rules.
The model shows how the thalamus might form a
resampled map of visual space with the potential to
facilitate detection of stimulus position in the pres-
ence of sensor noise. Bayesian decoding conducted
with the model provides support for this scenario.
Despite its benefits, however, resampling introduces
image blur, thus impairing edge perception. Whole-
cell recordings obtained in vivo suggest that this
problem is mitigated by arrangements of excitation
and inhibition within the receptive field that effec-
tively boost contrast borders, much like strategies
used in digital image processing.

INTRODUCTION

The dendritic arbors and, consequently, the receptive fields

(RFs) of retinal ganglion cells (RGCs) form spatial arrays that

approach the theoretical limit for optimal packing of a hexagonal

lattice (Wässle et al., 1981b; Eglen et al., 2005; Borghuis et al.,

2008; Gauthier et al., 2009; Liu et al., 2009). Therefore, it has

been widely assumed that retinal mosaics set the limit on visual

resolution. Acuity in cat, however, is higher than the density of On

or Off RGCs predict (Hall and Mitchell, 1991), suggesting that

other factors improve image perception.

Indeed, visual space is rewired in the thalamus, transforming

the retinal message sent to cortex. Retinal output reaches the

primary visual cortex (V1) through relay cells in the dorsal lateral

geniculate nucleus (LGN) of the thalamus. Even though retinal

and thalamic neurons have similar RFs (Hubel and Wiesel,

1961; So and Shapley, 1981; Kaplan and Shapley, 1984; Usrey

et al., 1999), relay cells often receive convergent retinal inputs

(Cleland et al., 1971; Hamos et al., 1987; Mastronarde, 1992; Us-
rey et al., 1999; Yeh et al., 2009). Further, there are approximately

twice as many thalamic relay cells as RGCs in cat (Madarász

et al., 1978; Stone and Campion, 1978; LeVay and Ferster,

1979). Retinothalamic convergence, combined with the increase

in cell number from stage to stage could, in principle, provide an

interpolated map of visual space (Barlow, 1981) that might

heighten the LGN’s capacity to resolve stimulus position.

To explore theseandassociatedconsequencesof the thalamic

resampling, we constructed a statistical connectivity model of

retinothalamic circuitry based on the synaptic structure of retinal

and thalamic RFs that we mapped using whole-cell recording

in vivo andon simplewiring rules (Chklovskii et al., 2002;Ringach,

2007). The model yielded a circuit in which patterns of retinotha-

lamic convergence provided an interpolated map that improved

coverage of visual space and thus allowed better signal localiza-

tion than the retina alone achieved, assuming that noise in neural

responses is independent, Gaussian, and additive.

The benefits of interpolation come at a cost, however. Interpo-

lation blurs the image, reducing local contrast to degrade edge

perception. Our experimental evidence points to a solution to

thisproblem.Our results suggest that theanatomical organization

of relay cells and interneurons in the LGN produce physiological

arrangements of excitation and inhibition within the RF centers

that effectively boost contrast borders and increase the dynamic

range of the visual message that the LGN relays. Thus, the retino-

thalamic circuit we describe operates like techniques manmade

devices employ to improve the appearance of visual images.

RESULTS

We recorded extracellularly from 34 X-RGCs and intracellularly

from 43 X-relay cells and 6 local interneurons in laminae A/A1

of the LGN. We used these experimental results to build a

computational model for studying the functional consequences

of divergence and convergence in connections from RGCS to

relay cells and interneurons in the LGN, as well as connections

from interneurons to relay cells.

Receptive Field Transformations in Retinothalamic
Networks
Spatial Extent of Excitation and Inhibition in the

Receptive Field Center

We used sparse noise, individual bright and dark squares, to

map RFs of retinal input and inhibition in thalamic relay cells;
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Figure 1. Asymmetric Distribution of Excitation and Inhibition in the Thalamic RF

(A) Anatomical reconstruction of an X Off-center relay cell recorded 7� away from the area centralis (A.C.).

(B) The RF is shown as two separate contour plots for responses to the bright (left) and dark (right) squares. Stimulus size was 1.7� and grid spacing was 0.85�.
(C) Dark squares that fell in the center pixels evoked a depolarization followed by a hyperpolarization that corresponded to the withdrawal of the stimulus. White

squares flashed in the same positions evoked the opposite response. The small vertical green dashes indicate the onset of the stimulus, which was flashed for

31 ms. The excitatory and inhibitory centers of the RF, however, differed in extent and relative eccentricity.

(D) RFs of five geniculate cells recorded at increasing distances from the A.C. (top to bottom). RFs are shown as two different contour plots for responses to the

bright (left) and dark (right) stimulus. Red and blue code for excitation and inhibition, respectively. Individual values of overlap (O.I.) and size (S.I.) indices and

distance to A.C. are overlaid.

(E) Average push and pull size for cells recorded at different eccentricities, within 10� of the A.C., between 10� and 20� and, finally, at more than 20�. The
intersection of the crosses at each point corresponds to the mean and the length to the SD. The symbol * denotes statistically significant differences (p < 0.005;

Student’s t test).

(F) Scatter plot of size index (S.I.) versus eccentricity. The intersection of the crosses in each cluster of points corresponds to the mean and the length to the SD.

The three groups are the same as in (E). The dotted line represents the best linear fit. The symbol * denotes statistically significant differences (p < 0.008; Student’s

t test).

(G) Scatter plot comparing O.I. versus eccentricity. The intersection of the crosses in each cluster of points corresponds to themean and the length to the SD. The

three groups are the same as in (E) and (F). The dotted line represents the best linear fit. See also Figures S1, S2, and S3.
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see Supplementary Methods. The RF of a thalamic X-cell (Fig-

ure 1A), recorded at an eccentricity of 7�, is shown as two sepa-

rate contour plots (Figure 1B). Since this was an Off-center cell,

dark squares in the center evoked a depolarization followed by a

hyperpolarization that corresponded to the withdrawal of the

stimulus. White squares flashed in the same positions evoked

responses of the opposite polarity (Figure 1C)—an arrangement

called push-pull (Jones and Palmer, 1987; Ferster, 1988; Marti-

nez et al., 2005).
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The layout of push and pull at the center of the RF differed at

different eccentricities in the visual field. For central locations in

visual space, the push was restricted to the RF center (red con-

tour in Figure 1C), while the pull (blue contour in Figure 1C)

extended to the surround (approximated by gray contour in Fig-

ure 1C). A detailed view of this representative RF can be found in

Figure S1 (available online). We obtained RF maps from 30 relay

cells in theA laminae of the LGN (Figure 1D), sampling central and

peripheral regions of the visual field. These results show that even
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Figure 2. Statistical Wiring Model of the Early Visual Pathway

(A) Mosaics of On and Off RGCs. Inset shows a typical RF.

(B) Conditional density plots of same sign (left) and opposite sign (right) RGCs in the model retinal mosaic (d in the scale marks average probability).

(C) Mosaics of On and Off LGN interneurons (left) and relay cells (right). Insets show samples of typical RFs in each mosaic.

(D) Each thalamic cell receives a unique complement of retinal inputs (insets in the middle) based on a Gaussian probability function of the distance between

presynaptic and postsynaptic neurons. The strength of each individual connection is also modulated by the same probability function. The figure shows the case

for an On-center relay cell. Similar operations were used to wire up the RGCs to the LGN inhibitory mosaic and the inhibitory neurons to the relay cells in the LGN.

See also Figures S2, S4, and S7.
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as the spatial extent of the push within the thalamic RF center

grows with eccentricity, as is the case in retina (Figure S2), the

size of the pull remains constant, on average (Figures 1D and 1E).

We used a size index (SI) to quantify the relative area of exci-

tation and inhibition (Figures 1F, S1B, and S1C; Experimental

Procedures). The values of the index correlated linearly with

eccentricity in the visual field. Further, we used an overlap index

(OI) to evaluate the spatial displacement of push and pull (Marti-

nez et al., 2005), whichwas similar at all eccentricities (Figure 1G;

Supplemental Experimental Procedures).

Implications for Thalamic Circuitry

The pull is dominated by inhibition rather than the withdrawal of

excitation (Figure S3). Since retinal afferents are excitatory,

thalamic RFs apparently emerge through a simple circuit: excita-

tion comes from RGCs of the same center sign (On or Off),

whereas inhibition is routed through local interneurons driven

by RGCs of the opposite center sign.
Statistical Connectivity Model of the Early Visual
Pathway
The wiring rules underlying the asymmetric, or nested, arrange-

ment of push and pull in thalamic RF centers are not known. Our

working hypothesis is that thalamic RFs reflect spatial statistics

of theOn andOff RGCmosaics (Wässle et al., 1981a; Eglen et al.,

2005) and that a simple, probabilistic wiring rule instructs retino-

geniculate connectivity during development (Soodak, 1987;

Ringach, 2007; Paik and Ringach, 2011). We built a computa-

tional model of the LGN informed by our experimental results

to test this hypothesis and investigate potential consequences

for visual processing.

Retinal Layer

The first layer of the model simulated two independent mosaics

representing the centers of X-type On and Off RGCs (Figure 2A)

at an eccentricity of 7�, the average location of thalamic RFs we

recorded in the central visual field. The retinal mosaics were
Neuron 81, 943–956, February 19, 2014 ª2014 Elsevier Inc. 945



Table 1. Measurements of Model Retinothalamic Connectivity

Patterns and Geniculate RF Structure

OI SI Rpush Rpull R/T I/T R/I

0.7679 0.5510 1.2087 1.9303 3.1894 6.2938 4.3113

0.1100 0.1504 0.1633 0.4468 1.3985 2.3678 1.7986

OI indicates Overlap Index. SI indicates Size index. Rpush indicates Radio

Push (�). Rpull indicates Radio Pull (�). R/T indicates number of different

RGC inputs per LGN relay cell. I/T indicates mumber of different inter-

neuron inputs per relay cell. R/I indicates number of different RGC inputs

per interneuron. Top row displays average. Bottom row displays SD.
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constructed using established means (Eglen et al., 2005; Ring-

ach, 2007); see Experimental Procedures and Supplemental

Experimental Procedures. The spatial statistics of the mosaics

were based on classic studies of retina (Wässle et al., 1981a;

Stein et al., 1996) and fulfilled the conditions of quasiregularity

and positional independence (Eglen et al., 2005; Ringach,

2007). Thus, the conditional density of cells of the same class

(On or Off) becomes a function of distance from the soma. The

probability of finding a same-sign neighbor is initially low, in-

creases to a peak value, and then, at larger distances, settles

to the mean probability (Figure 2B, left). By contrast, the proba-

bility of finding an opposite-sign neighbor is the same at all dis-

tances, provided that two cells cannot lie at the same site (Eglen

et al., 2005; Ringach, 2007) (Figure 2B, right). Retinal RF centers

(Figure 2A, right inset) were modeled as two-dimensional

Gaussian functions, centered at the location of the soma in the

home mosaic. The average size of the retinal RF centers was

fitted to experimentally measured values we obtained using

the same stimulus as for the LGN (Figure S2), and the RF center

shapes were determined by the cells’ Dirichlet domains; see

Experimental Procedures.

Thalamic Layer

The second layer of the model represented the LGN and

included one array of relay cells (Figure 2C, right) and another

of local interneurons (Figure 2C, left). Current estimates suggest

that there are twice asmany relay cells as RGCs but half asmany

interneurons (Madarász et al., 1978; Stone and Campion, 1978;

LeVay and Ferster, 1979) throughout the LGN (Fitzpatrick et al.,

1984). The spatial layout of the modeled network preserved

homogeneous distributions of these two cell types. The polarity

(On or Off) of each relay cell was inherited from its nearest retinal

input. Conversely, the polarity of the local inhibitory neurons was

the opposite of their nearest neighboring relay cell. Connection

probability was an (isotropic) Gaussian function of the relative

distance between the RF centers of the presynaptic and post-

synaptic partners (Figure 2D) (see Experimental Procedures).

Notably, the model used only a simple placement optimization

protocol that minimized the cost of wiring (Ramón y Cajal,

1995; Chklovskii et al., 2002).

Construction of Push-Pull

The push at the RF center in both thalamic interneurons and relay

cells was the linear sum of all retinal afferents weighted with the

sameGaussian function used to calculate connection probability

(Figure 2D, bottom insets). The pull at the RF center of relay cells

was derived from the linear sum of their weighted inhibitory in-

puts. There was no spiking mechanism in the simulated retino-
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thalamic network (see also Ringach, 2007; Paik and Ringach,

2011); thus, the modeled RFs represent the synaptic RFs ob-

tained experimentally.

After computing the RF center of each relay cell, we calculated

the distributions of four defining characteristics—push radius,

pull radius, OI, and SI (Table 1)—for increasing values of retino-

thalamic convergence (Experimental Procedures). The model

was fitted to the data by minimizing the Kullback-Leibler dis-

tance between the empirical and theoretical distributions of

these four RF properties (Figure 3A) (see Experimental Proce-

dures). This procedure allowed us to obtain the values for retinal

convergence onto relay cells and onto interneurons, as well as

the values for the convergence of thalamic interneurons onto

relay cells that best explained our experimental results (p =

0.001) (see Experimental Procedures). Thus, push-pull profiles

in the RF centers that this ideal retinothalamic circuit produced

(Figure 3B; Table 1) were virtually identical to those in the RFs

mapped in vivo (Figure 3C).

Local Architecture of the LGN
Our detailed knowledge about the stereotyped structure of

retinal mosaics contrasts with our limited understanding of the

thalamic functional architecture. To help fill this gap, we made

the assumption that neural connections minimize total axon

length (Figure S4). This developmental wiring rule introduces a

strong bias in the relative distribution of cells in the LGN. In addi-

tion, since relay cells outnumber RGCs and inherit their polarity

from their nearest retinal input, they should form partially over-

lapped clusters of same-sign neighbors. Further, since relay

cells greatly outnumber interneurons, within each same-sign

cluster of relay cells, there should be an interneuron of the oppo-

site sign. Accordingly, in the conditional density plots of relay

cells (Figure 4A, middle panels) and interneurons (Figure 4A, bot-

tom panels) from the model LGN, the probability of finding a

same-sign neighbor is initially very high for relay cells and almost

zero for interneurons, whereas the opposite is true at larger dis-

tances. This is unlike retina (Figure 4A, top panels), where the

likelihood of finding adjacent RGCs that share the same center

sign is low. Therefore, the dipoles of On- and Off-center cells

that characterize the retinal mosaic (Figure 4B, left panels) are

transformed into small clusters of same-sign relay cells (Fig-

ure 4B, right panels). Cluster size depends on the relative local

densities in the retina and thalamus and the degree of retinotha-

lamic convergence.

Experimental Tests of the Model Predictions

To test the biological plausibility of the model predictions, we

obtained simultaneous intracellular and extracellular recordings

from relay cells and interneurons in the LGN. These experimental

results were not used to design or fit themodel or its parameters.

A record from a local interneuron shows three different types of

neural events (Figure 5A). The most common are excitatory and

inhibitory postsynaptic currents and spikes; these are the cell’s

inputs and outputs, respectively. In addition, we were able to

resolve another type of event, called the ‘‘third potential.’’ These

are small, usually biphasic, waveforms—spikes from a cell near

the one recorded directly (Kaplan and Shapley, 1984). The third

potentials that we recorded clearly came from a separate cell;

they were not affected by polarization of the patched cell, and
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Figure 3. Synaptic Structure of Thalamic RFs in Experiments and Model

(A) Distributions of the four defining characteristics of a thalamic RF—push radius, pull radius, O.I., and S.I.—in the experiments (black) and the probabilistic

retinothalamic model (gray).

(B) Schematic view of the ‘‘optimum’’ retinothalamic circuit. Numbers represent the average convergence on each branch of the network.

(C) Comparison of experimental (top) and model (bottom) RFs shown as separate contour plots (push in red and pull in blue). Insets show values of push radius

(Rpush), pull radius (Rpull), O.I., and S.I. See also Figure S7.
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their RFs often had a different sign and/or size. The nearby cell

depicted here was likely a relay cell, since it fired signature bursts

of action potentials (e.g., Guido et al., 1992); local interneurons

do not fire such bursts (Pape and McCormick, 1995).

Both the patched and nearby neurons had similar response

time courses (Figure 5B) and largely overlapping RFs (Figure 5C).

However, the interneuron’s RF (Figure 5C, top) was larger, as

expected from the greater retinothalamic convergence onto in-

terneurons versus relay cells that our model predicts (Figure 3B;

Table 1). Furthermore, the two cells had the opposite preference

for luminance contrast (On-center interneuron and Off-center

relay cell), as anticipated from the minimum wiring algorithm

(Figure 4A). We have recorded intracellularly from 13 relay cells

and 6 local interneurons that had associated third potentials.

Figure 5D shows that the distributions of first-neighbor identities

derived from experiments (left) or the model (right) are remark-

ably similar, both in the retina (top panels) and the LGN (middle

and bottom panels). The neighbor of each interneuron (n = 6)

we patched was a relay cell. For all but one of the interneuron/
relay cell pairs, the RFs had the opposite center sign. Given

the relative numbers of relay cells and interneurons (�80%/

20%) and On- and Off-center cells (�50%/50%), we were able

to calculate a p value for this finding: p = 0.024. Thus, the LGN

transforms the local spatial organization of the On and Off

populations.

Functional Consequences of Retinothalamic Rewiring
Receptive Field Diversity in the Model LGN

By increasing neuronal divergence within the retinogeniculate

pathway, the pool of different retinal inputs available to contact

each relay cell expands to permit greater diversity of RFs in the

thalamic versus retinal array. This is a fundamental requirement

for an optimal information code (e.g., Barlow 1981; Atick and

Redlich, 1990; Dan et al., 1996; Liu et al., 2009). To investigate

how RF diversity might change as a function of mean retinotha-

lamic convergence (i.e., the average number of retinal inputs

each LGN neuron receives), we defined a diversity index (D.I.)

(see Experimental Procedures). This index is based on the
Neuron 81, 943–956, February 19, 2014 ª2014 Elsevier Inc. 947
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Figure 4. Local Structure of the Lateral Geniculate Nucleus

(A) Conditional density plots of same sign (left) and opposite sign (right) RGCs (top), relay cells (middle), and interneurons (bottom) in themodel retina and LGN (d in

the scale marks average probability). While, unlike in the retina, relay cells form clusters of same sign (On or Off) cells, inhibitory neurons tend to be located within

the clusters of the thalamocortical cells.

(B) The dipoles of On- and Off-center RGCs that characterize the retinal mosaic (left) are transformed in clusters of On- and Off-center relay cells in the thalamus

(right). See also Figure S4.
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differences between the identities of the various retinal inputs to

first neighbor relay cells. The value of the D.I. is zero when

thalamic cells receive input from just one retinal afferent (here,

the set of synaptic partners coincide and thalamic RFs duplicate

the retinal map). RF diversity reaches a peak value for conver-

gence ratios between 2 and 6 and then approaches theminimum

at larger values (Figure 6A). This drop reflects the local nature of

the retinothalamic circuit and not the relative numbers of RGCs

and thalamic relay cells (Figure S5A). Since the probability of

connection is a function of distance between the presynaptic

and postsynaptic RFs, the number of retinal inputs that two relay

cells share increases rapidly when the mean retinogeniculate

convergence exceeds 4 (Figure 6A, inset, green dots). Remark-

ably, the maximum RF diversity is produced by the same circuit

design (Figure 3B) that best fits the distributions of the experi-

mental results (Figure 3A). Larger values of RF diversity indicate

that neighboring relay cells receive complementary combina-

tions of retinal inputs, potentially improving coverage and

reducing redundancy in the thalamic array.

Optimal Retinal Coverage by Thalamic RFs

Our model and data both suggest that thalamic RFs of the same

center sign are more likely to be direct neighbors than their

retinal counterparts (Figures 4A and 5D). Thus, RF tiling in retina

and thalamus seem topologically different. The most efficient

distribution of thalamic RFs relative to the retinal mosaic maxi-

mizes the area of the retina covered by the peak of at least one

thalamic RF (insets in Figure S5B). To investigate how the
948 Neuron 81, 943–956, February 19, 2014 ª2014 Elsevier Inc.
coverage of the retinal mosaics changes as a function of retino-

thalamic convergence, we thresholded thalamic RFs at different

levels relative to peak value (Figure S5B). This step was neces-

sary because Gaussian fits are boundless: without thresholding,

each RF covers the entire visual field. Our model shows that the

most effective coverage of the retinal mosaic by the thalamic RF

array is achieved by retinothalamic convergence values be-

tween 2 and 6 and drops steadily at larger values, like the

pattern for RF diversity (Figure 6A). Thus, the same wiring rules

that optimize RF diversity in the thalamus also improve the

coverage of visual space, indicating that retinal input is effi-

ciently distributed in the LGN. These circuit properties have

the potential to improve the accuracy of read out of spatial po-

sition, as below.

Decoding Capability of Thalamic Arrays

We use the term spatial decoding capability to describe the

accuracy of a given retinothalamic circuit’s ability to resolve

the spatial location of small visual targets. To quantify the spatial

decoding capability of different circuit arrangements, we used

the power of combinatorial coding available to the geniculate

array and an analysis based on Bayesian decoding (Ruderman

andBialek, 1992). Specifically, we asked if the retinothalamic cir-

cuits our model generates (Figure 3B) can perform computations

that improve estimates of signal location beyond those obtained

directly from retina, given the presence of sensor noise. We built

a decoder that estimated the position of point stimuli from neural

responses in either retina or LGN. Here, the RFs in the retinal



A B D

C

Figure 5. Local Spatial Correlation between Opposite-Sign Excitatory and Inhibitory Neurons in the Lateral Geniculate Nucleus

(A) Intracellular recording from an interneuron including the simultaneously recorded spikes of a nearby putative relay cell. The spike times of the interneuron (gray)

and the nearby cell (black) are represented at the bottom.

(B) Impulse responses of the interneuron (gray) and the relay cell (black).

(C) Snapshots of the RFs for each cell taken at the latencies indicated below each frame.

(D) Distributions of first neighbor identities in the experiments (left) and model (right).
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layer were modeled after a classical data set (Peichl andWässle,

1979) obtained with minimal stimulation protocols. The retinal

response to the stimulus was computed by summing the signal,

the point stimulus convolved with the RF, and independent

Gaussian noise (see Experimental Procedures). The retinal

output was supplied to the LGN, and convergence ratios were

varied from 1 to 10.5. Then, using prior information that the stim-

ulus is localized, an estimate of the stimulus position was

decoded from the responses of relay cells; the mean error of

the decoded stimulus position was measured as a function of

retinothalamic convergence. The results of this analysis show

that, for a broad range of finite retinal noise levels, retinothalamic

convergence reduces the mean LGN estimation error and im-

proves decoding of stimulus position compared with retinal per-

formance (Figure 6B; Movie S1). This improvement is particularly

pronounced for the same range of convergence ratios (3–6) that

optimize RF diversity and coverage of visual space in the LGN

(Figures 6A and S5B).

Consequences of Interpolation for Image Perception

Because RFs of relay cells are interpolated versions of the retinal

map (Figure S5C), the thalamic array samples visual space more

densely than the retina. In addition, interpolation reduces high

frequency noise in the input signal, an effect that is enhanced

by the Gaussian shape of the RFs (Barlow, 1981). However,

these benefits have the undesirable consequence of increasing

local spatial correlations. Imagine a sharp contrast border (an

edge) falling over the RFs of a group of thalamic cells (Figure 7A).

The slope of the depolarization profile for the population (e.g., for

On-center cells) (Figure 7B, black solid line) becomes shallower

than that in the image (Figure 7B, black dotted line), thus blurring
perception of the edge. Observe how the depolarization profile in

Figure 7B (black solid line) starts to rise well before the real edge

in the stimulus. Note that the population responses shown in this

figure are equivalent to changes in synaptic response at the

single cell level in the model, when the same luminance edge

is moved across the cell’s RF.

Our model shows how the patterns of push-pull inhibition we

recorded can counteract deleterious effects of image interpola-

tion. Push-pull at the RF center increases the dynamic range of

the thalamus, steepening the slope of the depolarization, hence

compensating for the loss in local contrast around the luminance

border (Figure 7B, red line; see Discussion). Further, this effect is

independent of stimulus contrast; note that the red lines in Fig-

ures 7B and 7C enter the depolarizing range precisely where

the sharp luminance border lies. This element of the thalamic

relay is akin to image interpolation and local contrast enhance-

ment (LCE) in photography (Figure S6; see Discussion). Thus,

the specific arrangement of push and pull in the thalamic RF

may explain, at least in part, why image perception in the cat is

better than the Nyquist limit based on the spatial sampling den-

sity of retinal receptors (Robson and Enroth-Cugell, 1978; Hall

and Mitchell, 1991).

DISCUSSION

Each sheet of ganglion cells in the retina forms a complete rep-

resentation of visual space that is transmitted to the thalamus

(Wässle and Riemann, 1978). When individual retinal axons enter

the LGN, they branch profusely to synapse with multiple relay

cells and interneurons (Hamos et al., 1987), at once rewiring
Neuron 81, 943–956, February 19, 2014 ª2014 Elsevier Inc. 949



Figure 6. Statistical Wiring Results in High Diversity of Thalamic RFs and Small Decoding Errors

(A) Evolution of RF diversity (D.I. index) as a function of average retinothalamic convergence. Insets show how the complement of retinal inputs to a pair of

thalamic cells that share their first retinal afferent change as retinothalamic convergence is increased.

(B) Error in decoding the location of a point light stimulus under different finite levels of signal-to-noise (color coded). Dotted lines represent the mean retinal error.

Solid lines show the evolution of themean LGN error as a function of average retinothalamic convergence for the same levels of signal-to-noise; shadows indicate

the SD.

(B, inset) Mean thalamic error (solid lines) relative to the retinal error (dotted line). Other conventions as in (B). See also Figure S5 and Movie S1.

Neuron

Thalamic Receptive Field Optimization
the sensory map and engaging local inhibition. We asked how

these key elements of the thalamic circuit might contribute to

vision. Using existing statistics from retinal mosaics (Wässle

et al., 1981a; Eglen et al., 2005), our own maps of synaptic

excitation and inhibition within the relay cell’s RF, and simple

statistical wiring rules, we constructed a model of the retina

and LGN. The parameters for retinothalamic convergence that

our model generated matched experimental data and yielded

an interpolated map of visual space that optimized functional

properties of the network. Interpolation, unfortunately, blurs the

image. This deficit, however, was mitigated by thalamic push-

pull inhibition. Specifically, the extent of the pull is larger than

the push in RFs of relay cells that tile central visual space. This

arrangement has the effect of heightening responses to local

contrast borders, much like the strategies used to improve the

appearance of digital images.
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Local Structure of the Thalamic Network
Our model and experimental results highlight differences be-

tween retinal versus thalamic maps. In the model, the degree

of overlap between adjacent thalamic RFs with the same center

sign is greater than predicted if the RGC mosaics were simply

reproduced; neighboring RGCs in a mosaic almost always

have the opposite sign (Wässle et al., 1981a) (Figure 5D). In addi-

tion, relay cells frequently neighbor interneurons of the opposite

center sign. Notably, the model predictions were confirmed by

our own experiments (Figure 5D) and further corroborated by

extracellular studies that report same-sign clusters of On or Off

relay cells (Bowling and Wieniawa-Narkiewicz, 1986; Berman

and Payne, 1989; Yeh et al., 2009; Jin et al., 2011).

This match between computational predictions and experi-

mental results suggests that the model parameters approximate

the natural situation. Thus, the development of retinal and
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Figure 7. Local Contrast Enhancement by Retinothalamic Circuits

(A) Mosaic of On-center relay cells stimulated with a luminance border (overlaid).

(B) Population response curves of the thalamic mosaic in (A) to the stimulus with (red) and without (black) feedforward inhibition (pull).

(C) Population response curves of the same thalamic mosaic with feedforward inhibition to a set of three stimuli with different strengths showing contrast

independent zero crossing. See also Figures S6 and S8.
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thalamic circuits might follow different principles. The structure

of RGC mosaics can be explained by simple minimal spacing

rules in retina (Kay et al., 2012). By contrast, since there are

spatial correlations within the thalamic arrays, different or addi-

tional cellular mechanisms must be employed, perhaps influ-

enced by activity dependent interactions and physical tension

between the neurites and cell bodies of synaptically connected

neurons (Cook and Chalupa, 2000; Huckfeldt et al., 2009).

Diverse Input Patterns to RFs in the LGN
What is the significance of spatial remapping for vision? It has

long been clear that relay cells receive convergent input from

different retinal afferents. While cross-correlation analyses of

retinal and thalamic spike trains (Cleland et al., 1971; Mastro-

narde, 1992; Usrey et al., 1999; Yeh et al., 2009) typically reveal

the RF structure of single afferents to a given relay cell, this

approach does not resolve the pooled retinal input that a single

relay cell receives. Intracellular recording allowed us to measure

the aggregate synaptic response of both excitatory and inhibi-

tory inputs. Thus, we were able to make independent estimates

of the number of retinal afferents converging on a single relay cell

or single interneuron as well as the number of presynaptic inter-

neurons that contact a given cell (Figure 3B).

Our model suggests that relay cells pool inputs from an

average of three to four retinal afferents (Figure S7), consistent

with the number obtained from previous cross-correlation ana-

lyses (Cleland et al., 1971; Mastronarde, 1992; Usrey et al.,

1999; Yeh et al., 2009) and ultrastructural studies (Hamos

et al., 1987). This result is also compatible with a report showing

that the average amount of synchronous firing recorded from

pairs of thalamic neurons that are driven by common retinal

input is far lower (�10%) than would be expected (90%–100%)
if a single afferent dominated all its postsynaptic targets (Yeh

et al., 2009).

Notably, the specific value of convergence that fits the data

also optimizes RF diversity in the LGN (Figure 6A). Thus, by virtue

of RF diversity, neighboring relay cells are able to process infor-

mation independently, even if some of their input derives from a

common retinal source. This independence reduces redundancy

in the sampling of the retinal mosaics and supports the view that

visual processing in the thalamus serves to recode information

efficiently (Barlow, 1981; Atick and Redlich, 1990; Dan et al.,

1996; Wang et al., 2010).

Enhanced Decoding Capability in the LGN
It is assumed that cellular sampling in the retina sets limits on

visual acuity, optical aberrations aside (Rossi and Roorda,

2010). For instance, human visual resolution at the fovea, where

RGCs receive input from a single cone, is limited by cone

spacing (Rossi and Roorda, 2010). In the periphery, however,

substantial cone-to-ganglion cell pooling leads to poorer resolu-

tion than the cone sampling limit predicts. Peripheral acuity is

more consistent with the spacing of the mosaic of midget

RGCs (Rossi and Roorda, 2010).

In cat, ganglion cells at all eccentricities pool inputs from

several cones (Hughes, 1981). But visual acuity in cat, 9 cyc/

deg (Hall and Mitchell, 1991), is neither predicted by the average

spacing of X-RGCs, 6.5 cyc/deg (Hughes, 1981), as for the

human periphery, nor by the minimum intercone distance, 16

cyc/deg (Steinberg et al., 1973), as at the human fovea. This

discrepancy had suggested that the mosaics of On and Off

X-RGCsmight function as a single retinal sampling grid (Hughes,

1981); however, subsequent studies do not support this scheme.

For example, in macaque, resolution is limited by the density of
Neuron 81, 943–956, February 19, 2014 ª2014 Elsevier Inc. 951
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On or Off midget ganglion cells (Merigan and Katz, 1990). In

addition, the high degree of irregularity of the combined On

andOff mosaic in the cat (Wässle et al., 1981a) and the functional

independence of the On and Off pathways in many species

(Schiller, 2010), including human (Westheimer, 2007), argue

against the utility of considering On and Off X-RGCs as a single

sampling grid.

Our results provide an alternative explanation for visual per-

formance in cat that is consistent with functional segregation

of the On and Off X-RGCs mosaics. We have shown that

thalamic RFs have greater diversity (Figure 6A) than their retinal

precursors. Assuming that the noise in retinal spike trains is inde-

pendent, Gaussian and additive, this greater diversity allows the

thalamic circuit to decode stimulus position more readily than

the retinal mosaic is able to do (Figure 6B; Movie S1) and thus

might improve behavioral performance on tasks that measure

visual acuity.

LCE by Retinothalamic Circuits
So far, we have concentrated on retinothalamic divergence and

convergence. Here we discuss how inhibitory input can sharpen

vision. Our intracellular records show that, in the central 10� of

the visual field, the pull signal in the RF center covers a larger

region of space than does the push. Our model suggests that

the greater expanse of the pull reflects highly convergent retinal

input onto thalamic interneurons, an idea supported by ultra-

structural studies (Montero, 1991; Van Horn et al., 2000). Further,

relay cells in the model are supplied by several local inhibitory

neurons, again consistent with past experimental work (Hamos

et al., 1985; Crunelli et al., 1988; Blitz and Regehr, 2005).

From the standpoint of signal processing, the push-pull struc-

ture we have found allows for interaction, or extrapolation, be-

tween the On and Off channels, which acts to increase the

dynamic range of the circuit (Barlow, 1981; Pouille et al., 2009).

Moreover, even as the larger pull blurs the original image, it

also changes the amplitude of the derivative of perceived bright-

ness with respect to space, or acutance. This operation is equiv-

alent to LCE by morphological filters in digital photography and

related forms of signal processing (Figure S6). Note that an

LCE filter simply amplifies high-frequency components. Thus,

by increasing acutance, it is possible to sharpen an image

without changing its actual resolution. Taken together, our re-

sults suggest that push-pull inhibition at the RF center can re-

move redundancy from the stimulus while increasing the

salience of informative features.

Consequences for Subsequent Visual Cortical
Processing
The transformation of the retinal image by the thalamic relay

might affect the emergence of cortical orientation selectivity.

As a result of the interpolation of the retinal output, the overlap

between the active On- and Off-center relay cells in the LGN

array (Figure S8A) overlying the contour of a visual object is

increased (Figure S8B), particularly at high stimulus contrasts.

In the absence of pull, this would result in a larger overlap

between the On and Off subregions of target simple cells and,

hence, broader orientation tuning in cortical layer 4. In the

presence of pull, however, the slope of the depolarization profile
952 Neuron 81, 943–956, February 19, 2014 ª2014 Elsevier Inc.
of the populations of active On- and Off-center cells is

increased, and the overlap around the edge largely reduced

(Figure S8C).

CONCLUSION

Decreasing the number of visual detectors from the level of the

photoreceptors to the X-RGCs mosaics has the disadvantage

of limiting visual resolution but has the advantage of reducing

the amount of cable needed to transmit information down-

stream. The structure of the retinothalamic circuit we described

represents an efficient solution to the problem of maximizing

spatial sampling of visual images at low metabolic cost. Our

work also shows how the structure of local circuits in the LGN

can improve visual performance, at least in part, with a strategy

routinely used in manmade image processing devices.

Similar mechanisms might operate in other retinothalamic

circuits, the thalamocortical stage, and beyond. For example,

retinal Y cells compose only 5%–10% of the entire ganglion

cell population (Illing and Wässle, 1981; Stein et al., 1996), yet

these cells contact manymore relay cells than their X-type coun-

terparts in the LGN (Sur and Sherman, 1982; Yeh et al., 2009).

Therefore, the functional principles we have described here

might also aid stimulus detection in the highly divergent Y

pathway. Our results are also relevant for primate V1, since the

thalamorecipient layer, 4cb, is dominated by cells with center-

surround RFs that largely outnumber their thalamic afferents

(Chow et al., 1950). Thus, the same strategy we describe could

mediate linearization of afferent inputs, hyperacuity (Barlow,

1981), and even boundary completion of real and illusory con-

tours (Gegenfurtner et al., 1997) in primates and humans.

EXPERIMENTAL PROCEDURES

Physiological Preparation and RF Mapping

Recordings from retina and LGN were performed in anesthetized cats. The

surgery, anesthesia, visual stimulation, intracellular recordings, and histologi-

cal processing were as described (Martinez et al., 2005;Wang et al., 2011) (and

see Supplementary Methods). Extracellular recordings from RGCs were

obtained by inserting a matrix of seven electrodes in the optic chiasm. All

procedures were in accordance with the guidelines of the US National Insti-

tutes of Health, the European Commission, the Institutional Animal Care and

Use Committees of the University of Southern California, and the Instituto de

Neurociencias de Alicante.

Statistical Wiring Model of the Early Visual Pathway

The model was based on previous experimental and theoretical work (Wässle

et al., 1981a,1981b; Eglen et al., 2005; Ringach, 2007). Our retinal and thalamic

mosaics each simulate a square patch of tissue of size 3.5 mm2. To avoid

boundary effects, only those relay cells and interneurons that were separated

from the edges of the mosaic by at least 467.5 and 280.5 mm, respectively,

were considered for further analysis.

The Model Retina

The first layer of the model simulated two independent mosaics representing

the centers of the On and Off X-RGCs at an eccentricity of 7�. We chose this

value because the spatial statistics of retinal arrays are best understood in

paracentral retina (Wässle et al., 1981a; Stein et al., 1996). To construct the

retinal mosaics, we used two different approaches. First, a pairwise interaction

point process (PIPP) model previously described by Eglen et al. (2005) and

adopted by Ringach (2007). Second, a model based on two independent

(noisy) hexagonal lattices as proposed by Ringach (2004). The implementation

of the model retina and how the resulting retinal mosaics match the spatial
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statistics obtained from the anatomical work ofWässle et al., (1981a) and Stein

et al., (1996) are described in detail in the Supplementary Methods. Our results

did not depend on themethod used; for simplicity, only those obtainedwith the

PIPP model are illustrated in the figures.

Arrangement of the LGN Layer

Relay cells were randomly distributed with the sole restriction that two cells

cannot occupy the same location in the mosaic. The polarity (On or Off) of

each relay cell was inherited from its nearest neighbor in the antecedent

RGC mosaic, following a minimum wiring paradigm (Ramón y Cajal, 1995;

Chklovskii et al., 2002). RGCs, on the other hand, outnumber thalamic inter-

neurons by at least a factor of two (Madarász et al., 1978; Stone and Campion,

1978; LeVay and Ferster, 1979). Like relay cells, interneurons were randomly

positioned in the thalamic mosaic but with a more stringent neighborhood

condition that imposed a minimum distance of 100 mm between interneurons

of the same polarity, to achieve the uniform distribution that has been reported

experimentally (Fitzpatrick et al., 1984). To comply with our minimum wiring

paradigm, their polarity was determined as the opposite of that of their nearest

relay cell.

Retinothalamic Connectivity

Each relay cell in the thalamus was first connected to its nearest neighbor in

the retinal mosaic (i.e., the one from which it inherited its polarity). We then

modeled the probability that the thalamic cell, recentered in retinal coordinates

at the position of its first retinal input (x), was connected to another RGC

centered at y as a Gaussian function of the x-y distance. The synaptic strength

of the connectionswas also assumed to be aGaussian function of the distance

between the receptive-field centers. The function for both connection proba-

bility and strength was

Pr=min

(
q,exp

 
� kx � yk2

2 � s2
ret

!
;1

)
;

where sret is the mean nearest neighbor distance within a cell class, and it was

chosen to describe the spatial spread, in visual space, of the ganglion cells

axons in the thalamic mosaic. q is the free parameter that allowed our values

of retinogeniculate convergence to change (independently onto relay cells and

interneurons) in order to search for the circuit design that best explained the

experimental data.

To simulate the connections from the inhibitory neurons to the excitatory

cells in the thalamus, we first computed the interneuron’s RF as indicated in

the next paragraph. We then assumed that the probability of connection

between a geniculate interneuron with a RF centered at x with a geniculate

relay cell centered at y was also given by a Gaussian function of the x-y

distance

Pr=min

(
q,exp

 
� kx � yk2

2 � s2
int

!
;1

)
;

but in this case sint is the radius of the interneuron RF in order to simulate the

spatial spread, in visual space, of the inhibitory neurons axons in the thalamic

mosaic. q is, again, the only free parameter that allowed our values of LGN

interneuron to relay cell convergence to change when searching for the circuit

design that best explained the experimental results.

Thus, our model is consistent with a general Hebbian framework for circuit

development in that the probability of finding a connection between two

neurons in the network is a function of the distance between their receptive-

field centers.

Model Retinal and Thalamic RFs

RGCs’ RFs were modeled as two-dimensional (elliptical) Gaussian functions

with average s = 90.7 mm, for a final RF radius of 210.4 mm (or 1.06� of visual
angle). RF radius thus matched that obtained from RGCs recorded at an

average eccentricity of 7� using our sparse-noise protocol (Figure S2). To

account for the anisotropies in RF spatial structure imposed by the profile of

the RGC’s dendritic trees, the shape of the RF was based on the neuron’s

Dirichlet domain (Wässle et al., 1981b).

The RFs of thalamic interneurons and the excitatory component of relay

cells’ RFswere constructed by linearly combining all their pooled retinal inputs,
weighted with the same Gaussian function we used to calculate connection

probability,

RF=
X
i˛N

Pr,RFi

where N is the group of the pooled retinal inputs, RFi is the RF of the neuron I,

and Pr is the probability of connection between the target cell and neuron i.

The inhibitory component of each relay cell’s RFwas constructed by pooling

input from all presynaptic interneurons. The contribution of each presynaptic

receptive field was determined by the strength of the synaptic connection.

Finally, the synaptic efficacy of each connection in the model was calculated

by taking its strength and dividing by the sum of all the synaptic weights to

the thalamic neuron.

To compare their area, radius, distance, overlap, and SIs with those of our

experimental data, computational thalamic subfields were also cut at 5% of

their peaks.

Optimization of the Retinogeniculate Model

To make a quantitative comparison with the empirical data, we first calculated

the distributions of four RF properties in both the model and the experiments:

push radius, pull radius, OI, and SI. These four measures were selected

because they are sufficient to describe the spatial layout of synaptic inputs

at the center of thalamic receptive fields.

The raw distributions were smoothed using a Laplacian function to prevent

the distributions from having zeros.

distrSmoothed =
distr + 0:01

lengthðdistrÞ+ lengthðbinningÞ
The range and the binning of the experimental and model distributions were

fixed for each of the four parameters as follows: we calculated the maximum

(M) and the minimum (m) of all configurations of the model and binned the

segment [m M] in 10% increments. Similar results were obtained for other

bin sizes (20% and 30%).

We then assessed how well the model fitted the experimental data using the

Kullback-Leibler distance (KLd):

DKLðPjjQÞ= �
X
x

pðxÞ,log qðxÞ+
X
x

pðxÞ,log pðxÞ;

where P and Q are the experimental and theoretical distributions, respectively.

In order to correct for a possible undersampling bias, we also calculated the

KLd between the model distribution and 1,000 samples extracted from it

(reference KLd). Then we evaluated how good the fit was using the corrected

KLd (cKLd), which we obtained as follows:

cKLd =
KLd �mKLd

stdKLd
;

where mKLd is the mean KLd between the 1,000 samples, and the model dis-

tribution and stdKLd is its standard deviation.

We considered a total of 9,092 different retinothalamic circuits, all preser-

ving the same number of retinal and thalamic neurons, and with conver-

gence values for retino-relay cell, retino-interneuron, and interneuron-relay

cell projections ranging from 1.3–9.5, 1.1–9.3, and 1.2–11, respectively.

After computing the cKLd for all 9,092 different circuit designs, we selected

the 20 circuit configurations that rendered the lowest cKLd for the 4 RF

properties. Then, to identify the best result from the entire set of possible

circuits, we measured the KLd between the distributions of convergence

values predicted by the 20 configurations with the lowest cKld and those

obtained from the entire sample of 9,092 different circuit designs. Finally,

we calculated the probability of obtaining similar average convergence

values by simply extracting random series of 20 different configurations

from the entire set of 9,092 circuits. The results we obtained for retino-relay

cell, retino-interneuron, and interneuron-relay cell projections were highly

significant (p = 0.001 for the three convergence distributions; n = 1,000).

Similar results were obtained when considered the best 10 and even 30

results.
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D.I.

We compared how the RFs of relay cells that share their first retinal input

change as retinogeniculate convergence is increased using a novel D.I.

D:I:= 1�
�

2,NEI

NI C1+NI C2

�
;

where NEI is the number of equal retinal inputs received by cells C1 and C2,

and NI_C1 and NI_C2 are the number of total retinal inputs received by cells

C1 and C2, respectively. RF diversity (D.I.) is set to zero when LGN cells (C1

and C2) receive input from just one retinal afferent.

Spatial Decoding Capability

We analyze the retinothalamic circuit using Bayesian decoding of the position

of a localized visual stimulus, inspired by Ruderman and Bialek (1992). In short,

we assume the response of each neuron follows a Gaussian distribution

centered on a point of the space

yi = fiðxÞ+ h;

where x is a small localized point stimulus, with h˛Nð0; sÞ being sensor

noise and fiðxÞ=max,e�ðx�xiÞ2=2,s2 the ideal response of the i-th neuron.

To fit the experimental data, s was set to 50 mm, and connection strength

(max) was, in a first step, equal to connection probability. After all connections

were established, their strengths were normalized so that each LGN

neuron received the same input strength regardless of the individual numbers

of retinal afferents. We also assume that the sensor noise is additive and

independent in each channel. Given a response pattern y, Bayesian decoding

determines the estimate of the stimulus x by maximizing the posterior

distribution:

bx = max
x

flogðpðxjyÞg:

With Gaussian sensor noise, the conditional probability of a neural response

is

pðyijxÞfe
�ðyi�fi ðxÞÞ2

2,s2 :

Since the responses of individual neurons are conditionally independent, we

have

pðyjxÞ=
Y
i

pðyijxÞ:

By virtue of Bayes theorem, we can now write the maximization of the pos-

terior probability as:

max
x

flogðpðyjxÞ,pðxÞ=pðyÞg

Note, p(y) acts only as a normalization constant, as it is independent on the

stimulus. Thus, the previous equation simplifies to

max
x

flogðpðyjxÞ,pðxÞg;

which is equal to:

max
x

(
� 1

2,s2

X
i

ðyi � fiðxÞÞ2 + logðpðxÞÞ
)
:

If we finally assume a uniform or flat prior distribution (i.e., make no prior as-

sumptions about the location of the stimulus), the estimated location of the

stimulus is given by:

max
x

(
�
X
i

ðyi � fiðxÞÞ2
)
:

To compute the decoding error (Figure 6B), we calculate the mean and the

variance of the difference between the estimated and actual location.
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Thalamic Population Response

We first calculated the activity of the thalamic neurons as

A=
X
VF

B,RFe �
X
VF

BN,RFi;

where RFe and RFi are the excitatory and the inhibitory centers of the thalamic

RFs, respectively; B is the stimulus, which represents a vertical luminance

border from 0 to 255, and BN is its negative.

Individual values of RF activation were summed along the vertical dimension

of the mosaic to obtain the relative population response curves shown in Fig-

ures 7 and S8. The magnitude of the luminance step (Figures 7C, S8B, and

S8C) was changed to study variations of the population response at different

stimulus contrast.
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