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Abstract

We statistically characterize the population spiking activity obtained from simultaneous recordings of neurons across all
layers of a cortical microcolumn. Three types of models are compared: an Ising model which captures pairwise correlations
between units, a Restricted Boltzmann Machine (RBM) which allows for modeling of higher-order correlations, and a semi-
Restricted Boltzmann Machine which is a combination of Ising and RBM models. Model parameters were estimated in a fast
and efficient manner using minimum probability flow, and log likelihoods were compared using annealed importance
sampling. The higher-order models reveal localized activity patterns which reflect the laminar organization of neurons
within a cortical column. The higher-order models also outperformed the Ising model in log-likelihood: On populations of
20 cells, the RBM had 10% higher log-likelihood (relative to an independent model) than a pairwise model, increasing to
45% gain in a larger network with 100 spatiotemporal elements, consisting of 10 neurons over 10 time steps. We further
removed the need to model stimulus-induced correlations by incorporating a peri-stimulus time histogram term, in which
case the higher order models continued to perform best. These results demonstrate the importance of higher-order
interactions to describe the structure of correlated activity in cortical networks. Boltzmann Machines with hidden units
provide a succinct and effective way to capture these dependencies without increasing the difficulty of model estimation
and evaluation.
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Introduction

Electrophysiology is rapidly moving towards high density

recording techniques capable of capturing the simultaneous activity

of large populations of neurons. This raises the challenge of

understanding how networks encode and process information in

ways that go beyond tuning properties or feedforward receptive field

models. Modeling the distribution of states in a network provides a

way to discover communication patterns between neurons or

functional groupings such as cell assemblies which may exhibit a

more direct relation to stimulus or behavioral variables.

The Ising model, originally developed in the 1920s to describe

magnetic interactions [1], has been used to statistically characterize

electrophysiological data, particularly in the retina [2], and more

recently for cortical recordings [3,4]. This model treats spikes from a

population of neurons binned in time as binary vectors and captures

dependencies between cells with the maximum entropy distribution

for pairwise dependencies. This has been shown to provide a good

model for small groups of cells in the retina [5], though it is unable

to capture dependencies higher than second-order.

In this work, we apply maximum entropy models to neural

population recordings from the visual cortex. Cortical networks

have proven more challenging to model than the retina: The

magnitude and importance of pairwise correlations between

cortical cells is controversial [6,7] and higher-order correlations,

i.e. correlations which cannot be captured by a pair-wise

maximum entropy model, play a more important role [8–10].

One of the challenges with current recording technologies is that

we can record simultaneously only a tiny fraction of the cells that

make up a cortical circuit. Sparse sampling together with the

complexity of the circuit mean that the majority of a cell’s input

will be from cells outside the recorded population. In adult cat

visual cortex, direct synaptic connections have been reported to

occur between 11%–30% of nearby pairs of excitatory neurons in

layer IV [11], while a larger fraction of cell pairs show

‘‘polysynaptic’’ couplings [12], defined by a broad peak in the

cross-correlation between two cells. This type of coupling can be

due to common inputs (either from a different cortical area or

lateral connections) or a chain of monosynaptic connections. A

combination of these is believed to give rise to most of the

statistical interactions between recorded pairs of cells. The Ising

model, which assumes only pairwise couplings, is well suited to

model direct (and symmetric) synaptic coupling, but cannot

capture interactions involving more than two cells. We propose a

new approach, that addresses both incomplete sampling and

common inputs from other cell assemblies, by extending the Ising

model with a layer of hidden units or latent variables. The

resulting model is a semi-Restricted Boltzmann Machine (sRBM),

which combines pairwise connections between visible units with an

additional set of connections to hidden units.
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Estimating the parameters of energy-based models, to which

Ising models and Boltzmann machines belong, is computationally

hard because these models cannot be normalized in closed form.

For both Ising models and Boltzmann machines with hidden units,

the normalization constant is intractable to compute, consisting of

a sum over the exponential number of states of the system. This

makes exact maximum likelihood estimation impossible for all but

the smallest systems and necessitates approximate or computa-

tionally expensive estimation methods. In this work, we use

Minimum Probability Flow (MPF [13,14], in the context of neural

decoding see [4,15]) to estimate parameters efficiently without

computing the intractable partition function. It provides a

straightforward way to estimate the parameters of Ising models

and Boltzmann machines for high-dimensional data.

Another challenge in using energy-based models is the

evaluation of their likelihood after fitting to the data, which is

again made difficult due to the partition function. To compute

probabilities and compare the likelihood of different models,

annealed importance sampling (AIS) [16] was used to estimate the

partition function.

Combining these two methods for model estimation and

evaluation, we show that with hidden units, Boltzmann machines

can capture the distribution of states in a microcolumn of cat

visual cortex significantly better than an Ising model without

hidden units. The higher-order structure discovered by the model

is spatially organized and specific to cortical layers, indicating that

common input or recurrent connectivity within individual layers of

a microcolumn are the dominant source of correlations. Applied to

spatiotemporal patterns of activity, the model captures temporal

structure in addition to dependencies across different cells,

allowing us to predict spiking activity based on the history of the

network.

Results

Modeling laminar population recordings
We estimated Ising, RBM and sRBM models for populations of

cortical cells simultaneously recorded across all cortical layers in a

microcolumn of cat V1 in response to long, continuous natural

movies presented at a frame rate of 150 Hz. Code for the model

estimation is available for download at http://github.com/ursk/

srbm. Fig. 1a) shows an example frame from one of the movies.

Model parameters were estimated using MPF with an L1

regularization penalty on the model parameters to prevent

overfitting. To compute and compare likelihoods, the models

were normalized using AIS. Here we present data from two

animals, one with 22 single units (B4), another with 36 units (T6),

as well as a multiunit recording with 26 units (B4M). Fig. 1b) shows

spiking data from session B4 in 20 ms bins, with black squares

indicating a spike in a bin. Spatiotemporal datasets were

constructed by concatenating spikes from consecutive time bins.

Pairs of cells show weak positive correlations, shown in Fig. 1c),

and noise correlations computed from 60 repetitions of a 30s

stimulus are similarly small and positive. For all recordings, the

population was verified to be visually responsive and the majority

of cells were orientation selective simple or complex cells. As

recordings were performed from a single cortical column,

receptive fields shared the same retinotopic location and have

similar orientation selectivity, differing mostly in size, spatial

frequency and phase selectivity. See [17] for a receptive field

analysis performed on the same raw data.

Pairwise and higher-order models
The estimated model parameters for the three different types of

models (Ising, RBM and sRBM) are shown in Fig. 2 for session B4.

The L1 sparseness penalty, chosen to optimize likelihood on a

validation dataset, results in many of the parameters being zero.

For the Ising model (a) we show the coupling as a matrix plot, with

lines indicating anatomical layer boundaries. The diagonal

contains the bias terms, which are negative since all cells are off

the majority of the time. The matrix has many small positive

weights that encourage positive pairwise correlations.

In (b) we show the hidden units of the RBM as individual bar

plots, with the bars representing connection strengths to visible

units. The topmost bar corresponds to the hidden bias of the unit,

and hidden units are ordered from highest to lowest variance. The

units are highly selective in connectivity: The first unit almost

exclusively connects to cells in the deep (granular and subgranular)

cortical layers. The second unit captures correlations between cells

in the superficial (supergranular) layers. The correlations are of

high order, with 10 and more cells receiving input from a hidden

unit. The remaining units connect fewer cells, but still tend to be

location-specific. Only the hidden units that have non-zero

couplings are shown. Additional hidden units are turned off by

the L1 sparseness penalty, which was chosen to maximize

likelihood on the cross-validation dataset. The interpretation of

hidden units is quite similar to the pairwise terms of the Ising

model: positive coupling to a group of visible units encourages

these units to become active simultaneously, as the energy of the

system is lowered if both the hidden unit and the cells it connects

to are active. Thus the hidden units become switched on when

cells they connect to are firing (activation of hidden units not

shown).

The sRBM combines both pairwise and hidden connections

and hence is visualized with a pairwise coupling matrix and bar

plots for hidden units. With the larger number of parameters, the

best model is even more sparse in the number of nonzero

parameters. The remaining pairwise terms predominantly encode

negative interactions, and much of the positive coupling has been

explained away by the hidden units. These give rise to strong

positive couplings within either superficial (II/III) or intermediate

(IV) and deep (V/VI) layers, which explain the majority of

structure in the data. The more succinct explanation for

dependencies between recorded neurons is via connections to

Author Summary

Communication between neurons underlies all perception
and cognition. Hence, to understand how the brain’s
sensory systems such as the visual cortex work, we need to
model how neurons encode and communicate informa-
tion about the world. To this end, we simultaneously
recorded the activity of many neurons in a cortical column,
a fundamental building block of information processing in
the brain. This allows us to discover statistical structure in
their activity, a first step to uncovering communication
pathways and coding principles. To capture the statistical
structure of firing patterns, we fit models that assign a
probability to each observed pattern. Fitting probability
distributions is generally difficult because the model
probabilities of all possible states have to sum to one,
and enumerating all possible states in a large system is not
possible. Making use of recent advances in parameter
estimation, we are able to fit models and test the quality of
the fit to the data. The resulting model parameters can be
interpreted as the effective connectivity between groups
of cells, thus revealing patterns of interaction between
neurons in a cortical circuit.

Higher-Order Correlations in Cortical Microcolumns
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shared hidden units, rather than direct couplings between visible

units. The RBM and sRBM in this comparison were both

estimated with 22 hidden units, but we show only units that did

not turn off entirely due to the sparseness penalty. In this example,

a sparseness penalty of l~2|10{3 was found to be optimal for

all three models.

Including stimulus-driven components
In order to ascertain to what degree the stimulus driven

component of activity accounts for the learned higher-order

correlations, we augmented the above models with a dynamic bias

term that consists of the log of the average instantaneous firing

probability of each cell over repeated presentations of the same

stimulus. In the case that all trained parameters were zero, this

model would assign a firing probability to all neurons identical to

that in the peri-stimulus time histogram (PSTH).

In Fig. 2d) the couplings for the Ising model with stimulus terms are

shown. As the pairwise couplings now only capture additional

structure beyond correlations explained by the stimulus, they tend to

be weaker than in the Ising model without stimulus terms. In

particular the bias terms on the diagonal are almost completely

explained away by the dynamic bias. The same reasoning applies to

the RBM with PSTH terms, which is shown in e). Although the

couplings are weaker than for the pure RBM, the basic structure

remains, with the first two hidden units explaining correlations within

superficial and deep groups of cells, respectively. This shows that the

learned coupling structure can not be explained purely from higher-

order stimulus correlations and receptive field overlap. Even when

stimulus-induced correlations are fully accounted for, the correlation

structure captured by the RBM remains similar and higher-order

correlations are the dominant driver of correlated firing.

Model comparison
For a quantitative comparison between models, we computed

normalized likelihoods using Annealed Importance Sampling

(AIS) to estimate the partition function. For each model, we

generated 500 samples through a chain of 105 annealing steps. To

ensure convergence of the chain, we use a series of chains varying

the number of annealing steps and verify that the estimate of the

partition function Z stabilizes to within at least 0.02 bits/s (see Fig.

S1). For models of size 20 and smaller we furthermore computed

the partition function exactly to verify the AIS estimate.

Fig. 3a) shows a comparison of excess log likelihood L for the

three different models and on all three datasets. L, which we

define as the gain in likelihood over the independent firing rate

model, is computed in units of bits/spike for the full population.

Both higher-order models outperform the Ising model in fitting the

datasets significantly. Error bars are standard deviation computed

from 10 models with different random subsets of the data used for

learning and validation, and different random seeds for the

parameters and the AIS sampling runs.

Fig. 3b) shows the excess log likelihood for the models with

stimulus terms. Due to the additional computational complexity,

these models were only estimated for the small B4 data set. The

left of the two bar plots shows that including the stimulus

information through the PSTH greatly increases the likelihood,

even the PSTH only model without coupling terms outperforms

the Ising and RBM models by about 0.7 bits/s. Including coupling

terms still increases the likelihood, which is particularly visible on

the right bar plot which shows the log likelihood gain relative to

the PSTH model. Including higher-order coupling terms still

provides a significant gain over the pairwise model, confirming

that there are higher-order correlation in the data beyond those

induced by the stimulus.

Each of the models was estimated for a range of sparseness

parameters l~½0,1,2,4,6,8,10�|10{3 bracketing the optimal l
using 4-fold cross-validation on a holdout set, and the results are

shown for the optimal choice of l for each model.

Additional insight into the relative performance of the models

can be gained by comparing model probabilities to empirical

Figure 1. Laminar population recordings in response to natural movies. (a) Example of one of the natural movie stimuli, depicting ducks on
a lawn, presented full-field at 150 frames per second. (b) Example data from 22 cells (session B4), binned in 20 ms windows, 2 s of data. Columns of
this matrix form the training data for our algorithm. For the spatiotemporal version of the model, several adjacent columns are concatenated. (c)
Pairwise correlations in the raw data, and noise correlations computed from 60 repetitions of a 30 s stimulus, binned at 20 ms. Both show small,
positive correlations. Shuffling spikes for each of the cells shows that correlations expected due to shared firing rate modulations time-locked to the
stimulus are much smaller.
doi:10.1371/journal.pcbi.1003684.g001
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probabilities for the various types of patterns. Fig. 4 shows scatter

plots of model probabilities under the different models against

pattern frequencies in the data. Patterns with a single active cell,

two simultaneously active cells, etc. are distinguished by different

symbols. As expected from the positive correlations, the indepen-

dent model (yellow) shown in a) consistently overestimates the

probabilities of cells being active individually, so these patterns fall

above the identity line, while all other patterns are underestimated.

For comparison, the Ising model is shown in the same plot (blue),

and does significantly better, indicated by the points moving closer

to the identity line. It still tends to fail in a similar way though, with

many of the triplet patterns being underestimated as the model

cannot capture triplet correlations. In b), this model is directly

compared against the RBM (green). Except for very rare patterns,

most points are now very close to the identity line, as the model

can fully capture higher-order dependencies. Hidden units

describe global dependencies that greatly increase the frequency

of high order patterns compared to individually active cells. The

5% and 95% confidence intervals for the counting noise expected

in the empirical frequency of states are shown as dashed lines. The

solid line is the identity. Inserts in both models show the

distribution of synchrony, P(K), where K is the number of cells

simultaneously firing in one time bin. This metric has been used

for example in [18] to show how pairwise models fail to capture

higher-order dependencies. In the case of the T6 data set with 36

cells shown here, the Ising model and RBM both provide a good

fit to the distribution of synchrony in the observed data.

Note that any error in estimating the partition function of the

models would lead to a vertical offset of all points. Thus visually

checking the alignment of the data cloud around the identity line

provides a visual verification that there are no catastrophic errors

in the estimation of the partition function. Unfortunately we

cannot use this alignment as a shortcut to compute the partition

function without sampling, e.g. by defining Z such that the all

zeros state has the correct frequency, as this assumes a perfect

model fit. For instance, L1 regularization tends to reduce model

Figure 2. Functional connectivity patterns of the three models estimated for recording session B4. The horizontal lines indicate
approximate boundaries between cortical layers II/III, layer IV and layers V/VI. (a) Ising model coupling matrix. Each row/column of the matrix
corresponds to a neuron, bias terms are shown on the diagonal. The model has many small coupling terms that encode positive correlations. (b) The
RBM coupling weights are shown as a bar chart for each hidden unit, ordered from left to right from largest to smallest activity. The first bar chart is
the bias for all the visible units, and the blue bar at the top of each plot corresponds to the bias of that hidden unit. Blue bars indicate negative values
(the bias terms are predominantly negative, but plotted with flipped sign to fit on the scale of the remaining terms). (c) The sRBM weights are shown
in the same way, with the pairwise couplings on the left and hidden units on the right. The pairwise connections are qualitatively very different from
those of the Ising model, as most of the structure is better captured by hidden units. (d) Pairwise coupling terms for the Ising model with stimulus
terms. Much of the structure, in particular the bias terms, have been explained away by the stimulus terms. (e) Hidden unit couplings for the RBM
with stimulus terms. The structure of the hidden units remains largely unchanged, indicating higher-order couplings are due to network interactions
and not stimulus correlations.
doi:10.1371/journal.pcbi.1003684.g002
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probabilities of the most frequent states, so this estimate of Z
would systematically overestimate the likelihood of regularized

models. We note, however, that for higher-order models with no

regularization this estimate does indeed agree well with the AIS

estimate.

Spatiotemporal models
The same models can be used to capture spatiotemporal

patterns by treating previous time steps as additional cells.

Consecutive network states binned at 6.7 ms were concatenated

in blocks of up to 13 time steps, for a total network dimensionality

of 130 with 10 cells. These models were cross-validated and the

sparseness parameters optimized in the same way as for the

instantaneous model. This allows us to learn kernels that describe

the temporal structure of interactions between cells.

In Fig. 5 we compare the relative performance of spatiotem-

poral Ising and higher-order models as a function of the number of

time steps included in the model. To create the datasets, we picked

a subset of 10 cells with the highest firing rates from the B4 dataset

(4 cells from subgranular, 2 from granuar and 4 from super-

granular layers) and concatenated blocks of up to 13 subsequent

data vectors. This way models of any dimensionality divisible by

10 can be estimated. The number of parameters of the RBM and

Ising model were kept the same by fixing the number of hidden

units in the RBM to be equal to the number of visible units, the

sRBM was also estimated with a square weight matrix for the

hidden layer. As before, the higher-order models consistently

outperform the Ising model. The likelihood per spike increases

with the network size for all models, as additional information

from network interactions leads to an improvement in the

predictive power of the model. The curve for the Ising model

levels off after a dimensionality of about 30 is reached, as higher-

order structure that is not well captured by pairwise coupling

becomes increasingly important. However, the likelihood of

higher-order models continues to increase through the entire

experimental range.

The insert in the figure shows the entropy of the models,

normalized by the data dimensionality by dividing by the number

of frames and neurons. The entropy was computed as

S~{Slog(p(x))Tp(x)~SE(x)Tp(x)zlog(Z) where the expecta-

tion of the energy was estimated by initializing 100,000 samples

using the holdout data set, and then running 2000 steps of Gibbs

sampling. Due to temporal dependencies additional frames carry

less entropy, but we do not reach the point of extensivity where the

additional entropy per frame reaches a constant value. As the

RBM is better able to explain additional structure in new frames,

Figure 3. Model comparison using likelihood gain over the
independent model. Likelihoods are normalized to bits/spike to
account for different population size as well as firing rate. (a) The change
in performance with dataset size (22 cells for session B4, 26 cells for MU,
and 36 cells for T6) is thus due to additional structure captured from
larger populations. B4 and T6 are spike sorted, B4M is a multiunit dataset.
All three models outperform the independent model by 0.4–0.8 bits/
spike. The higher-order models with hidden units give a small (0.03–0.04
bits/spike, about 10%) improvement over the Ising model for the small
datasets, growing to 0.18 bits/spike, about 28%, for the dataset with the
large population size. (b) Including stimulus terms provides a large gain
in likelihood, even the stimulus PSTH term alone outperforms the
network models by a large margin for this dataset. There is still a
significant gain by including coupling terms. The difference between the
second order Ising model and higher-order RBM is particularly visible in
the right hand plot which shows the gain relative to the PSTH only
model. All error bars indicate one standard deviation over repeated
estimation on different random subsets of the data for training and
validation and random initializations of AIS estimation.
doi:10.1371/journal.pcbi.1003684.g003

Figure 4. Scatter plot showing empirical probabilities against model probabilities on T6 test dataset. Different models are distinguished
by color, the number of simultaneously spiking cells in each pattern by different symbols. (a) shows the independent model compared to the Ising
model, (b) shows the Ising model compared to the RBM. The sRBM is omitted as it is very similar to the RBM. The RBM significantly outperforms
simpler models. Inserts in both models show the distribution of synchrony, P(K), where K is the number of cells simultaneously firing in one time
bin. The synchrony in the empirical distribution (red line) is greatly underestimated by the independent model (yellow), but well captured by both
the pairwise (blue) and higher-order model (green).
doi:10.1371/journal.pcbi.1003684.g004

Higher-Order Correlations in Cortical Microcolumns
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the additional entropy for new frames is much less than for the

Ising model.

A similar observation has been made in [5], where Ising and

higher-order models for 100 retinal ganglion cells were compared

to models for 10 time steps of 10 cells. It is noteworthy that

temporal dependencies are similar to dependencies between

different cells, in that there are strong higher-order correlations

not well described by pairwise couplings. These dependencies

extend surprisingly far across time (at least 87 ms, corresponding

to the largest models estimated here) and are of such a form that

including pairwise couplings to these states does not increase the

likelihood of the model. This has implications e.g. for GLMs that

are typically estimated with linear spike coupling kernels which

will likely miss these interactions.

To predict spiking based on the network history, we can

compute the conditional distribution of single units given the state

of the rest of the network. This is illustrated for a network with 15

time steps for a dimensionality of 150. This model is not included

in the above likelihood comparison, as the AIS normalization

becomes very expensive for this model size. Fig. 6a) shows the

learned weights of 18 randomly chosen nonzero hidden units for a

spatiotemporal RBM model with 150 hidden units. Each subplot

corresponds to one hidden unit, which connects to 10 neurons

(vertical axis) across 15 time steps or 100 ms (horizontal axis).

Some units specialize in spatial coupling across different cells at a

constant time lag. As the model has no explicit notion of time, the

time lag of these spatial couplings is not unique and the model

learns multiple copies of the same spatial pattern. Thus while there

are 55 nonzero hidden units, the number of unique patterns is

much smaller so that the effective representation is quite sparse.

The remaining units describe smooth, long-range temporal

dependencies, typically for small groups of cells. Both of these

subpopulations capture higher-order structure connecting many

neurons that cannot be well approximated with pairwise

couplings.

By conditioning the probability of one cell at one time bin on

the state of the remaining network, we can compute how much

information about a cell is captured by the model over a naive

prediction based on the firing rate of the cell. This conditional

likelihood for each cell is plotted in Fig. 6b) in a similar way to

excess log likelihood for the entire population in Fig. 5, except in

units of bits per second rather than bits per spike. While the result

here reflects our previous observation that Boltzmann machines

with hidden units outperform Ising models, we note that the

conditional probabilities are easily normalized in closed form since

they describe a one-dimensional state space. Thus we can ensure

that the likelihood gain holds independent of the estimation of Z
and is not due to systematic errors in sampling from the high-

dimensional models. Fig. 6c) provides a more intuitive look at the

prediction. For 1 s of data from one cell, where 5 spikes occur, we

show the conditional firing probabilities for the three models given

100 ms of history of itself and the other cells. Qualitatively, the

models perform well in predicting spiking probabilities, suggesting

it might compare favorably to prediction based on GLMs or Ising

models [19].

Discussion

Contributions
While there has been a resurgence of interest in Ising-like

maximum entropy models for describing neural data, progress has

been hampered mainly by two problems. First, estimation of

energy based models is difficult since these models cannot be

normalized in closed form. Evaluating the likelihood of the model

thus requires approximations or a numerical integral over the

exponential number of states of the model, making maximum

likelihood estimation computationally intractable. Even the

pairwise Ising model is typically intractable to estimate, and

various approximations are required to overcome this problem.

Second, the number of model parameters to be estimated grows

very rapidly with neural population size. If correlations up to nth

order are considered, the number of parameters is proportional to

number of neurons½ �n. In general, fully describing the distribution

over states requires a number of parameters which is exponential

in the number of neurons. This can be dealt with by cutting off

dependencies at some low order, by estimating only a small

number of higher-order coupling terms, or by imposing some

specific form on the dependencies.

We attempted to address both of these problems here.

Parameter estimation was made tractable using MPF, and latent

variables were shown to be an effective way of capturing high

order dependencies. This addresses several shortcomings that have

been identified with the Ising model.

Shortcomings of Ising models
As argued in [20], models with direct (pairwise) couplings are

not well suited to model data recorded from cortical networks.

Since only a tiny fraction of the neurons making up the circuit are

recorded, most input is likely to be common input to many of the

recorded cells rather than direct synapses between them. While

this work compares Generalized Linear Models (GLMs) such as

models of the retina [21] and for LGN [22] to linear dynamical

systems (LDS) models, the argument applies equally for the models

presented here.

Another shortcoming of the Ising model and some previous

extensions is that the number of parameters to be estimated does

Figure 5. Likelihood comparison as a function of model size.
Spatiotemporal models with 10 cells and a varying number of
concatenated time steps. The log-likelihood per spike increases as
each neuron is modeled as part of a longer time sequence. This effect
holds both for Ising and higher-order models. Since the Ising model
cannot capture many of the relevant dependencies, the increase in
likelihood saturates after about 3 timesteps for the Ising model, but
continues to increase for the higher-order models. Insert: Comparison
of the entropy per time slice for Ising and RBM models as a function of
model size. As the RBM is better able to model spatiotemporal
dependencies, the additional entropy for extra frames is smaller than
for the Ising models. The RBM does not reach the point of extensivity,
where additional frames add constant entropy. Multiple lines of the
same color indicate repeated runs with different random initialization.
doi:10.1371/journal.pcbi.1003684.g005
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not scale favorably with the dimensionality of the network. The

number of pairwise coupling terms in GLM and Ising models

scales with the square of the number of neurons, so with the

amounts of data typically collected in electrophysiological exper-

iments it is only possible to identify the parameters for small

networks with a few tens of cells. This problem is aggravated by

including higher-order couplings: for example the number of third

order coupling parameters scales with the cube of the data

dimensionality. Therefore attempting to estimate these coupling

parameters directly is a daunting task that usually requires

approximations and strong regularization.

Higher-order correlations in small networks
Early attempts at modeling higher-order structure side-stepped

these technical issues by focussing on structure in very small

networks. Ohiorhenuan noted that Ising models fail to explain

structure in cat visual cortex [8] and was able to model triplet

correlations [9] by considering very small populations of no more

than 6 neurons. Similarly, Yu et al. [3,10] show that over the scale

of adjacent cortical columns of anesthetized cat visual cortex, small

subnetworks of 10 cells are better characterized with a dichoto-

mized Gaussian model than the pairwise maximum entropy

distribution. While the dichotomized Gaussian [23] is estimated

only from pairwise statistics, it carries higher-order correlations

that can be interpreted as common Gaussian inputs [24]. However

these correlations are implicit in the structure of the model and not

directly estimated from the data as with the RBM, so it is not clear

that the model would perform as well on different datasets.

Modeling large networks
Given that higher-order correlations are important to include in

statistical models of neural activity, the question turns to how these

models can be estimated for larger data sets. In this section, we

focus on two approaches that are complementary to our model

using hidden units. The increasing role of higher-order correla-

tions in larger networks was first observed in [25], where Ising

models were fit via MCMC methods to the same 40 cell retina

dataset that was analyzed in terms of subsets of 10 cells in [2]. This

point is further emphasized by Schneidman and Ganmor in [5],

who caution that trying to model small subsets (10 cells) of a larger

network to infer properties of the full network may lead to

incorrect conclusions, and show that for retinal networks higher-

order correlations start to dominate only once a certain network

size is reached.

Therefore they address the same question as the present paper,

i.e. how to capture nth order correlations without the accompa-

nying dn growth in the number of free parameters in a larger

network. In their proposed Reliable Interaction Model (RIM),

they exploit the sparseness of the neural firing patterns to argue

that it is possible to explicitly include third, forth and higher-order

terms in the distribution, as most higher-order coupling terms will

be zero. Therefore the true distribution can be well approximated

from a small number of these terms, which can be calculated using

a simple recursive scheme. In practice, the main caveat is that only

patterns that appear in the data many times are used to calculate

the coupling terms. While the model by construction assigns

correct relative probabilities to observed patterns, the probability

assigned to unobserved patterns is unconstrained, and most of the

RIM’s probability mass may thus be assigned to states which never

occur in the data.

The second alternative to the RBM with hidden units is to

include additional low-dimensional constraints in an Ising model.

In the ‘‘K-pairwise’’ model [18,26], in addition to constraining

pairwise correlations, a term is introduced to constrain the

probability of k neurons being active simultaneously. This adds

very little model complexity, but significantly improves the model

of the data. This is shown, for example, by computing conditional

predictions in a similar fashion to that shown in Fig. 6c), where the

K-pairwise model for a population of 100 retinal ganglion cells has

Figure 6. Spatiotemporal network models. (a) Hidden units of spatiotemporal sRBM model. For each hidden unit, the horizontal axis is time and
the vertical axis cells with horizontal bars separating the subgranular, granular and supergranular cortical layers. (b) Log-likelihood gain for each of
the 10 cells (ordered by firing rate) conditioned on the remainder of the network state for all three models. (c) Spike prediction from network history.
For one of the cells, we show 1 s of predicted activity given the history of the network state. In each case when a spike occurs in the data (gray bars),
there is an elevated probability under the models (colored bars).
doi:10.1371/journal.pcbi.1003684.g006
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an 80% correlation with the repeated trial PSTH. In contrast to

the RBM, however, this model is not structured in a way that can

be easily interpreted in terms of functional connectivity. To

estimate these models for large numbers (nw100) of neurons, the

authors leverage the sampling algorithm described in [27], an L1-

regularized histogram Monte Carlo method.

In addition to proposing a faster (though slower than MPF)

parameter estimation method for this class of models, Tkačik and

colleagues address the difficulty in sampling from the model and

computing the partition function. In our experiments the overall

limiting factor is the Gibbs sampler in the AIS partition function

estimation. Tkačik et al. use a more efficient sampling algorithm

(Wang-Landau) to compute partition functions and entropy of

their models. As an even simpler approach to the partition

function problem, they suggest that it can be obtained in closed

form if the empirical probability of at least one pattern in the data

is accurately known. A case in point is the all zeros pattern that is

typically frequent for recordings with sparsely firing neurons.

Unfortunately, this approach is limited in that it assumes that the

probability the model assigns to the state is identical to the

empirical probability of the state. In the case that the model has

not been perfectly fit to the data, or in the case that the data does

not belong to the model class, this will lead to an incorrect estimate

of the partition function.

Modeling stimulus-driven components
Since the activity we are modeling is in response to a specific

stimulus, one may rightfully question whether the observed higher-

order correlations in neural activity are simply due to higher-order

structure contained in the stimulus, as opposed to being an

emergent property of cortical networks. In an attempt to tease

apart the contribution of the stimulus, we included a nonpara-

metric PSTH term in the model. However, this can capture

arbitrarily complex stimulus transformations using the trial-

averaged response to predict the response to a new repetition of

the same stimulus. As an ‘‘oracle model’’, it does not only capture

the part of the response that could be attributed to a feed-forward

receptive field, but also captures contextual modulation effects

mediated by surrounding columns and feedback from higher brain

areas, essentially making it ‘‘too good’’ as a stimulus model. The

RBM and Ising models are then relegated to merely explain the

trial to trial variability in our experiments. Not including stimulus

terms and finding the best model to explain the correlations

present in the data, irrespective of whether they are due to

stimulus or correlated variability, seems to be an equally valid

approach to discover functional connectivity in the population.

Relation to GLMs
GLMs [21] can be used to model each cell conditioned on the

rest of the population. While mostly used for stimulus response

models including stimulus terms, they are easily extended with

terms for cross-spike coupling, which capture interactions between

cells. GLMs have been successfully augmented with latent

variables [20], for instance to model the effect of common noisy

inputs on synchronized firing at fast timescales [28]. A major

limitation of GLMs is that current implementations can only be

estimated efficiently if they are linear in the stimulus features and

network coupling terms, so they are not easily generalized to

higher-order interactions. Two approaches have been used to

overcome this limitation for stimulus terms. The GLM can be

extended with additional nonlinearities, preserving convexity on

subproblems [22]. Alternatively, the stimulus terms can be

packaged into nonlinear features which are computed in

preprocessing and usually come with the penalty of a large

increase in the dimensionality of the problem [29]. However, we

are not aware of any work applying either of these ideas to spike

history rather than stimulus terms. Another noteworthy drawback

of GLMs is that instantaneous coupling terms cannot be included

[20], so instantaneous correlations cannot be modeled and have to

be approximated using very fine temporal discretization.

Conclusion
The RBM provides a parsimonious model for higher-order

dependencies in neural population data. Without explicitly

enumerating a potentially exponential number of coupling terms

or being constrained by only measurements of pairwise correla-

tions, it provides a low-dimensional, physiologically interpretable

model that can be easily estimated for populations of 100 or more

cells.

The connectivity patterns the RBM learns from cells simulta-

neously recorded from all cortical layers are spatially localized,

showing that small neural assemblies within cortical layers are

strongly coupled. This suggests that cells within a layer perform

similar computations on common input, while cells across different

cortical layers participate in distinct computations and have much

less coupled activity. This novel observation is made possible by

the RBM: because each of the hidden units responds to (and

therefore learns on) a large number of recorded patterns, it can

capture dependencies that are too weak to extract with previous

models. In particular, the connectivity patterns discovered by the

RBM and sRBM are by no means obvious from the covariance of

the data or by inspecting the coupling matrix of the Ising model.

This approach, combining a straightforward estimation procedure

and a powerful model, can be extended from polytrode recordings

to capture physiologically meaningful connectivity patterns in

other types of multi-electrode data.

Materials and Methods

Recording and experimental procedures
Ethics statement. The protocol used in the experiments was

approved by the Institutional Animal Care and Use Committee at

Montana State University and conformed to the guidelines

recommended in Preparation and Maintenance of Higher

Mammals During Neuroscience Experiments, National Institutes

of Health Publication 913207 (National Institutes of Heath,

Bethesda, MD 1991).

Visual stimuli. Three movies of 8, 20 and 30 minutes

duration were captured at 300 frames per second and 512|384
pixel resolution with a Casio F1 camera. All movies were recorded

on the campus of MSU Bozeman and depicted natural scenes such

as ducks swimming on a pond, selected to contain heterogeneous

motion across the scene. The camera was mounted on a tripod to

avoid camera motion and there were no scene changes within

movies, so the spatiotemporal statistics of the movie do not contain

artifacts from camera motion or cuts. Movies were converted to

grayscale with no additional contrast normalization on top of the

in-camera processing, and temporally down-sampled to 150 Hz

for presentation. The high frame rate was chosen to prevent cells

phase locking to the frame rate, and scene changes were

minimized to avoid evoked potentials due to sudden luminance

changes. The movies were presented at 150 frames per second on

a 210 CRT monitor that was calibrated for a linear response. Each

of the three movies was presented once and a 30 s segment of the

first movie was presented for 60 repeated trials.

Recording methods. Data were recorded from anesthetized

cat visual cortex in response to a custom set of full field natural

movie stimuli. The surgical methods are described in detail

Higher-Order Correlations in Cortical Microcolumns
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elsewhere [30]. In brief, the anesthetized animals were mounted in

a stereotaxic frame and a small craniotomy was made over area

17. The dura was reflected and agar in artificial cerebrospinal fluid

was applied to protect the cortical surface and reduce pulsations.

The polytrode was slowly lowered perpendicularly into cortex

using a hydraulic microdrive. Recordings were made with single

shank 32 channel polytrodes (Neuronexus Technologies A1632)

with a channel spacing of 50mm, contact diameter of 23mm and

thickness of 15mm, spanning all the layers of visual cortex.

Individual datasets had on the order of 20 to 40 simultaneously

recorded neurons.

For spike sorting, the 32 polytrode channels were treated as 8

non-overlapping groups, shown in Fig. S 2a). To each group, a

standard tetrode spike sorting method was applied [30]: In brief,

spike waveforms were extracted at a threshold of 6s and features

(area, energy, peak, valley, peak valley ratio, width, trigger value

and the first three principal components) computed for each

channel in the group. In this feature space the data was clustered

using k-means clustering (KlustaKwik, [31]) with a manual

cleanup using the MClust Matlab package [32]. See Fig. S 2b)

for cluster isolation for an example channel group. Cleanup

consisted of identifying and removing artifacts, and merging

clusters belonging to the same cell. Clusters were then labeled as

either single- or multi-unit activity based on the following

diagnostics: Inspection of distribution of waveform amplitudes

on all four channels to ensure clusters were well-separated and no

spikes were missing due to the thresholding; inspection of cross-

correlograms to identify cells that appeared on two neighboring

tetrode groups or triggered on two channels within a group;

inspection of inter-spike interval distributions to identify multiunit

activity based on intervals shorter than 1 ms and thus below the

refractory period of a single cell; inspection of raw waveforms and

the time-course of waveform amplitudes. Clusters that passed all

criteria were added to the single unit data set, for which ISI

histograms are shown in Fig. S 2c), remaining spikes were

considered multi-unit activity. Unless noted otherwise, spikes for

all data sets were binned at 20 ms where bins with a single spike

(2.4% of bins) and multiple spikes (0.9% of bins) were both treated

as spiking and the rest as non-spiking. The bin size was chosen to

span the width of the central peak in cross-correlograms between

pairs of cells such as shown in Fig. 7c), where the dashed vertical

lines at +20ms envelope the central peak.

Histological procedures. To register individual recording

channels with cortical layers, recording locations were recon-

structed from Nissl-stained histological sections, and current

source density (CSD) analysis in response to 100 repetitions of a

full-field stimulus flashed at 1 Hz was used to infer the location of

cortical layer IV on the polytrode [33]. Spike-sorted units were

assigned to layers based on the channel with the largest amplitude.

In Fig. 7a) we use horizontal lines to indicate cortical layer

boundaries and their position relative to the polytrode. Fig. 7b)

shows the CSD response for this session, showing a strong current

sink in layer IV and to a lesser degree in layer VI.

Datasets. The models were estimated on a data set of

180,000 data vectors corresponding to approximately 60 minutes

of recording time. The data were split into two subsets of 90,000
by random assignment of data points: a training set for parameter

estimation and a test set to compute cross-validated likelihoods.

For the stimulus dependent model, a separate data set of 80,000
data vectors was used, taken from a 30 s long movie that was

repeated for 60 presentations, and again split into a training and

test set of equal size. No separate validation set was used and the

hyper-parameter was selected directly on the test set.

We also analyzed spatiotemporal patterns of data, which were

created by concatenating consecutive state vectors. For the

spatiotemporal experiments a bin width of 6.7 ms, corresponding

to the frame rate of the stimulus, was used. This bin size is a

compromise capturing more detailed structure in the data without

leading to an undue increase in dimensionality and complexity.

Up to 13 time bins were concatenated in order to discover

spatiotemporal patterns and predict spiking given the history over

the prior 87 ms. These models were trained on 100,000 samples

and likelihoods were computed on a set of equal size.

Model and estimation

The sRBM consists of a set of binary visible units x [ f0,1gN

corresponding to observed neurons in the data and a set of hidden

units h [ f0,1gM
that capture higher-order dependencies. Weights

between visible units, corresponding to an Ising model or fully

Figure 7. Experimental methods. (a) Example recording site with lines indicating layer boundaries and a schematic drawing of the 32-channel
probe. (b) Current source density (the second spatial derivative of the LFP) in response to a full-field flash stimulus, showing a strong current sink in
layer IV and to a lesser degree in layer VI. CSD was used to assign layer boundaries. (c) Cross-correlation for one pair of cells across time, binned at
6.7 ms. Correlations fall off quickly as the time lag increases with a central peak extending +20ms indicated by dashed lines.
doi:10.1371/journal.pcbi.1003684.g007
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visible Boltzmann machine, capture pairwise couplings in the data.

Weights between visible and hidden units, corresponding to an

RBM, learn to describe higher-order structure.

The Ising model with visible-visible coupling weights J [ RN|N

and biases b [ RN has an energy function

EI(x)~{xT Jx{bT x, ð1Þ

with associated probability distribution pI xð Þ~ 1
ZI

exp {EI(x)½ �,
where the normalization constant, or partition function, ZI~P

x’f g exp {EI(x’)½ � consists of a sum over all 2N system states.

The RBM with visible-hidden coupling weights W [ RN|M

and hidden and visible biases bv [ RN and bh [ RM has an energy

function

ER(x,h)~{xT Wh{bT
v x{bT

h h, ð2Þ

with associated probability distribution pR x,hð Þ~ 1
ZR

exp

{ER(x,h)½ �. Since the there are no connections between hidden

units (hence ‘‘restricted’’ Boltzmann machine), the latent variables

h can be analytically marginalized out of the distribution (see

supplementary information) to obtain

p xð Þ~
ð

dhp x,hð Þ~ 1

ZR

exp {ER(x)½ �: ð3Þ

This step gives a standard energy-based model which we can

estimate in our framework, while in a fully connected Boltzmann

machine we could not marginalize over hidden units, making the

estimation intractable. The energy for the marginalized distribu-

tion over x (sometimes referred to as the free energy in machine

learning literature) is

ER(x)~{
X

i

log(1ze
wT

i
xzbh,i ){bT

v x, ð4Þ

where wi is the ith row of the matrix W. The energy function for

an sRBM combines the Ising model and RBM energy terms,

ES x,hð Þ~{xT Jx{xT Wh{bT
v x{bT

h h: ð5Þ

As with the RBM, it is straightforward to marginalize over the

hidden units for an sRBM,

pS xð Þ~ 1

ZS
exp {ES(x)½ �, ð6Þ

ES(x)~{xT Jx{
X

i

log(1ze
wT

i
xzbh,i ){bT

v x: ð7Þ

A hierarchical Markov Random Field based on the sRBM has

previously been applied as a model for natural image patches [34],

with the parameters estimated using contrastive divergence (CD)

[35].

To include stimulus effects into the Boltzmann machine models,

we start with a maximum entropy model constrained to fit the

peri-stimulus time histogram (PSTH), i.e. the response to a given

stimulus obtained by empirically computing the firing probabilities

averaged over repeated presentations. This non-parametric model

has the form

EH(x)~{bT
s x ð8Þ

where the subscript H refers to histogram, and both the dynamic

bias term bT
s and the data vector x have explicit time dependence.

The dynamic bias terms in this model can be computed in closed

form bs(t)~log
1{p(t)

p(t)
where the PSTH p(t)~

P
i

xi(t)=N sums

over stimulus repetitions and counts the number of spikes fired by

the neuron. Starting with this model and keeping the dynamic bias

term fixed at the closed form solution, we add pairwise and higher-

order coupling terms to obtain

EIH(x)~{xT Jx{bT x{bT
s x ð9Þ

ERH(x,h)~{xT Wh{bT
v x{bT

h h{bT
s x, ð10Þ

which combine the Ising and RBM population models, respec-

tively, with the stimulus model given by the PSTH term.

Estimation of these models is no more difficult than the standard

Ising and RBM models, since the PSTH term is computed in

closed form and effectively only adds a constant to the energy

function. This method corresponds to model T2 (explicit time

dependence, second order stimulus dependence) of [36], where it

is not further explored due to the requirement for repeated

stimulus segments. We used 60 repetitions of a 30 s long natural

movie to estimate the PSTH.

Instead of CD, which is based on sampling, we train the models

using Minimum Probability Flow (MPF, [13]), a recently

developed parameter estimation method for energy based models.

MPF works by minimizing the KL divergence between the data

distribution and the distribution which results from moving slightly

away from the data distribution towards the model distribution.

This KL divergence will be uniquely zero in the case where the

model distribution is identical to the data distribution. While CD is

a stochastic heuristic for parameter update, MPF provides a

deterministic and easy to evaluate objective function. Second

order gradient methods can therefore be used to speed up

optimization considerably. The MPF objective function

K~
X
x[D

X
x’=[D

g x,x’ð Þexp
1

2
E(x){E(x’)½ �

� �
ð11Þ

measures the flow of probability out of data states x into

neighboring non-data states x’, where the connectivity function

g x,x’ð Þ[ 0,1f g identifies neighboring states, and D is the list of data

states. We consider the case where the connectivity function

g x,x’ð Þ is set to connect all states which differ by a single bit flip

g x,x’ð Þ~
1 H x,x’ð Þ~1

0 otherwise

�
, ð12Þ

where H x,x’ð Þ is the Hamming distance between x and x’. See

supplementary information for a derivation of the MPF objective

function and gradients for the sRBM, RBM, and Ising models. In

all experiments, minimization of K was performed with the

MinFunc implementation of L-BFGS [37].

Higher-Order Correlations in Cortical Microcolumns

PLOS Computational Biology | www.ploscompbiol.org 10 July 2014 | Volume 10 | Issue 7 | e1003684



To prevent overfitting all models were estimated with an L1

sparseness penalty on the coupling parameters. This was done by

adding a term of the form l
P

i,j DJij Dzl
P

j,k DWjkD to the objective

function, summing over the absolute values of the elements of both

the visible and hidden weight matrices. The optimal sparseness l
was chosen by cross-validating the log-likelihood on a holdout set,

with the value of l selected from the set l~½0,1,2,4,6,8,10�|10{3

spanning the range of optimal regularization for all models.

Since MPF learning does not give an estimate of the partition

function, for models that were too large to normalize by summing

over all states, we use annealed importance sampling (AIS, [16]) to

compute normalized probabilities. AIS is a sequential Monte

Carlo method that works by gradually morphing a distribution

with a known normalization constant (in our case a uniform

distribution over x) into the distribution of interest. See

supplementary information for more detail. AIS applied to RBM

models is described in [38], which also highlights the shortcomings

of previously used deterministic approximations. Since AIS

requires running a sampling chain, in our case a Gibbs sampler,

it generally takes much longer than the parameter estimation.

Normalizing the distribution via AIS allows us to compute the

log likelihood of the model pm and compare it to the likelihood

gained over a baseline model. This baseline assumes cells to be

independent and characterized by their firing rate

pr(x)~Pi (rixiz(1{ri)(1{xi)) with rates ri for individual cells

i. The independent model is easily estimated and normalized, and

is commonly used as a reference for model comparison. The excess

log likelihood over this baseline is defined in terms of a sample

expectation as L~
P

x[D log2pm(x){log2pr(x)½ �.
The excess log likelihood rate L, computed in bits/spike by

normalizing with the population firing rate per time bin, is used as

the basis for model comparisons. Normalizing by the firing rate

and comparing bits/spike rather than bits per unit time has the

advantage that this measure is less sensitive to the overall activity

when comparing across data sets. For models with stimulus terms,

a separate normalization constant is required for each state of the

dynamic bias. As our 30 s stimulus segment data set consists of

1500 time bins, this amounts to computing 1500 separate partition

functions. This limits us to small models with up to 20 neurons

where the partition function can be computed quickly by

enumerating the full state space, avoiding the use of the costly

AIS sampling procedure. To compare likelihoods, we use the

PSTH model (i.e. the model with only stimulus and no coupling

terms) as the baseline since all three likelihoods are much higher

than for models without stimulus terms.

Supporting Information

Figure S1 Monitoring the convergence of the AIS
estimate for the partition function. Example shows a 20-

dimensional Ising model. Each entry on the horizontal axis

corresponds to an annealing chain with a different number of

steps. Points correspond to the 500 individual samples, the blue

line is the log2 of the average from the samples. The solid green

line is the true value of the partition function computed

numerically by summing over the 220 states. The dashed lines

correspond to our convergence criterion of 0.02 deviation from the

true partition function.

(PDF)

Figure S2 Overview of the data preprocessing and spike
sorting procedure (B4 dataset). Spike waveforms were

extracted based on a threshold on each channel and assigned to a

unit based on a k-means clustering procedure applied to groups of 4

consecutive channels. (a) Mean waveforms of units on 32 channels

separated into 8 non-overlapping groups. On each group, the

identified units are shown in different colors, and corresponding cell

numbers are given. Spikes that could not be assigned to a single unit

are captured by MUA clusters. Units 6 and 12 are visibly the same

cell picked up on neighboring groups (confirmed by cross-

correlation, not shown) and excluded from the data set. (b) For

single units in group 2, we show the projection of the spikes from 6

different units onto a set of 3 of the total 52 features used for

clustering. Similar to spike sorting tetrode data, relative amplitude

differences on nearby recording channels provide discrimination

between nearby cells. (c) Histograms of the inter-spike intervals (ISI)

for all 22 single units identified above. The presence of ISIs below

the refractory period of a neuron (threshold at 1 ms, shown as a

dotted line) provides evidence of multiple neurons being classified in

the same cluster. Neurons 17 and 18 have a small amount of

contamination with multiunit activity.

(PDF)

Text S1 Marginalizing over hidden units. Derivation of

the marginal distribution of the RBM so it can be estimated as a

standard energy-based model without latent variables.

(PDF)

Text S2 Objective functions and gradients. Derivations of

the MPF objective function and gradient for the Ising model,

RBM and sRBM.

(PDF)

Text S3 Annealed importance sampling. Implementation

details of the sampling scheme to compute normalized probabil-

ities from the models.

(PDF)
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