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Thalamic relay cells fi re action potentials that transmit information from retina to cortex. The 
amount of information that spike trains encode is usually estimated from the precision of spike 
timing with respect to the stimulus. Sensory input, however, is only one factor that infl uences 
neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also 
modulate fi ring pattern. Here, we asked if retinal oscillations might help to convey information to 
neurons downstream. Specifi cally, we made whole-cell recordings from relay cells to reveal retinal 
inputs (EPSPs) and thalamic outputs (spikes) and then analyzed these events with information 
theory. Our results show that thalamic spike trains operate as two multiplexed channels. One 
channel, which occupies a low frequency band (<30 Hz), is encoded by average fi ring rate with 
respect to the stimulus and carries information about local changes in the visual fi eld over time. 
The other operates in the gamma frequency band (40–80 Hz) and is encoded by spike timing 
relative to retinal oscillations. At times, the second channel conveyed even more information 
than the fi rst. Because retinal oscillations involve extensive networks of ganglion cells, it is likely 
that the second channel transmits information about global features of the visual scene.
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activity obtained in a separate laboratory as a control. Thus far, 
our results show that oscillations in retinal inputs, EPSPs, can be 
transmitted to cortex by thalamic outputs, spikes.

We next used information theory to explore how both external 
visual stimuli and internal rhythms modulate patterns of thalamic 
activity (for details, see Koepsell and Sommer, 2008). Our analyses 
showed that both the extrinsic and intrinsic components of retinal 
input to single relay cells are multiplexed into two parallel channels. 
One channel is encoded by average fi ring rate with respect to the 
stimulus, stimulus-locked coding. It operates in the low frequency 
band (<30 Hz) and carries information about sequential changes in 
the visual stimulus. The second channel is encoded by the timing 
of individual spikes relative to the retinal oscillations, oscillation-
based coding. This channel operates in the gamma-frequency band 
(40–80 Hz). Remarkably, the amount of information in the second 
channel could match or even exceed that conveyed by the fi rst. 
Further we were able to reproduce this result with a simple model 
of a relay cell. Thus, these two channels are not, in principle, dif-
fi cult to generate.

Dividing the information carried by thalamic spike trains into 
two channels offers substantial advantages for transmission of 
sensory signals to the cortex. For example, dual channels could 
enhance robustness of the system to noise since they offer inde-
pendent mechanisms for decoding activity. Moreover, the second 
channel might provide a conduit for information that is not com-
municated by stimulus-locked changes in fi ring rate alone. Last, 
because oscillations involve distributed networks, they are likely to 
convey information about large-scale features or spatiotemporal 
context.

INTRODUCTION
Thalamic relay cells transmit information encoded by retinal spike 
trains downstream to cortex. It is often held that the amount of 
information that action potentials carry is limited by the precision 
with which fi ring rate tracks changes in the stimulus, a framework of 
stimulus-locked coding (Hubel and Wiesel, 1961; Nirenberg et al., 
2001; Reinagel and Reid, 2000). Yet information can also be encoded 
by means other than average rate. For example, the relative timing of 
action potentials fi red by a single cell (Klein, 1992; McClurkin et al., 
1991; Reich et al., 1997) or the relative spike latencies within popu-
lations of neurons can provide information about spatial struc-
ture within a stimulus (Gollisch and Meister, 2008). The temporal 
dynamics of local networks (Brivanlou et al., 1998; Meister et al., 
1995) can also play a role in sensory processing. For instance, work 
in several modalities suggests that information can be encoded by 
spike timing with respect to ongoing oscillatory activity (Ahissar 
and Vaadia, 1990; Friedrich et al., 2004; Montemurro et al., 2008; 
O’Keefe and Recce, 1993; Szwed et al., 2003).

Oscillations in the fi ring rate of retinal ganglion cells are com-
mon and have been found in species as diverse as the frog and cat 
(Arai et al., 2004; Castelo-Branco et al., 1998; Heiss and Bornschein, 
1965, 1966; Laufer and Verzeano, 1967). A natural question is 
whether these intrinsic retinal rhythms might provide information 
to higher stages in the visual pathway. To address this subject, we 
made whole-cell recordings in vivo from the cat’s lateral geniculate 
nucleus of the thalamus (LGN) during the presentation of natural 
movies. With this technique, it was possible to detect both indi-
vidual retinal inputs and the spikes they evoke from single relay 
cells. In addition, we analyzed extracellular recordings of retinal 
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MATERIALS AND METHODS
PREPARATION, STIMULATION AND RECORDING FOR WHOLE-CELL 
EXPERIMENTS
Adult cats (1.5–3.5 kg) were prepared as described earlier (Hirsch 
et al., 1998) except anesthesia was maintained with propofol and 
sufentanil. Whole-cell recordings of the membrane voltage or cur-
rent were made with dye fi lled pipettes from 17 cells in 9 animals 
using standard techniques (Hirsch et al., 1998; Axopatch 200A 
amplifi er, Axon Instruments, Inc., Union City, CA, USA) and digi-
tized at 10 kHz (power1401 data acquisition system; Cambridge 
Electronic Design Ltd., Cambridge, UK). The stimuli were vari-
ous natural movies (30 s duration) that were repeated 5–50 times. 
The movies were displayed at 19–50 frames/s on a video moni-
tor (refresh rate 133–160 Hz) by means of a stimulus generator 
(VSG2/5 or ViSaGe; Cambridge Research Systems Ltd., Rochester, 
UK). Housing, surgical and recording procedures were in accord-
ance with the National Institutes of Health guidelines and the 
University of Southern California Institutional Animal Care and 
Use Committee.

PREPARATION, STIMULATION AND RECORDING FOR EXTRACELLULAR 
EXPERIMENTS
Adult cats were prepared and anesthetized as described earlier 
(Usrey et al., 1998). The stimuli were white noise (m-sequences, see 
Usrey et al., 1998) created with a VSG2/5 visual stimulus generator 
(Cambridge Research Systems Ltd., Rochester, UK) and updated 
at the 140 Hz refresh rate of the video display. Spike trains were 
digitized at 20 kHz (power1401 data acquisition system; Cambridge 
Electronic Design Ltd., Cambridge, UK) and stored for further 
analysis. All procedures conformed to NIH guidelines and were 
approved by the institutional Animal Care and Use Committee at 
the University of California, Davis.

EVENT DETECTION AND SORTING
Potential events (spikes, EPSPs and false positives) were detected as 
zero-crossings (from positive to negative) in the second derivative 
of the intracellular signal. Spikes were distinguished from EPSPs by 
a threshold criterion. A clustering algorithm (Harris et al., 2000) 
was used to separate EPSPs from false positives (Figure 1); each 
event was characterized using a short segment (1.5 ms) of the 
second derivative. The fi rst three principal components (in the 
space of the event-centered second derivative) were used as features 
in the clustering procedure; clusters that corresponded clearly to 
retinal EPSPs as determined by visual inspection were selected 
for further analysis (Wang et al., 2007). The extracted spike trains 
of the relay cell (red) and the event trains of the synaptic inputs 
(EPSPs) corresponding to retinal spikes (blue) are displayed in 
Figures 2A,B.

ESTIMATING RECEPTIVE FIELDS
We estimated the spatiotemporal receptive fi elds of the relay cells by 
using a model that predicted neural responses to the natural mov-
ies (Figure 2C). Specifi cally we used regularized gradient descent 
(Machens et al., 2004) to optimize a linear convolution kernel with 
respect to the quadratic error between predicted and empirical 
response. The fi ring rates used to calculate the receptive fi elds were 

estimated with a temporal Gaussian fi lter, 25 ms half-width and 
spontaneous rates were taken as the average rate across the entire 
recording (Wang et al., 2007).

ESTIMATING POWER SPECTRA
The most common method for estimating spectral power uses the 
squared amplitude of the windowed Fourier transform of the sig-
nal. In order to reduce variance in the estimates, spectra are fi rst 
computed in brief, overlapping time windows and then the spectra 
for overlapped sampling windows are averaged. Unfortunately, this 
procedure introduces a bias. Specifi cally, because the spectral esti-
mator is the convolution of the true spectrum with the spectrum 
of the sampling window, it cannot be reduced below a minimum 
set by the time-frequency uncertainty (the trade-off between time 
and frequency localization). To lessen the effect of this bias, the 
multi-taper method averages spectra computed with orthogonal 
sampling functions (tapers) that are maximally concentrated in 
the frequency domain (Jarvis and Mitra, 2001; Thomson, 1982). 
We used a multi-taper method with fi ve tapers, on non-overlap-
ping windows (of 2.048 s) and then averaged these estimates over 
several trials to generate power spectra for the membrane potential 
and spike trains for relay cells (Figures 3D and 4C,D) and the 
spike trains for ganglion cells (Figure 5B). Later, we used these 
same spectra to estimate information rates in thalamic spike trains 
(Figures 7A,B and 8E) and in artifi cial spike trains generated by 
the Quasiperiodic Gamma (QPG) model (Figures 11A,B), which 
is described in Section “Simulation Experiments”.

ESTIMATING INFORMATION RATE
Upper and lower bounds on the information rate in Figures 7, 8E 
and 11 were estimated by the dynamic Gaussian channel based on 
the power spectrum and double checked with the direct method.  
These methods were based on different assumptions about the 
statistics of the stimulus and the response as well as the neural 
model (for overview, see Borst and Theunissen, 1999).

Estimating information rate: the Gaussian channel
When the signal has Gaussian statistics and the noise is additive 
and Gaussian, information rates can be calculated as (Bialek et al., 
1991; Rieke et al., 1999):
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where SNR(ω) = S(ω)/N(ω) is the signal-to-noise ratio, computed 
in the frequency domain from the spectrum of the signal S(ω) and 
the spectrum of the noise N(ω). When different defi nitions of signal 
and noise were used, this formula yielded estimates for the upper 
and lower bounds for the information rate, as below:

Upper bound. The signal was defi ned as the component of the 
neural response that contained information about the stimulus 
(determined by cross-trial average of spike trains). The noise was 
defi ned as the deviation of individual trials from the average. Power 
spectra were estimated using the multi-taper method. Errors due to 
fi nite sample size (N) were corrected by assuming that the power 
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of Gaussian noise decreases as 1/N in the average across trials 
(Sahani and Linden, 2003). With these defi nitions, the formula 
for the Gaussian channel gave estimates of an upper bound for the 
information that could be transmitted by stimulus-locked coding 
(see also Figures 7A, 8E and 11A,B).

Lower bound (Reconstruction method). The signal was defi ned as 
the stimulus (the movie) and the noise as the deviation between 
the actual stimulus and one that was reconstructed as follows. To 
reconstruct the stimulus, the neural spike train was convolved with 
a receptive fi eld estimated from responses to a different movie (see 
above). With these defi nitions, the formula for the Gaussian chan-
nel gave a lower bound for the information that stimulus-locked 
coding could transmit (see Figure 7B). Note that the estimate of 

the lower bound is tight only if the linear model used to reconstruct 
the stimulus captures the response of the neuron well.

Using the direct method to estimate information rates
So far, we have made that assumption that both the signal and noise 
are Gaussian. If, however, the noise is not additive or not Gaussian, 
then I

G
 does not guarantee an upper bound. Similarly, if the signal is 

not Gaussian, then I
G
 does not guarantee a lower bound. Therefore, 

to assess how well the Gaussian channel was able to capture the 
rates of information that relay cells actually transmitted, we used a 
technique called the “direct method”. This method does not rely on 
Gaussian statistics or any given neural model to estimate the total 
entropy in a neuron’s response. If it is assumed that all informa-
tion is conveyed by single spikes rather than fi ring patterns, then 

FIGURE 1 | Clustering of intracellular events. (A) Clusters of events detected 
in the intracellular signal. The axes of the scatter plot are the fi rst two principal 
components of the curvature (second derivative) of the events detected from 
recordings of the membrane potential. Events classifi ed as spikes are red, as 
EPSPs, blue, and as noise, uncolored. The rectangle marks the data range that is 
shown in (B) at higher magnifi cation. (B) Clusters shown in (A) at an expanded 

scale illustrate the separation of EPSPs from noise. (C) Averaged segments 
(50 ms) of membrane voltage (cluster means) centered around events classifi ed 
as spikes, red, EPSPs, blue, and noise, black; shaded regions indicate one 
standard deviation. The beginning of each event, t = 0 is defi ned as a zero 
crossing in the curvature of the recording. (D) Averaged curvature of the 
membrane potentials centered around the start of each event.
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The concentration parameter κ characterizing the width of the 
von Mises distribution was obtained by numerical solution of the 
equation I

1
(κ)/I

0
(κ) = r, where I

0
 and I

1
 were the modifi ed Bessel 

functions of zeroth and fi rst order. The concentration parameter 
κ is a measure of phase locking; the phase distribution becomes 
uniform for κ → 0 and approaches a Gaussian distribution with 
variance σ2 = 1/κ for large κ.

INFORMATION IN OSCILLATORY SPIKE TRAINS
The estimated phase φ(t) of retinal oscillation at the time of stimu-
lus onset, t, was used to align the timing of thalamic spikes across all 
trials by shifting each trial in time, −φ(t)/(2πf) (the absolute value 
was <10 ms). Thus, the phase of the retinal oscillations, which had 
been randomly distributed across trials, was made the same for each 
one, Figure 8D. This alignment was made once for each cycle of the 
retinal oscillation in order to “de-jitter” the entire thalamic spike 
train (used in Figure 8E). Note that our method of de-jittering 
differs from those that use the stimulus (Aldworth et al., 2005) or 
the spike train itself (Richmond et al., 1990) as references in time. 
After aligning phases, we used Equation (1) to provide an estimate 
of information rate that included the contribution of oscillations 
that were not locked to the stimulus. This method has been verifi ed 
previously (Koepsell and Sommer, 2008) by expanding the direct 
method of estimating information rates for single spikes to take 
the phase of oscillations into account.

SIMULATION EXPERIMENTS
Recently, (Koepsell and Sommer, 2008) we designed the quasi-
 periodic gamma (QPG) model to understand how the two differ-
ent information channels might be multiplexed in the response of 
relay cells, (Figure 10A). The QPG model describes spike genera-
tion by an inhomogeneous Gamma process (Barlow et al., 1957) 
with a factorial instantaneous rate. The conditional probability of 
generating a new spike at time t

i
, given the last spike at time t

i − 1
 is 

written as (Barbieri et al., 2001)
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where k is the shape parameter of the gamma distribution, Γ(k) is 
the gamma function, and the instantaneous rate λ(t) is given by 
the product

λ π φ κ μ( ) [ ( )] [ ( ) ].t s t M t= ⊗ ; ,2 RF

The fi rst factor RF ⊗ s t( ) is the averaged fi ring rate calculated 
by convolving the stimulus with the receptive fi eld, estimated as 
above). The second factor is a von Mises distribution M(φ; κ, µ) that 
describes the periodic activity in single trials. The instantaneous 
phase of the periodic activity φ(t) is given by the phase a random 
band-pass signal with frequency f ± σ

f
. All told, in addition to the 

parameters describing the receptive fi eld, the model has four free 
parameters: k, κ, f, σ

f
 (an additional degree of freedom, the mean 

phase, was arbitrarily set to µ = 0).

FITTING THE MODEL PARAMETERS
To assess how well the results in Figures 2–9 were captured by the 
QPG model, we fi tted the free parameters of the model to match the 

the information that each spike transmits is given by the formula 
(Brenner et al., 2000)
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where r(t) is the spike rate and r  is the mean rate averaged over the 
whole recording time T.

The direct method has a weakness, however; the accuracy of the 
estimate it provides depends on the bin width, Δt, used to com-
pute the integral in the equation directly above. Specifi cally, the 
estimate converges to the true entropy only asymptotically (limit 
of zero bin width and infi nite number of trials). Thus, narrow bins 
and fi nite data result in a pronounced overestimation of the amount 
of information that a cell transmits, see Figure 7C, red dots.

The estimate can be improved by a linear extrapolation (Δt → 0) 
of the values for larger bin sizes, Figure 7C, dashed line. A similar 
extrapolation must be made for estimating information with an 
infi nite number of trials, see Figure 7D. The resulting value of 0.58 
bit/spike was similar to the estimates obtained using the Gaussian 
channel (upper bound: 0.44 bit/spike, lower bound 0.30 bit/spike). 
Two factors probably account for the overestimation produced by 
the direct method. First, the number of trials (20) was limited; 
increasing the number of trials (N) by linear extrapolation (Δt, 
1/N → 0) yielded 0.55 bit/spike (Figure 7D, dashed line). Second, 
the direct estimate did not remove redundancies due to correlations 
between single spikes.

QUANTIFICATION OF THE PHASE LOCKING OF SPIKES
To characterize periodicity in trains of unitary events (EPSPs, 
spikes) it was necessary to estimate frequency and phase at each 
point in time. Hence, we computed the complex analytic signal 
A(t) = A

0
(t)exp(iφ(t)) by convolving the EPSP event train with a 

complex Morlet wavelet
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centered at a frequency f with temporal width σ
t
 and normalization 

factor C (Figure 8A, inset). The amplitude A
0
(t) of the analytic 

signal corresponded to the local power in the frequency band cen-
tered at f with bandwidth σ

f
 = 1/(2πσ

t
). The bandwidth we chose, 

σ
f
 = 2 Hz, corresponded to the width of the peak in the power 

spectrum and a temporal width of σ
t
 = 80 ms. The instantaneous 

phase φ(t) was estimated as the complex angle of the analytic sig-
nal and was used to measure the distribution of phases for mem-
brane events (Figures 4B, 8B and 10C). The phase distribution of 
spikes was fi tted with a von Mises (or cyclic Gaussian) distribution 
(Figure 8B, inset)
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properties of the cell whose responses are indicated by the  circled 
points in Figures 9A,B. The concentration parameter κ was deter-
mined by fi tting the von Mises distribution (Figure 8B) to the phase 
distribution of the cell’s spikes and the parameters f and σ

f
 were 

fi tted to the spectrogram of the spikes. The shape parameter k of 
the Gamma process was determined as follows. The averaged rate 
λ

0
(t) was estimated from the average of the neural responses across 

trials recordings by adaptive kernel estimation (Richmond et al., 
1990). After rescaling time with

′ = ∫t k u u
t

λ0

0

( )d

in order to obtain a constant rate (λ = 1), the rescaled distribution 
of inter-spike intervals τ from the experimental data could be fi tted 
by a homogeneous Gamma distribution (Kuffl er et al., 1957)

p
e

k

k k
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τ λ τ=
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Γ

with fi xed rate λ = 1, shape parameter k and the gamma function 
Γ(k). The shape parameter was determined from the moments 
(mean τ and variance στ

2
) of the empirical rescaled distribution of 

the inter-spike intervals (Barbieri et al., 2001; Barlow et al., 1957)

k = τ

τ

2

σ2
.

RESULTS
The results were obtained from adult cats in two different labora-
tories that used different recording techniques, visual stimuli and 
anesthetics. The main dataset includes whole-cell recordings from 
thalamic relay cells that were made from 15 subjects. A second 
dataset, that served as a control, included extracellular recordings 
from retinal axons in the optic tracts of three subjects.

THE TEMPORAL STRUCTURE OF INPUTS AND OUTPUTS OF SINGLE 
RELAY CELLS
We focused our analyses on responses to natural movies, stim-
uli that reprise features present in the environment. In order to 
 examine the relationship between the retinal inputs and thalamic 
outputs that these movies evoked, we used cluster analysis. This 
method allowed us to label excitatory synaptic potentials (EPSPs) of 
the intracellular signal and to separate these from spikes (Figure 1). 
Results for a single neuron are illustrated as raster plots where time 
points for spikes (Figure 2A, top) are red and for EPSPs (Figure 2A, 
bottom) are blue. Each row shows the response to a 5 s clip of the 
full stimulus. Raster plots show how inputs (EPSPs) and outputs 
(spikes) tracked changes in the stimulus; their rates systematically 
sped and slowed during repeated presentations of the same movie 
clip. An expanded view of the spike trains (Figure 2B) shows that 
there was a fair amount of jitter between one trial of the stimulus 
and the next (this variability was greater than that recorded for full-
fi eld fl icker (data not shown, and see Eckhorn and Popel, 1975; Liu 
et al., 2001; Reinagel and Reid, 2000). From the averaged rate over 
time we were able to extract the receptive fi elds from the response 
(Wang et al., 2007) for both the retinal inputs (Figure 2C, top) and 
the spikes (Figure 2C, bottom).

The round shapes of the receptive fi elds of the EPSPs and spikes 
resemble each other, consistent with the view that relay cells inherit 
the shape of their receptive fi elds from the retina. This statement 
assumes that the EPSPs we analyze (Usrey et al., 1998) are fed for-
ward from the retina rather than fed back from the cortex. We 
believe this is case for several reasons. First, the receptive fi elds of 
the EPSPs look just like those of ganglion cells. Second, the EPSPs 
we include for analysis have the prominent size of retinal inputs. 
Recall that these EPSPs are so large that they can be detected extra-
cellularly, as “S-potentials”, which have been used to study retino-
geniculate transmission for decades (Carandini et al., 2007; Kaplan 
and Shapley, 1984). Conversely, unitary cortical inputs are rarely big 
enough to visualize (Granseth and Lindstrom, 2003) in intracellular 
recordings unless the membrane resistance is made large by block-
ade of potassium channels. Third, note that the EPSPs we detected 
were not only large, but also had stereotyped profi les, Figure 1. This 
similarity in shape indicates that the EPSPs originated from a single 
source. If our event detection captured any cortical inputs, they are 
probably contained in the noise cluster in Figures 1A,B. Fourth, 
the EPSPs we detected have the fast maintained rates, Figure 3A, 
characteristic of ganglion cells (Frishman and Levine, 1983); by 
contrast, cortical cells in layer 6, the source of feedback to the tha-
lamus, have very low fi ring rates (Gilbert, 1977).

INTRINSIC RHYTHMIC ACTIVITY
Neural activity is dictated by a combination of external stimuli 
and internal dynamics. The event times shown in Figure 2 were 
plotted with respect to the onset of the stimulus. We next plotted 
the data with respect to the interval between the spikes or EPSPs as 
inter-spike intervals (Figure 3A) or autocorrelograms (Figure 3B). 
The multi-modal shapes of these time interval histograms revealed 
additional temporal structure in the neural responses; the tall peak 
at 17 ms and lesser peaks at multiples of that value showed that 
both the EPSPs and spikes oscillated near 59 Hz, Figure 3A. Further, 
cross-correlation of the two sets of events revealed a sharp peak 
near zero (Figure 3C), showing that thalamic spikes followed indi-
vidual retinal EPSPs with millisecond delays. The oscillations are 
also visible in the power spectra for EPSPs (red), spikes (blue), and 
the membrane potential (black), Figure 3D. These oscillations are 
not visible in the rasters shown in Figure 2, because the intrinsic 
retinal rhythms are not synchronized with the stimulus.

Since neural oscillations like that illustrated above often have fre-
quencies in the gamma range, which includes power line  frequencies 
(50 or 60 Hz) there is understandable concern that   contamination 
of the biological signal might introduce false rhythms. Such con-
cerns stem from experience with extracellular records in which 
spike heights often are on the order of tens of microvolts in ampli-
tude, orders of magnitude smaller than the intracellular signals 
studied here.

Instances in which our recordings were contaminated with line 
noise provide useful controls for separating neural signal from elec-
trical interference. An intracellular recording that included inter-
ference from the power line is overlaid with blue and red vertical 
lines that indicate the timings of EPSPs and spikes respectively, see 
Figure 4A. The inset shows an overlay of an EPSP before and after 
notch fi ltering at 60 Hz. Except for the absence of the artifacts, the 
difference between the shapes of the EPSPs is negligible.
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A separate control compared the relative timing of neural events 
to the oscillations we measured vs. their timing relative to the power 
line. If the neural events, EPSPs and spikes, locked selectively to 
the biological rhythms, then the distribution of event times plot-
ted against phase of the intrinsic oscillations should have a strong 
peak. By contrast, a similar plot of event times with respect to the 
line frequency should be fl at. These are exactly the distributions 
we observed, see Figure 4B.

Another way to examine the consequences of contamination by 
the line power is to compare the power spectra of the raw signal to 

those of the event trains. The contribution of line noise is visible as 
a narrow peak at 60 Hz but is absent from the spectra of the EPSP 
and spike trains, see Figure 4C.

There is also a concern that the oscillations refl ect phase lock-
ing to the refresh rate of video display or specifi c aspects of the 
stimulus. We reduced the risk of entrainment to the monitor by 
using rapid video refresh rates, above 140 Hz (Butts et al., 2007; 
Williams et al., 2004; Wollman and Palmer, 1995). This tactic 
was successful, as shown by a comparison of recordings obtained 
during visual stimulation and those made when the eyes were 

FIGURE 2 | Timing of retinogeniculate EPSPs and thalamic spikes recorded 

intracellularly from a single relay cell during the presentation of natural 

movies. (A) Rasters of spikes (red, top) and EPSPs (blue, bottom) recorded 
during multiple trials of a movie clip that began at time t = 0. The shaded area 

marks the data range that is shown in (B) at higher magnifi cation. (B) Spike times 
centered on the beginning of each clip shown at an expanded scale. 
(C) Receptive fi elds for spikes (top) and EPSPs (bottom) mapped from responses 
to a movie; red indicates excitation to bright and blue excitation to dark.
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occluded and the monitor switched off, see Figures 4C,D. The 
spectra for the membrane potential (black) and EPSPs (blue) 
were similar; the cell fi red too infrequently when the eye was 
closed to compute a spectrum for spikes. Further, the presence of 
oscillations was independent of the statistics of the stimuli we 
used. The oscillations persisted during recordings of response 
to noise patterns that had greater spectral power in high spatial 
and temporal frequency ranges than natural movies have (e.g., 
Ruderman and Bialek, 1994).

Finally, to rule out the possibility that the oscillations were 
unique to our intracellular methods, we analyzed 20 extracellular 
recordings from retinothalamic axons in the optic tract obtained in 
a second laboratory. Gamma oscillations were present in recordings 
from this preparation, as depicted for one cell, see Figure 5.

RANGE OF OSCILLATION STRENGTHS
Methods that quantify the extent to which oscillations infl uence 
a single neuron’s fi ring pattern should be able to measure weak as 
well as strong contributions. So far we have used simple measures 

that explore either the time domain (plots of inter-spike intervals 
and autocorrelations) or the frequency domain (power spectra). 
These measures provide a direct and intuitive means of displaying 
prominent oscillations. But the number and height of the peaks in 
plots of the inter-spike interval histograms or autocorrelograms lack 
the sensitivity to reveal weak oscillations. Further, power spectra 
often contain spurious peaks due to the refractoriness of the spiking 
 process. Thus, Muresan et al. (2008) used both the time and fre-
quency domain to devise a new metric for the strength and frequency 
of oscillations. Their method computes an “oscillation score (OS)” 
by applying a Fourier transform on an autocorrelation that has 
been smoothed and whose central peak, including adjacent troughs 
caused by the refractory period, has been subtracted; this procedure 
removes confounds introduced by the refractory period.

We used the OS to examine the strength and frequency of oscil-
lations in the gamma range for three datasets, the whole-cell record-
ings in current clamp we have discussed so far and two additional 
control groups. One control group comprised recordings made in 
voltage–rather than current-clamp mode (synaptic events are easier 

FIGURE 3 | Periodicity in timings of retinogeniculate EPSPs and thalamic spikes. (A) Time-interval histogram for spikes (red, top) and EPSPs (blue, bottom). 
(B) Autocorrelation histogram for spikes (red, top) and EPSPs (blue, bottom). (C) Cross-correlation histogram between EPSPs and spikes (spike at t = 0). (D) Power 
spectra of membrane potential (black), spikes (red) and EPSPs (blue), computed with the multi-taper method. All data obtained during stimulation with a natural 
movie clip (same recording as in Figure 2).
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FIGURE 4 | Controls for potential artifacts introduced by power line or the 

stimulus. (A) Example of a recording contaminated with artifacts from the power 
line before (bottom panel, gray trace) and after (top panel, black trace) removal of 
line noise (60 ± 0.1 Hz). The shapes of the EPSPs in both traces are very similar; 
vertical lines mark timings of spikes (red) and EPSPs (blue). The inset shows a 
single EPSP at higher magnifi cation (marked by the rectangle in the main plot). 

(B) Phase distribution of EPSPs relative to band passed (51.5 ± 2 Hz) membrane 
potential (top) and to line noise (60 ± 0.1 Hz) (bottom). (C) Spectra of membrane 
potential (black), spikes (red) and EPSPs (blue) recorded during the presentation 
of a natural movie; the spectral peak is at 52 ± 2 Hz. (D) Spectra obtained from 
recordings of the same cell as in (A–C), but with the eyes occluded; the peak 
frequency is slightly lower, 48 ± 2 Hz than when the eyes were open.

FIGURE 5 | Periodicity in retinal spike timing. (A) Time-interval histogram (top) and autocorrelogram (bottom) for retinal spikes recorded extracellularly in the optic 
tract. (B) Power spectrum of spike timings obtained from the same cell as in (A), computed with the multi-taper method.
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records. This difference might refl ect differences in sampling bias, 
visual stimuli (natural movies for the intracellular experiments and 
m-sequences for the extracellular experiments), or anesthetic (thi-
opental, a barbiturate, for the extracellular experiments and, pro-
pofol, a new class of anesthetic), for the intracellular   experiments; 
note, however, that oscillations have been observed in awake cats 
(Doty et al., 1964; Heiss and Bornschein, 1965, 1966). It is also pos-
sible that this difference refl ects a circuit property of the thalamus; 
relay cells often receive input from several ganglion cells (Hamos 
et al., 1985; Usrey et al., 1999). If only one of several inputs to a 
relay cell oscillated, we would have scored that relay cell as oscilla-
tory even if its other retinal inputs fi red aperiodically. There also 
was a larger percentage of oscillating EPSP than spike trains; this 
difference refl ects the diffi culty of computing an OS for cells with 
very low spike rates.

ANALYSIS OF INFORMATION CONTENT
So far, we have shown that the temporal patterns of neural activity 
recorded during visual stimulation often include two constituents, 

to detect in voltage clamp). The remaining control group was made 
of the extracellular recordings from the optic tract.

A scatter plot of OS against frequency showed a range of oscil-
lation strengths from weak to strong, see Figure 6A. We included 
all cells in the analysis that oscillated with a consistent frequency, 
σ

f
 < 4 Hz across trials (the OS was OS = 4.7 ± 1.9 for cells with 

inconsistent oscillations and the frequency could not be assessed 
and for cells that did not oscillate, see Section “Materials and 
Methods”). Surrounding pairs of histograms of inter-spike inter-
val (top) and autocorrelation functions (bottom) correspond to 
lettered points in the scatter plot and allow comparison with raw 
data from which the scores were derived, Figures 6B–F and Table 1. 
Some cells oscillated so strongly (OSs > 15) that their inter-spike 
interval histograms were multi-modal, Figures 6B–D and the last 
column of Table 1.

We usually recorded in voltage-clamp mode, but singled out 
cells with obvious oscillations for further analysis in current clamp. 
There is a modest discrepancy between the proportion of oscil-
lating cells in the extracellular retinal and intracellular thalamic 

FIGURE 6 | Range of oscillation strengths within the population. (A) The 
strength of oscillations for individual cells quantifi ed by plotting oscillation score 
against oscillation frequency. Values for intracellularly recorded thalamic spikes are 
red, EPSPs, blue, EPSCs (recorded in voltage clamp), black, and extracellularly 

recorded retinal spikes, green. The shaded region shows the range of scores for 
cells that did not oscillate consistently (σf > 4, see Table 1 and main text). Lettered 
points refer to corresponding panels, (B–F), which show spike interval histograms 
(top) and autocorrelograms (bottom) for cells with different oscillation scores.
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one that is time-locked to the stimulus and another that refl ects 
intrinsic oscillations. Although it is often held that only the stim-
ulus-locked contribution encodes information, we wondered if 
intrinsic oscillations might also convey visual information to the 
cortex. We began our analyses by estimating the amount of infor-
mation in the stimulus-locked aspect of the response. In other 
words, we estimated lower and upper bounds for the amount of 
information that could be transmitted by changes in event rate 
that recurred across repeated presentations of the same stimulus. 
In order to obtain each bound, it was necessary to use separate 
methods (Bialek et al., 1991). To establish the upper bound, we 
decomposed the power spectrum of the spike trains into two com-
ponents. One component represented the part of the response that 
was consistent across stimulus trials, typically equated with the 
signal (Figure 7A, top, solid curve) and the other corresponded 
to the variation in response across trials, usually taken as noise 
(Figure 7A, dotted curve). The information rate, calculated from 
the area under the solid curve in Figure 7A, bottom, was 0.4 bit/
spike. We established the lower bound by determining how well 
the visual stimulus could be reconstructed from the convolution 
of the cellular response with the receptive fi eld (Figure 7B, and 
see Section “Materials and Methods”). For this case, the signal is 
the reconstruction of the receptive fi eld and the noise is the devia-
tion of the reconstruction and the stimulus. The information rate 
calculated from this second method was 0.3 bit/spike, Figure 7B, 
bottom. The values for upper and lower bounds are similar to those 
reported previously (Eckhorn and Popel, 1975; Liu et al., 2001; 
Reinagel and Reid, 2000).

The information rates estimated above were made with the 
widely used entropy methods for a Gaussian information chan-
nel, which assumes that signal and noise are Gaussian (Borst and 
Theunissen, 1999). We also estimated information rates using the 
direct method for single spike information (Brenner et al., 2000), 
which is valid for arbitrary distributions but assumes that single 
spikes encode information independently (Figures 7C,D). The 
direct method requires so much data, however, to generate estimates 
at fi ne times scales that it is common to obtain such   estimates by 
extrapolating from values obtained at coarser time scales (wider 
bins, Figure 7C). The estimates obtained using the entropy method, 
0.4 bit/s and the direct method, 0.58 bit/s were very close. The 

similarity of these two values, each obtained with a different but 
complementary method, suggests that they refl ect the true infor-
mation rate.

The results plotted in Figure 7 illustrate an important aspect of 
how relay cells use stimulus-locked rate coding to encode visual 
signals. The information about temporal changes in the stimulus 
peaked at low frequency and dropped sharply at a cut-off frequency 
below 30 Hz (Figures 7A,B). The shape of this distribution refl ects 
not only the intrinsic properties of thalamic circuits but also the 
statistics of natural images, which are skewed to low spatial and 
temporal frequencies (Ruderman and Bialek, 1994). This fi nding 
is consistent with previous studies that used natural scenes (Dan 
et al., 1996) rather than fl ickering, full-fi eld stimuli (Liu et al., 2001; 
Reinagel and Reid, 2000).

The prominence of the oscillations in the noise motivated us to 
ask if it might actually encode information hidden from conven-
tional analyses. Answering this question required that we measure 
the degree to which the oscillations contributed to the variance 
of the stimulus-locked response. Thus, it was necessary to gener-
ate a reference signal for retinal oscillations. To achieve the best 
possible separation of the retinal input from other components of 
the intracellular signal such as intrinsic conductances and synaptic 
inhibition, we selected the onsets of the EPSPs we had previously 
clustered (see Figure 1). Subsequently, we estimated the instantane-
ous phase of the retinal oscillations as the complex angle of the ana-
lytical signal calculated by convolving a Morlet wavelet (Figure 8A, 
top, inset) with the EPSP train (blue ticks in Figure 8A), see Section 
“Materials and Methods”. We then used the resulting waveform 
(blue ripple, Figure 8A, bottom) to determine the phases at which 
the relay cell spiked (red ticks, Figure 8A, bottom).

This analysis showed that the phase locking between retina and 
thalamus was strong, as illustrated by the tall peak in the phase 
 histogram plotted in Figure 8B, top. There was no evidence, how-
ever, that each new trial of the stimulus set the absolute phase of the 
neural response; when we used the estimated phase for inputs in 
one trial to determine the phase of spikes in the next, the resulting 
distribution (the shift predictor) was fl at (Figure 8B, bottom).

We further quantifi ed the degree to which the thalamic spikes 
locked to the retinal inputs by means of a concentration parameter 
κ of a von Mises distribution that we fi tted to each phase histogram 

Table 1 | Oscillations in different datasets.

 Number of cells in  Number of cells with Number of cells with

 data set consistent osc (%) strong osc (%)

MAIN DATASET

Retinothalamic EPSPs 20 13 (65) 7 (35)

Thalamic spikes 20  6 (30) 2 (10)

CONTROL DATASET

Retinothalamic EPSCs recorded only in voltage clamp 30 19 (63) 7 (23)

Retinal spikes from the optic tract 20  5 (25) 1 (5)

Each row describes one type of event in a particular dataset. The fi rst two rows correspond to the EPSPs and spikes extracted from thalamic recordings made in 
current-clamp mode. Entries in the third row serve as a control and were obtained from a larger group of thalamic recordings that were made in voltage-clamp 
mode. The values in the last row came from recordings of retinal axons in the optic tract. Each row lists the total number of cells in the dataset, the number of 
oscillating event trains and the number of strongly oscillating event trains. We defi ned oscillations as consistent if the standard deviation of frequency across trial was 
(σf < 4 Hz); the oscillation score was OS = 4.7 ± 1.9 for inconsistent oscillations and >15 for strong oscillations. Relative fractions are given in parentheses.
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(see Figure 8B, Section “Materials and Methods”). The concentra-
tion parameter is zero for a fl at phase distribution and increases 
with increasing degree of phase locking between retinal input and 
thalamic output. Thus fi ts with the tallest peaks indicate the high-
est degree of phase locking and the most reliable transmission of 
retinal oscillations (Figure 8B, inset). The value for this cell was 
2.3 and the range for all cells was 0–3.1.

Next we used our method of estimating the phases of the retinal 
oscillations to align the phases of EPSPs over different trials. This 
allowed us to explore how the random phases of oscillations across 
trials might have introduced jitter and hence decreased precision in 
the stimulus-locked response. To align the phase of the responses 
across trials, we measured the local phase of ongoing activity 
recorded just before each repeat of the stimulus and adjusted 
that phase to match the mean phase (see Section “Materials and 
Methods”). The alignment to the instantaneous phase reduced the 
jitter in the cross-trial latencies to a striking extent. Remarkably, 

what had seemed to be randomly distributed events in the actual 
recordings (Figure 8C) assumed temporally precise patterns in the 
de-jittered traces (Figure 8D). Much of the variation across trials 
that had seemed like random jitter had come from periodic activity. 
To address directly the question of whether the oscillatory activity 
in the gamma band could be used to transmit visual information, 
we aligned the phases of the EPSPs within the complete dataset. 
Rather than realigning phases at the start of each trial, as above, 
we made an alignment each time the local phase of the response 
deviated markedly from the reference (see Section “Materials and 
Methods”). The power spectrum of the de-jittered records, decom-
posed into signal and noise, is plotted in Figure 8E, top. Afterwards, 
we analyzed the de-jittered dataset by using information theory just 
as we had done for the raw recordings. The de-jittering exposed 
additional bands near 60 and 120 Hz that had high signal-to-noise 
ratios, Figure 8E, bottom, but left the low frequency, 30 Hz, band 
used for stimulus-locked coding intact. When the additional bands 

FIGURE 7 | Estimates of information rates for thalamic spikes. (A) Top, 
power spectrum of thalamic spike train is decomposed into signal (solid line) 
and noise (dashed line). Bottom, upper bound for spectral information rate, 
taken from the area under the curve, is 8.3 bit/s; the mean spike rate 19 
spikes/s, yields a value of 0.4 bit/spike. (B) Top, power spectrum of thalamic 
spike train is decomposed into signal (solid line) and noise (dashed line). 

Bottom, the lower bound for spectral information rate, calculated using the 
stimulus reconstruction method is 5.7 bit/s, or 0.3 bit/spike. (C) Information 
per spike as a function of bin width Δt; linear extrapolation (Δt → 0) yields an 
information rate of 0.58 bit/spike. (D) Direct information estimate as a 
function of number of trials N; linear extrapolation (Δt, 1/N → 0) yields 0.56 
bit/spike.
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were taken into account, the upper bound on the rate of informa-
tion available from the spike train quadrupled; it grew from 0.4 
to 1.6 bit/spike. This gain in information is possible because the 
band carrying stimulus-locked information is separate from the 
bands that carry the oscillation-based information. If the spectra 

of the extrinsic and intrinsic patterns of activity had overlapped, 
then the oscillations would have interfered with the information 
transmitted by the thalamic spike train.

Across the population, the amount of information available 
in the second channel depended on the strength of the retinal 

FIGURE 8 | Adjusting response latency according to the phase of ongoing 

oscillations reduces temporal jitter in spike timings across trials. (A) EPSP 
trains (top, blue) and spikes (bottom, red) for seven trials, analytical signal 
(bottom, blue curve) computed by fi ltering EPSP trains obtained from single 
trials with a Morlet wavelet (inset). (B) Histogram of spike phases (top) and shift 
predictor (bottom) for an oscillation frequency of 59 Hz. (C) Event times aligned 
to stimulus onset displayed as averaged spike rate (red curve) and rasters for 

spikes (red) and EPSPs (blue) for 20 trials of a movie clip; spike rasters were 
smoothed with Gaussian window (σ = 2 ms) before averaging. (D) Responses 
after aligning the phase of ongoing oscillations that preceded the stimulus onset 
(global shift of individual trials up to ±10 ms). (E) Power spectrum (top) of de-
jittered spike train of the cell decomposed into signal (solid line) and noise 
(dashed line); spectral information rate (bottom). De-jittering increased the total 
information from 0.3 to 0.4 bit/spike (Figures 7A,B) to 1.6 bit/spike.



Frontiers in Systems Neuroscience www.frontiersin.org April 2009 | Volume 3 | Article 4 | 13

Koepsell et al. Retinal oscillations carry information

oscillations. There was pronounced phase locking of retinal 
inputs to a wide range of gamma oscillations, as shown in a plot 
of concentration parameter against frequency (Figure 9A). The 
gain in   information after de-jittering was large for cells with 
strong oscillations and commensurately smaller for cells with 
weaker   oscillations, red points in Figure 9B. Here, as for Figures 
7A and 8E, we estimated the information using the entropy 
method for the Gaussian information channel. We chose this 
method because temporal realignments of the spikes were so 
small, <20 ms, that the amount of data required for the more 
general direct method (see Section “Materials and Methods”) was 
unfeasibly large (see Figure 7C). The red curve is a prediction of 
information gain as a function of the concentration parameter; it 
was generated with a computational model we describe below and 
calculated with the direct method. Figure 9C explores the relation-
ship between OSs for EPSPs vs. the spikes they evoke. Most points 
fall on or below the line of unity slope; as mentioned earlier, the 

relatively reduced scores for the spikes refl ect limitations in the OS 
measure for low spikes rates in our recordings. Last, we obtained 
voltage-clamp recordings from many cells; the OSs calculated for 
the EPSCs in these data are similar to those obtained from record-
ings made in current clamp (Figure 9D).

MODELING THE MULTIPLEXED CHANNELS
Thus far, our analyses suggest that many thalamic relay cells convey 
information about natural stimuli via spike trains that are multi-
plexed between two channels that operate on different time scales. 
One channel encodes information by modulations in spike rate 
determined by changes in the stimulus and uses the frequency band 
below 30 Hz. A second channel utilizes spike timing to convey infor-
mation about ongoing retinal activity. This channel uses higher, 
gamma band, frequencies. In order to understand how this dual 
mode of transmission might be formed, we built a simple model, 
the QPG model (Figure 10A, see Section “Materials and Methods” 

FIGURE 9 | Population results for phase locking, information gain and 

oscillation score. (A) Phase locking of thalamic spikes for all (13/20) cells that had 
oscillating EPSP trains (see Table 1). Error bars indicate standard deviation for cases 
in which multiple movies were presented; circled point indicates the cell analyzed 
in Figures 2, 3, 7 and 8. (B) Gain in information rate after de-jittering plotted against 
concentration parameter κ; conventions as in (A). For 8 of 20 cells (red points), the 

information increased signifi cantly (p < 0.05, computed using permutation test) 
after de-jittering of the spike train (see A). Red curve depicts gain in transmitted 
information predicted by our model (Figure 10) for variable κ. (C) Oscillation scores 
of thalamic spikes plotted against oscillation scores of retinal inputs (EPSPs). 
(D) Oscillation scores for retinal inputs recorded in voltage clamp (EPSCs) plotted 
against the scores for retinal inputs (EPSPs) recorded in the current clamp.
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and Koepsell and Sommer, 2008). Thalamic spikes were generated 
by an inhomogeneous gamma process whose rate was determined 
by a combination of two signals, one that corresponded to visual 
input fi ltered by the receptive fi eld and another that represented 
retinal  oscillations. The signals were combined by multiplication 
to reproduce the amplitude modulation seen in event rates of the 
de-jittered recording (i.e., Figure 8D). Although our model had 
only four free  parameters, the order of the gamma process, the 
concentration parameter, the oscillation frequency and the band-
width, it was able to reproduce the key aspects of the results. These 
features include inter-spike intervals (compare Figure 10B with 
Figures 3A,B) and phase locking (compare Figure 10C with Figure 
8B) and the power spectra and information content of the raw 
(compare Figure 7 and Figures 11A,C) de-jittered and spike trains 
(compare Figure 8E with Figure 11B). The simplicity of our model 
suggests that complicated mechanisms are not required to generate 
the multiplexed channels.

SIMULATION RESULTS
The fi tted parameters for the cell encircled in Figure 9A, B were 
k = 2, κ = 2.3, f = 59 Hz, σ

f
 = 2 Hz and µ = 0. The QPG model 

reproduced the multi-peaked distribution of inter-spike intervals 
and the location of the tallest peak (near 17 ms) that were observed 
empirically, compare Figure 10B and Figure 3A.

We then used the QPG model to estimate the rate at which 
information was transmitted. To reproduce the differences in 
phases among trials, we randomized the phase offset for each 
one. Again, the simulations resembled the empirical results: 
compare Figure 11A with Figure 7A and Figure 11C with 
Figure 7C. Next, to simulate information rates and spectra 
after de-jittering, we fixed the phase offset in the model for all 
trials. Once more, the QPG model reproduced the experimental 
results. This similarity is seen in the shape of the spectra and 
in the information rate (compare Figure 11B with Figure 8E); 
the total upper bounds in bit/spike before (0.51, model and 

FIGURE 10 | Quasi-periodic gamma (QPG) model reproduces spike timing 

statistics and phase distributions. (A) QPG model of thalamic neurons that 
predicts spike statistics and information rate. Spike times are described by an 
inhomogeneous gamma process; spike rate is the product of two signals, the 

visual response evoked through the receptive fi eld and a periodic signal that 
simulates ongoing retinal activity. (B) Simulated distribution of spike intervals 
(top) and autocorrelograms (bottom). (C) Simulated distribution of spike phase 
(top) and shift predictor (bottom).
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0.44, experiment) and after de-jittering (1.66, model and 1.62, 
experiment).

Finally, we used the QPG model to generate surrogate  datasets 
that comprised many more trials than could be acquired with 
whole-cell recording in vivo. We applied the direct method to the 
simulated datasets to compare information rates before and after 
de-jittering, Figures 11C,D. This analysis supported our conclusion 
that neural oscillations carry information downstream. That is, the 
information rate was 0.6 bit/spike (linear extrapolation to zero  bin, 
Figure 11C, dashed line) when the phase of the  oscillations was 
random across trials but grew to 1.8 bit/spike, when the phase of 
the oscillations phase was aligned across trials, Figure 11D, dot-
ted line.

DISCUSSION
Our study provides evidence that individual retinal ganglion 
cells multiplex two streams of information that the thalamus 
transmits to cortex. One stream is well known and encodes visual 
information by changes in fi ring rate that are time-locked to 

external visual stimuli. The second channel (which we found by 
aligning thalamic spikes with respect to the local phase of oscil-
lations in retinal input) encodes information using spike timing 
relative to intrinsic retinal oscillations (Koepsell and Sommer, 
2008). The amount of extra information in the second channel 
increases as a function of oscillation strength and can as much as 
triple the number of bits that each spike carries. Also, because the 
oscillation-based channel operates in a frequency band separate 
from that containing the stimulus-locked  channel, the contents 
of both channels could, in principle, be added together in the 
cortex. Last, these results are easily reproduced by a simple com-
putational model.

How might the oscillation-based channel communicate infor-
mation to the cortex? To address this question it is useful to consider 
the physiology and structure of thalamocortical circuits. Coincident 
thalamic inputs evoke cortical fi ring more effectively than those 
spaced several milliseconds apart (Bruno and Sakmann, 2006; Usrey 
et al., 1998). Hence, if relay cells that oscillated in phase were to 
innervate a common cortical target, their synchronized input could 

FIGURE 11 | Information rate for QPG model. (A) Simulation with random 
oscillation phase across different trials: Signal spectrum (top, solid line), noise 
spectrum (top, dashed line) and information estimate (bottom). (B) Simulation with 
oscillation phase aligned across different trials: Signal spectrum (top, solid line), noise 

spectrum (top, dashed line) and information estimate (bottom). 
(C) Information estimate with oscillation phase randomized across trials (0.6 bit/
spike). (D) Information estimate with oscillation phase aligned across trials increases 
from 0.6 bit/spike to 1.8 bit/spike if small bin width (<20 ms) are taken into account.
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propel oscillations downstream. There is, in fact, evidence for such 
functional connectivity. Cross-correlation analyses show that a sin-
gle ganglion cell projects to multiple relay cells which ultimately 
converge on the same  cortical neuron (Hamos et al., 1985; Usrey 
et al., 1999). Therefore, the output of one ganglion cell could drive 
several relay cells to spike at the same time and provide coincident 
input to their common target. Further, recordings of local fi eld 
potentials from the LGN have shown neighboring relay cells oscil-
late in phase Laufer and Verzeano (1967). Thus, spikes generated 
by oscillating relay cells (whether linked to a common ganglion 
cell or not) are likely to reach cortex simultaneously and sum to 
generate powerful excitatory drive.

The synchrony that oscillations generate is potentially useful for 
processing visual images. For instance, computational studies show 
that retinal oscillations generate synchrony that reduces the occur-
rence of errors made in encoding of local features (Kenyon et al., 
2004). Oscillations might also contribute to object recognition, as 
proposed by the “binding by synchrony” hypothesis (Eckhorn 
et al., 1988; Gray and Singer, 1989; Samonds et al., 2006) by von 
der Malsburg (1981). In this scheme, local features in the stimulus 
are grouped as members of a particular object by phase relation-
ships of visually evoked spikes to intrinsic oscillations. Although 
this hypothesis was fi rst described for cortex, binding of local recep-
tive fi elds through synchrony has also been observed in the retina 
and thalamus (Neuenschwander and Singer, 1996; Stephens et al., 
2006).

What information might the second channel encode? It is likely 
that the oscillation-based channel transmits contextual information 
about the stimulus. Oscillatory activity in retina is generated by the 
coordinated activity of distributed networks that span large regions 
of retinal, and hence visual, space. The idea that oscillations convey 
contextual information is also supported by recent experiments 
in frog. Blockade of retinal oscillations abolishes escape behav-
ior elicited by large stimuli that mimic shadows cast by predators 
but does not impair detection of small objects that resemble prey 
(Ishikane et al., 2005). More generally, the oscillation-based chan-
nel might serve to convey global information such as the gist of a 
scene (Navon, 1977; Torralba, 2003).

Having two channels might be better than having one, even if 
both carried duplicates of the same information. The fi rst copy 
would be encoded by a familiar mechanism, stimulus-locked 
changes in spike rate. This low-passed signal would be read out by 
conventional mechanisms of synaptic integration. To explain how 
the second copy would be conveyed, we use the analogy of AM 
radio transmission: here the visual signal modulates the amplitude 
of the high frequency carrier, in this case the gamma oscillation. 
Intrinsic cortical oscillations, also in the gamma band, form the 

band-pass receiver (Fellous et al., 2001; Hutcheon and Yarom, 2000; 
Nowak et al., 1997); thalamic volleys that arrive near the peaks of 
the cortical oscillations, when local neurons are most depolarized, 
would have the best chance of driving activity. The information in 
the second channel might be read out by the degree of synchrony, or 
relative phases, of oscillations in the spike trains of converging relay 
cells. Thus, the visual stimulus is encoded twice, in two separate 
frequency bands of thalamic spike trains. This redundancy would 
increase robustness to noise by providing separate alternatives for 
cortex to decode the spike train, low passing or band passing. Band 
passing also could provide a mechanism for the selective routing of 
the oscillation-based channel. Since, the propagation of periodic 
activity depends on the strength and coherence of pre- and postsy-
naptic cycles, the amplitude and phase of cortical oscillations would 
determine when and where the information in the second chan-
nels is transmitted. Finally, because the frequency and strength of 
gamma oscillations in cortex is modulated by attention (Fries et al., 
2007), the contributions of the novel channel might be enhanced 
during times of heightened vigilance to visual signals.
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