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Inhibitory Interneurons Decorrelate Excitatory Cells to Drive
Sparse Code Formation in a Spiking Model of V1
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Sparse coding models of natural scenes can account for several physiological properties of primary visual cortex (V1), including the
shapes of simple cell receptive fields (RFs) and the highly kurtotic firing rates of V1 neurons. Current spiking network models of pattern
learning and sparse coding require direct inhibitory connections between the excitatory simple cells, in conflict with the physiological
distinction between excitatory (glutamatergic) and inhibitory (GABAergic) neurons (Dale’s Law). At the same time, the computational
role of inhibitory neurons in cortical microcircuit function has yet to be fully explained. Here we show that adding a separate population
of inhibitory neurons to a spiking model of V1 provides conformance to Dale’s Law, proposes a computational role for at least one class
of interneurons, and accounts for certain observed physiological properties in V1. When trained on natural images, this excitatory–
inhibitory spiking circuit learns a sparse code with Gabor-like RFs as found in V1 using only local synaptic plasticity rules. The inhibitory
neurons enable sparse code formation by suppressing predictable spikes, which actively decorrelates the excitatory population. The
model predicts that only a small number of inhibitory cells is required relative to excitatory cells and that excitatory and inhibitory input
should be correlated, in agreement with experimental findings in visual cortex. We also introduce a novel local learning rule that
measures stimulus-dependent correlations between neurons to support “explaining away” mechanisms in neural coding.

Introduction
Sparse coding has emerged as a useful principle for understand-
ing neural representations in the cortex. In vision, computing a
sparse representation of natural images identifies visual features
that match the Gabor-like receptive fields (RFs) found in primary
visual cortex (V1) (Olshausen and Field, 1996; Bell and
Sejnowski, 1997). These models use mathematical methods such
as conjugate gradient descent and independent component anal-
ysis, but how could the brain achieve this with spiking neural
circuits relying solely on local synaptic plasticity rules?

Recent work has demonstrated (Zylberberg et al., 2011) how a
network of spiking neurons using local Hebbian synaptic plastic-
ity rules can learn a sparse code from natural scenes. This sparse
and independent local network (SAILnet) learns Gabor-like RFs
that closely match those of V1 simple cells. Like previous models
of pattern learning and coding in V1 (Masquelier et al., 2009;
Savin et al., 2010; Masquelier, 2012), SAILnet relies on excitatory
simple cells that laterally inhibit each other directly, in conflict

with the observation that cortical neurons are either excitatory
(glutamatergic) or inhibitory (GABAergic) but not both (“Dale’s
Law”) (Eccles, 1976).

Most prior network models with V1-like response properties
have relied on analytically derived connection weights. For exam-
ple, the locally competitive algorithm (LCA) can perform sparse
“inference” (i.e., determine appropriate neural activities to
sparsely represent the input for a fixed set of RFs) in a nonspiking
network model (Rozell et al., 2008), and some spiking networks
can as well (Shapero et al., 2011; Hu et al., 2012), but the connec-
tion weights must be precomputed using nonlocal methods in all
of these cases. A recent extension of LCA makes use of separate
excitatory and inhibitory network nodes, but the nodes are used
for inference only, not learning, and they do not spike (Zhu et al.,
2012). A network model of orientation selectivity in V1 that does
use spiking excitatory and inhibitory neurons also precomputes
the connection strengths rather than learning them (McLaughlin
et al., 2000).

Here we present E-I Net, a spiking network model of leaky
integrate and fire (LIF) neurons that extends the SAILnet model
to learn a sparse code without violating Dale’s Law. E-I Net con-
tains separate populations of excitatory and inhibitory neurons
that work together to learn a sparse representation. The inhibi-
tory cells provide feedback inhibition to the excitatory cells using
a novel local learning rule that modifies the synaptic weights so
that the inhibitory cells send an amount of inhibitory current to
the excitatory cells proportional to the expected number of spikes
from those excitatory cells. Thus, the redundant part of the net-
work activity, which can be predicted from the past, is cancelled
out, similar to the function of predictive coding (Rao and Ballard,
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1999), or the “explaining away” feature of many sparse coding
models (Rehn and Sommer, 2007; Lochmann and Deneve, 2011;
Lochmann et al., 2012). E-I Net’s inhibitory population performs
a similar function to SAILnet’s lateral inhibitory connections,
which is to decorrelate the activity of the excitatory cells by sup-
pressing redundant spiking activity (Zylberberg et al., 2011).

Materials and Methods
The model presented here is based on the SAILnet model (Zylberberg et
al., 2011), but extended to include a separate population of inhibitory
neurons, a form of spike-timing-dependent plasticity (STDP) (Bi and
Poo, 1998; Abbott and Nelson, 2000; Dan and Poo, 2004; Feldman,
2009), and a novel local form of Hebbian learning (Hebb, 1949).

The network consists of two populations of LIF neurons. The first
population, a set of 400 excitatory cells, receives sensory input from 10 �
10 pixel image patches drawn from Olshausen and Field’s (1996) data-
base of whitened images of natural scenes. The spike rate output of these
cells constitutes the sparse representation of the image patch. The second
population is a set of 49 inhibitory neurons (number chosen for display
in a square grid). These cells receive input from the excitatory cells and
send inhibition back to those same cells. The inhibitory cells also inhibit
each other. The network is fully connected in that all excitatory cells
connect to all inhibitory cells, and all inhibitory cells connect to each
other.

To process an image for either training or readout, the membrane
potentials are set to zero and then an image patch is presented. The
network simulation runs for 50 time steps. During each time step, inputs
to each neuron are weighted by synaptic strength and either added (ex-
citatory) or subtracted (inhibitory) from the neuron’s membrane poten-
tial. If the membrane potential crosses a cell-specific firing threshold, the
cell spikes and the membrane potential is reset to zero. At the end of the
simulation, the number of spikes generated by each excitatory cell con-
stitutes the readout of the network.

One can think of the sum of these E cell spike counts multiplied by
their respective RFs as a linear generative model of the whitened visual
input to the network. We note that other interesting objectives are pos-
sible, such as maximizing the information shared between the input and
the resulting network activity (Rieke et al., 1997; Karklin and Simoncelli,
2011).

Network spiking dynamics. E-I Net’s simulation model is a generaliza-
tion of SAILnet. Multiple neuron classes C can each receive either excit-
atory (� � �1) or inhibitory (� � �1) input from any or all neuron
classes.

For each simulation time step t, and for each neuron i of class C, the
neuron state is updated as follows:

ui
�C��t � 1� � ui�t� exp� � �/��C�� � �

C*

��C*3C��
j

zj
�C*��t�Wij

�C*3C�

zi
�C��t � 1� � � 1, ui

�C��t � 1� � �i
�C�

0, otherwise

ui
�C��t � 1� d 0 iff zi

�C��t � 1� � 1.

(1)

The variables are as follows:
C is the neuron class and is one of the two populations in our model,
excitatory cells (E) and inhibitory cells (I ), or as a special case for input
only, the image patch pixels values (in);
ui

�C��t� is the membrane potential of neuron i of neuron class C at time t;
zi

�C��t� is the spike output of neuron i of neuron class C at time t (either 0
for no spike, or 1 for spike);
� is the simulation time step size in arbitrary simulation time units (0.1
arbitrary time units here);
� (C ) is the membrane time constant governing the membrane potential
decay rate for neurons of class C;
�i

�C� is the spike threshold of neuron i of neuron class C;

Wij
�C23C1� is the connection weight from neuron j of class C2 to neuron i of

class C1; and
��C23C1� is the sign of the impact of class C2 neurons on class C1 neurons:
�1 for excitatory connections and �1 for inhibitory connections.

The input image patch is represented as graded values rather than
spikes. Xi represents the value of the whitened image patch at pixel i,
which may be positive or negative. The following rule is used to convert
Xi into a suitable input value zi

�in��t�, which can be viewed as the aggregate
contrast information at that point in visual space summarized as a cur-
rent injection introduced into the neuron over time as follows:

zi
�in��t� � �Xi. (2)

To simulate temporal dynamics, several constants were used. The simu-
lation proceeded for 5 time units of 10 time steps each, for a total of 50
time steps. To compute the moving average spike rate as input to the
Hebbian plasticity rules, we used a moving average with exponential
decay time constant of 1 simulation time unit (10 time steps). To match
the behavior of the published SAILnet model, we used the following
scaling constants on the input image patches: Xi � (1/5)pixeli, where
pixeli is the value of the ith pixel after the whitened image patch has been
normalized to zero mean and unit variance; and � (in3E ) � 5.

Homeostatic spike rate regulation. As with SAILnet, the threshold at
which a neuron fires is adjusted up or down according to a threshold
adaptation rule, originally from Földiák (1990) to achieve a target spike
rate over the long term that is set in advance as a network parameter:

��i
�C� � 	zi

�C�
 � p�C�, (3)

where p (C ) is the target mean spike rate for neurons of class C. For our
simulation, we used spike rates of p (E ) � 0.02 and p (I ) � 0.04 spikes
per time unit. The membrane time constants controlling the decay of
the membrane potential to a baseline of zero, which worked best when
faster spike rates were paired with faster time constants, were � (E ) �
1 and � (I ) � 0.5.

Training and learning rules. To train the network, image patches are
presented one at a time for network simulation. Both excitatory and
inhibitory weights are updated according to two Hebbian plasticity rules.
The weights from the image patch to the excitatory cells, W�in3E�, are
updated according to Oja’s variant of the Hebbian learning rule (Oja,
1982), labeled “HO.” All remaining weights, W�E3I�, W�I3E�, and W�I3I�,
learn using the Correlation Measuring rule introduced here and labeled
“CM.” The Correlation Measuring rule is inspired by Földiák’s rule
(Földiák, 1990) in use in SAILnet and shown here for comparison (la-
beled “F”). These rules are shown below for comparison as follows:

HO: �Wij � yixj � yi
2Wij,

CM: �Wij � yixj � 	yi
	xj
�1 � Wij�,

F: �Wij � yuxj � 	yi
	xj
. (4)

In the equations above, xj refers to the spike rate of presynaptic (in-
put) neuron j, and yi represents the spike rate of postsynaptic (output)
neuron i. The spike rates are a moving average of the individual spikes
over time, 	zi

�C�
�t, where �t represents the temporal window of the
moving average weighted with exponential decay. Weight changes are
computed on each time step in a simulation of symmetric STDP (Bi
and Poo, 1998; Dan and Poo, 2004; Feldman, 2009), although using
sample-averaged spike rates computed once per sample produces similar
results. Note that the STDP used here for inhibitory neurons is indepen-
dent of pre-post spike order, a type of plasticity that, interestingly, has
been observed in GABAergic neurons in hippocampus (Abbott and
Nelson, 2000). Weights adjusted with the CM rule are further con-
strained to be non-negative. The following learning rates were used:
	�in3E� � 0.008; 	�E3I� � 0.028; 	�I3E� � 0.028; 	�I3I� � 0.06. To
stabilize network behavior during training, weight changes are accumulated
separately and applied in aggregate after every 100 image patch training
samples.

We evaluated the performance of the network after training using
primarily two measures: root mean square (RMS) reconstruction error
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and RMS of the pairwise Pearson correlation coefficients within the E cell
population. The RMS of the residual reconstruction error was calculated
by first reconstructing the image patch as the sum of the input3E
weights multiplied by the respective E cell spike rates. This reconstructed
image patch was then normalized to unit SD to match the variance of the
input patches. Our RMS residual error measure is then the RMS of the
difference between original image patch pixels and reconstructed pixels.
The E cell correlation measure was computed as the RMS of the Pearson
correlation coefficient between all cell pairs over 100 input samples.

The state of network equilibrium was reached when the RMS of the
weight change across 10,000 training samples stopped decreasing and
reached a steady state.

Correlation-measuring learning rule sends inhibition to suppress pre-
dicted spikes. The amount of inhibition received by an E cell is determined
by the CM learning rule. This learning rule strengthens connections
between positively correlated cells and weakens them if cells are anticor-
related, converging on a weight value that approximately measures the
degree of spiking correlation between the neurons. The equilibrium
point reached by this rule, determined by assuming �Wjk � 0, is as
follows:

Wjk �
	njmk


	nj
	mk

� 1, (5)

where nj and mk are moving averages of the spike output of E cell j and I
cell k, respectively, over a short temporal window �t. The CM learning
rule can be shown to perform steepest gradient descent toward this equi-
librium point by assuming minimization of the mean squared error of
the weight with respect to the equilibrium point. This equilibrium can be
rewritten as follows:

Wjk �
	njmk
 � 	nj
	mk


	nj
	mk

. (6)

Because the mean spike rates are homeostatically regulated to a fixed
value, they can be regarded as constant and incorporated into a constant
of proportionality, resulting in the following:

Wjk � 	njmk
 � 	nj
	mk
. (7)

Thus the weights learned by the CM rule are
proportional to the covariance between the
neurons. The weight will be zero if the neurons
are uncorrelated (or anticorrelated) and will
grow linearly as the degree of correlation
increases.

The net result is that when an I cell spikes, it
sends more inhibition to those E cells whose
firing rates are more strongly correlated with
that I cell’s own firing rate.

If one seeks to construct the optimal linear
estimator of the firing rates of the excitatory
cells (with indices j), using the concurrent in-
hibitory cell firing rates (with indices k), the
solution is to multiply the vector of inhibitory
cells’ activities (with elements mk) by the ma-
trix Wjk of the (scaled) covariances between the
excitatory and inhibitory cell activities, in the
case where the inhibitory cell activities are un-
correlated (Salinas and Abbott, 1994). The ele-
ments of the matrix Wjk are the covariances
between the firing rates of excitatory cell j and
inhibitory cell k: Wjk � cov�nj, mk� (Eq. 7).

If the inhibitory cells’ firing rates were
strongly correlated with each other (i.e., inhibi-
tory–inhibitory correlations are large), then
the optimal linear estimator makes use of the
inverse of the (inhibitory–inhibitory) covari-
ance matrix. In our model, the direct recurrent
inhibition between the inhibitory cells pre-
vents them from being strongly correlated with

one another, and the learning rules ensure that the weights Wjk
�I3E� are

proportional to the covariance matrix between the E and I cell firing
rates. Thus, our model can be interpreted in the context of predictive cod-
ing: the amount of inhibition delivered to the excitatory cells, �kWjk

�I3E�, is
approximately proportional to the optimal prediction of those cells’ firing
rates, gleaned from knowledge of the firing rates of the inhibitory cells (see
Results, Network dynamics during inference; see Fig. 6C). That inhibition
can then “cancel out” some of that expected (predictable) activity.

This inhibition can then act to prevent those predictable spikes from
occurring, thus removing redundancy in the system. This is very similar
to predictive coding models (Rao and Ballard, 1999; Spratling, 2010) in
which the predictable part of the signal is suppressed, and also quite
similar to “explaining away” in which activities are suppressed once their
features are already accounted for (Lochmann et al., 2012), for example,
via divisive feedback inhibition (Heeger, 1992).

Results
Model overview
Our spiking network model, E-I Net, extends SAILnet
(Zylberberg et al., 2011) by adding a separate population of in-
hibitory interneurons in place of SAILnet’s biologically implau-
sible lateral inhibitory connections between ostensibly excitatory
cells (Fig. 1). Both E-I Net and SAILnet are spiking neural net-
works that learn a sparse code with Gabor-like RF properties after
exposure to image patches drawn from natural scenes. Following
the precedent set by previous sparse coding studies, e.g.,
Olshausen and Field (1997), we used input images that were
“whitened” to remove pairwise correlations in the inputs. This
signal processing step is similar to what is performed on visual
signals passing through the retina and the lateral geniculate nu-
cleus (LGN) on their way to the visual cortex (Atick and Redlich,
1992; Dan et al., 1996). Both network models share the same
overall dynamics allowing them to perform two important but
distinct operations: inference and learning.

During inference, a network of LIF neurons is presented with
a stimulus, which in our case is an image patch drawn from

Figure 1. Circuit diagram for SAILnet (Zylberberg et al., 2011) (top left) and the E-I Net introduced here (top right). Excitatory
connections are labeled with arrows, inhibitory connections with flat ends. A letter code identifies the learning rule used for the
synaptic connections as either HO, F generalized to use measured spike rates, or the CM proposed here. 	x
 represents the lifetime
average value of x. The output of both networks is a spike train embodying a sparse representation of the input. Bottom table, Each
learning rule is shown with its connection weight update equation and the equilibrium end state that the learning rule seeks out
during training. In the equations, xj is the presynaptic spike rate, yi is the postsynaptic spike rate, and Wij is the connection weight
from presynaptic neuron j to postsynaptic neuron i. STAi is the STA of postsynaptic neuron i.
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whitened images of natural scenes. The
exposure to the stimulus leads the neu-
rons to spike in response over the course
of simulated time. The readout of the net-
work, and therefore the network’s repre-
sentation of the image patch, is the
average spike rate of each neuron during
the time it was exposed to the image patch.
In this way, the network can be thought of
as “inferring” the optimal combination of
features to represent the visual input.

The network performs inference by
propagating spikes within the network
over the course of simulated time. The
pixels of the whitened image patch corre-
spond loosely to input from the LGN to
V1. This input is integrated over simu-
lated time and occasionally drives a neu-
ron to spike. When a neuron spikes, it sends either excitation or
inhibition (according to the neuron type) to its postsynaptic tar-
gets at the next time step in an amount proportional to the con-
nection weight between the neurons. Over the course of the
simulation (50 time steps in our case), a spike train is generated
from each neuron, which constitutes that neuron’s response to
the stimulus.

Learning proceeds on a much slower timescale using Hebbian
local synaptic plasticity rules. After each image exposure, updates
to the connection weights are computed locally based on the
spiking activity of the presynaptic and postsynaptic neurons. Fol-
lowing exposure to many thousands of image patches, the neu-
rons become tuned to specific image features, and the spiking
activity of the neurons comes to resemble the Gabor-like re-
sponse properties observed in simple cells of V1. Learning is
driven only from network activity occurring during the inference
process.

A key mechanism that shapes the dynamics of the network is
the homeostatic regulation of the long-term average spike rate of
the neurons. All neurons of the same class (excitatory or inhibi-
tory) share the same long-term average spike rate, which is set in
advance as a parameter. In the cortical microcircuit, numerous
mechanisms contribute to homeostatic regulation (Turrigiano,
2011), which we approximate with a single spiking threshold per
neuron. When a neuron’s long-term average spike rate is above
or below this target value, its spiking threshold is adjusted up or
down using Földiák’s rule for spike rate regulation (Földiák,
1990). The enforcement of a uniform long-term spike rate en-
sures that each neuron contributes equally to the long-term pro-
cess of coding the sensory input, which is critical to achieving
sparse representation stability in networks that use Hebbian
learning (Perrinet, 2010).

In SAILnet (Fig. 1, left), a single population of spiking neurons
learns a sparse code from image patches. Each neuron laterally
inhibits all other neurons as indicated by the recurrent connec-
tion loop in the figure. Because the neurons are intended to
model excitatory cells in V1, this lateral inhibition is a violation of
Dale’s Law.

SAILnet learns using two Hebbian local synaptic plasticity
rules. The connections from the input pixels to the neurons up-
date using Oja’s variant of the Hebbian learning rule (Oja, 1982).
The lateral inhibitory connections between the neurons learn
using Földiák’s variant of the Hebbian rule (Földiák, 1990),
which strengthens connections between correlated neurons and
weakens them otherwise. Critical to the functioning of SAILnet is

that the neurons inhibit each other, fostering competition be-
tween the neurons, decorrelating the network, and driving the
RFs to differentiate. Without lateral inhibition in a fully con-
nected network, all neurons seek out the same principal compo-
nent and converge to the same RF (Oja, 1982).

In E-I Net (Fig. 1, right), the lateral inhibitory connections of
SAILnet have been replaced with a separate population of inhib-
itory cells. This inhibitory population laterally inhibits itself, fa-
cilitating competition and differentiating the response properties
of the inhibitory population. E-I Net has four sets of connection
weights instead of the two sets of SAILnet. The input connections
from the whitened image patch to the excitatory cells use the
Hebbian–Oja rule, as in SAILnet. All other connections use a CM
inspired by Földiák’s rule for correlation suppression. If persis-
tent correlations exist within the network, which occurs with E-I
Net, Földiák’s rule will grow the connection weights without
bound, whereas the CM rule asymptotically approaches an equi-
librium value that approximately measures the activity correla-
tion between the cells.

Figure 1, bottom, shows the weight update rules used for each
connection type. Also shown are the network equilibrium states
that each learning rule seeks out.

Simulation results
The dynamic properties of the neurons in E-I Net can be seen in
representative spike raster plots (Fig. 2). These raster plots show
the activity of the network over simulated time while being pre-
sented with an input image patch. Even though the readout of the
network is the average spike rate of the excitatory cells, the spik-
ing activity of the cells exhibits an irregular structure partly due to
the decorrelating action of the inhibitory cells.

In the course of being exposed to thousands of image patches
drawn from whitened images of natural scenes, the network
learns Gabor-like RFs (Fig. 3B), which are similar to those learned
by SAILnet (Fig. 3A). The spike-triggered average (STA) re-
sponses of the inhibitory neurons (Fig. 3B, bottom) exhibit
slightly broader (lower spatial frequency) tuning, in agreement
with experimental findings for inhibitory neurons in V1 of
mouse (Kerlin et al., 2010; Liu et al., 2011), although not in cat
(Anderson et al., 2000; Hirsch et al., 2003). Importantly, only a
small number of inhibitory cells is required to enable the network
to learn a sparse representation code, well within the excitatory-
to-inhibitory neuron ratios observed in visual cortex.

To determine sparseness, we measured both population
sparseness and lifetime sparseness (Vinje and Gallant, 2000). The
neural activities, and thus the representation learned, has a high

Figure 2. Representative spike raster plots generated by the E-I Net after training. Each row corresponds to a different cell. The
first 400 rows are excitatory E cells (green). The last 49 rows are inhibitory I cells (red). For each plot, the network was presented
with an image patch at time 0 and simulation proceeded for 50 time steps (horizontal axis). The readout of the network is the
average spike rate of each excitatory neuron. Some oscillatory activity between E and I cells can be seen.
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Figure 4. Adding more inhibitory (I) cells to the network improves sparse code formation as measured by reduced input reconstruction error. A, Plot of input reconstruction error for varying
numbers of I cells and E cells after learning a sparse code for 10 � 10 pixel image patches. Adding I cells (horizontal axis) drives the E cells to differentiate from each other in their RF response
properties, leading to an improved representation code and lower reconstruction error. Increasing the number of E cells (depth axis) also improves the code by providing a larger set of differentiated
cells from which to reconstruct the image. B, Plot of E cell correlation (RMS of Pearson linear correlation coefficient between all pairs of E cells) for networks with different numbers of I and E cells.
Adding I cells reduces E cell correlations, enabling them to learn a better sparse representation code. C, Plots of the RF (spike-triggered average) of the I cells for networks with 400 E cells and 16, 25,
or 49 I cells (cell counts chosen to fit a square grid). While adding I cells does improve E cell decorrelation, a point of diminishing returns is reached in which the I cells start exhibiting redundant
response properties (e.g., red squares).

Figure 3. Representative RFs learned by the neurons in both the earlier SAILnet model (Zylberberg et al., 2011) and the new E-I Net model are described here. Both networks have 400 excitatory
cells (256 randomly selected cells are shown). Each square represents the RF of a single neuron. RFs are computed as the STA of the whitened input image patches. A, In SAILnet, putative excitatory
neurons also laterally inhibit each other. B, In E-I Net, a separate population of inhibitory neurons (bottom) decorrelates the excitatory projection neurons (top). The network in this example
contained 49 inhibitory neurons. Consistent with experimental evidence, we find that the inhibitory neurons exhibit broader (lower spatial frequency) tuning curves than the excitatory cells.
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lifetime sparseness (0.96) due to the homeostatically regulated
low spike rate, and high population sparseness (0.96) due to the
low correlation between the E cells (RMS Pearson correlation
coefficient between cell pairs of less than 0.13).

Functional role of inhibitory neurons
In E-I Net, the excitatory and inhibitory neurons work together
to compute a sparse representation code. Figure 4 shows the re-
sult of separate training simulations conducted on networks with
different numbers of excitatory and inhibitory cells. These net-
works were trained on 10 � 10 pixel image patches drawn from
whitened images’ natural scenes. Learning performance was eval-
uated by measuring input reconstruction error, determined by
reconstructing the input patch from the spike rate readout and
subtracting the original pixel values (see Materials and Methods).

Networks with more neurons performed better in terms of
reduced image reconstruction error than networks with fewer
neurons (Fig. 4A). Larger numbers of excitatory cells improve
performance by providing a larger and more diverse set of re-
sponse properties with which to represent the input. Adding ex-
citatory cells improved coding performance up to a point of
diminishing returns at around 400 E cells (4� overcomplete rel-
ative to the 100 pixel input). Adding inhibitory cells also im-
proved performance. However, the point of diminishing returns
was reached much sooner at around 50 I cells (0.5� overcom-
plete). With parameter tuning, it was possible to get reasonable
coding performance (reconstruction error 5% worse than opti-
mal) with only nine inhibitory cells or 2% of the total population.
This excitatory-to-inhibitory division is well within the 80/20
ratio observed in cortex (Markram et al., 2004).

The computational role of E-I Net’s inhibitory neurons is to
decorrelate the activity of the excitatory population, consistent

with evidence for this function in visual cortex (Haider et al.,
2010). As inhibitory neurons are experimentally added to the
network, the degree of correlation among the E cells decreases
(Fig. 4B). This decorrelation effect also reaches the point of di-
minishing returns at around 0.5� overcomplete relative to the
image input, but mostly independent of the number of E cells. As
I cells continue to be added, their response properties become
increasingly redundant with each other (Fig. 4C). Note that add-
ing E cells reduces total E cell correlations (Fig. 4B), contrary to
what might be expected. This is a side effect of the impact on
network dynamics of increased excitatory input into the I cells,
which results in a stronger inhibitory feedback signal back to the
E cells to drive decorrelation. If the total amount of excitatory
input to the I cells is held constant via weight amplification as the
E cell count is reduced, then this effect mostly goes away (data not
shown).

Relationship between excitatory and inhibitory cells
Each E cell and I cell can be viewed as forming a pair with one
E3 I feedforward excitatory connection and one I3E feedback
inhibitory connection. Both connections use the same learning
rule in our model, and the learning rule is symmetric with regard
to the spiking activity of the neurons. As a result, both connection
weights quickly converge to the same value during learning, even
if the weights start off at different random values. Thus, a strong
E3 I weight implies a strong I3E weight and vice versa. This
correlation between strong E3 I and I3E connections is consis-
tent with electrophysiology findings for inhibitory– excitatory
cell pairs in L2/3 in visual cortex of rat (Yoshimura et al., 2005).

When the network reaches training equilibrium (RMS weight
change stops decreasing), the connection weight between each E
and I cell is proportional to the degree of correlation between

Figure 5. Connections between excitatory and inhibitory cells are strongest for pairs with similar preferred orientation and phase. A, An illustration of the relationship between strongly
connected E and I cells. The strongest connections are between cells with similar tuning, which are also the cells with the most correlated spiking activity. B, The matrix of connection weights
between E and I cells, with E and I cells sorted by orientation tuning (top) and phase tuning (bottom). Each row represents an I cell in rank order by orientation � � 
/2 to 
/2� or phase
� � 
 to 
�, and each column represents an E cell similarly ordered. The brightness of the point indicates the strength of either the E3 I or I3 E connection weight (they are the same). The
strong connections (brighter points) along the diagonal show that cells with similar orientation and phase tuning have the strongest connections. The tuning of each cell’s RF was computed by
exposing the network to a collection of sine gratings at different orientations, phases, and spatial frequencies. A cell’s preferred orientation and phase is the circular weighted average of the neural
responses (spike rate) to all test stimuli.
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their stimulus-dependent firing rates, and hence to their tuning
similarity. Figure 5A illustrates how each I cell forms strong con-
nections to a subset of E cells that exhibit within group activity
correlations and have similar tuning. Each I cell can therefore be
viewed as representing a cluster of similarly tuned E cells via its
strongest E3 I and I3E connections.

When a few spikes arrive from members of the E cell cluster
represented by an I cell, the I cell spikes and sends inhibition back
to all members of the cluster. Those E cells that have not yet
spiked will have their future spike transiently suppressed. In this
way, the I cells implement predictive coding (Rao and Ballard,
1999; Spratling, 2010) by suppressing future E cell spikes that
have been “explained away” by the E cell spikes that have already
occurred (Lochmann et al., 2012). I cells also inhibit each other in
proportion to their tuning similarity. Figure 5B shows an exam-
ple set of E-to-I (also I-to-E) weights after training. The E and I
cells have been sorted by tuning orientation (top) and tuning
phase (bottom). The strongest connections are between neurons
with similar orientation and phase tuning, as can be seen by the

stronger weights (brighter points) along
the matrix diagonal. The matched orien-
tation tuning between connected excit-
atory and inhibitory cells is consistent
with experimental findings in cat (Ferster,
1986; Hirsch et al., 2003) and mouse vi-
sual cortex (Liu et al., 2011), as well as
with the observation in rat visual cortex
that fast-spiking inhibitory interneurons
and excitatory pyramidal cells form mi-
cronetworks in which cells with similar
response properties form strong connec-
tions with each other (Yoshimura et al.,
2005).

Network dynamics during inference
Figure 6 provides a view into the compu-
tational dynamics of the network during
inference. The presented image patch
generates a net input current to the E cell
that can be viewed as a measure of the
match between the image patch and
the RF of the neuron (Fig. 6A, x-axis). The
image input current drives the E-cell fir-
ing rate (green line), resulting in inhibi-
tory feedback transmitted through the
I-cell population (red line). The E cell
does not fire until the input current
reaches a positive level sufficient to cross
the spiking threshold. In contrast, the to-
tal inhibitory feedback via the I cell popu-
lation to the E cell rises smoothly as the
match between the image patch and the E
cell RF improves. The input current to the
E cells has a fairly Gaussian distribution
(dashed blue line).

The I cells tend to fire just after the E
cells do, sending feedback inhibition to
the E cell population (Fig. 6B). The E cells
receive a total amount of feedback inhibi-
tion that is roughly proportional to their
expected firing rate (Fig. 6C); thus, the to-
tal inhibition received by the E cell over
the inference period is a good predictor

of the E cell firing rate. The inhibition from the I cells is sent to all
E cells that have similar response characteristics, causing those E
cells that have not yet fired (but might be close to firing) to be sup-
pressed indirectly by the E cells that have already fired. In this way, E
cell spikes that have already escaped indirectly suppress potential E
cell spikes that are no longer needed to complete the representation.
Figure 6D shows the differential effect of the I-spikes on the E cells
according to their RF similarity. I cell spikes are caused by (and hence
preceded by) spikes from E cells that have strong E3I connections
and similar RFs (green line). The I spike then suppresses firing in this
group of similar E cells, which includes the E cells that spiked as well
as others that may be close to spiking. The weakly connected E cells
(blue line) are more likely to spike just after the I spike than the
strongly connected E cells that have been suppressed, as these cells
convey unexpected information.

Critical period plasticity and synaptic pruning
It has been proposed that GABAergic neurons mediate critical
period plasticity in visual cortex (Hensch, 2005), possibly via

Figure 6. Network dynamics during inference illustrating computational mechanisms and predictive spike suppression. Green
lines indicate excitatory cell spike rate; red lines indicate feedback inhibition to an E cell (aggregate current received from all I3 E
connections); and dashed horizontal lines indicate the mean value. A, Net input current from the image patch (x-axis) drives the E
cell spike rate (green line), resulting in inhibitory feedback through the I cell population and back to the E cells (red line). E cell
spiking does not occur until the input current reaches a sufficiently high positive deflection to cross the spiking threshold. In
contrast, the total inhibitory feedback from the I cells to the E cell (red line) rises smoothly as the match between the image patch
and the E cell RF improves. Measurements are scaled to their mean value (dashed black line). The image input currents to the E cells
forms a Gaussian distribution across image patch samples (dashed blue line, � indicates SD). All values are averages over the full
simulation period (50 time steps). B, A perispike time histogram (PSTH) triggered by E cell spikes shows that I cells tend to spike
after the E cells. Feedback inhibition is maximal just after spiking, when the I spike(s) facilitated by this E cell spike propagate back
to the E cell. The x-axis shows time, in simulation time steps, relative to the E cell spike. C, The total inhibitory feedback to an E cell
(I3 E) during image patch presentation is correlated with the E cell’s spike rate. The dashed horizontal line indicates the mean E
cell spike rate. All values are averages over the full simulation period (50 time steps). D, This PSTH triggered by I cell spikes compares
the E cells that are strongly connected to the I cell (E3 I and I3 E connection weight in the top 20%, green line) with those that
are weakly connected (connection weight in the bottom 50%, blue line). The strongly connected E cells fire maximally just before
the I cell spike, as they caused it via strong E3 I connections. This same E cell population is then maximally suppressed just after
the I cell spikes via strong I3 E connections, preventing “predictable” redundant spikes from being emitted. The weakly con-
nected E cells are mostly uncorrelated with the I cell spike. The x-axis shows time, in simulation time steps, relative to the I cell spike.
The mean E cell spike rate across cells and images is shown for reference (dashed black line).
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GABAergic plasticity of basket cells pro-
viding inhibitory feedback to pyramidal
cells in layer 4 of V1 (Maffei et al., 2006),
and consistent with our model here. The
majority of the connections to, from, and
between inhibitory cells in E-I Net after
training is near zero. Deleting the 80%
weakest connections to, from, and be-
tween inhibitory cells (E3 I, I3 I, and
I3E connections) after training did not
meaningfully affect network performance
or coding behavior (0.6% increase in re-
construction error), suggestive of physio-
logical observations of synaptic pruning
in visual cortex during brain development
(Bourgeois and Rakic, 1993). Importantly,
this connection pruning required that
synaptic plasticity be frozen—if learning
was allowed to continue after pruning, per-
formance degraded considerably (13% in-
crease in reconstruction error). Thus, synaptic pruning was an
effective connection-reduction strategy, but only after learning had
completed and plasticity was suspended. This ordering is consistent
with evidence for anatomical pruning following visual experience
induced plasticity (Espinosa and Stryker, 2012). Surprisingly, prun-
ing the 80% weakest input3E connections actually improved
network coding performance (7% decrease in reconstruction er-
ror, 2% improvement in decorrelation).

Fast-spiking interneurons
Cortical neurons are often classified with regard to their temporal
properties as regular spiking or fast spiking (Thomson and Lamy,
2007). We investigated the relationship between long-term aver-
age spike rate and network performance. We found that the net-
work achieved greater decorrelation, faster convergence, and
lower reconstruction error if the smaller population of inhibitory
cells had a higher average spike rate and faster membrane time
constant than the excitatory cells, consistent with the idea that
these model neurons might be analogous to fast-spiking neurons
in the cortex.

One prevalent category of fast-spiking cell in cortex is the
basket cell (Thomson and Lamy, 2007), which gets its name from
its tendency to form multiple duplicate connections onto its tar-
gets, for example, in V1 (Somogyi et al., 1983). We explored the
effect of adding duplicate I3E connections in a manner similar
to the fast-spiking basket cell to further increase the inhibitory
impact of the smaller population of I cells. Figure 7 shows the
effect of varying the I cell spike rate and also varying the number
of duplicate I3E connections. The improved performance of the
network with faster I cell spike rates is not simply a benefit of
faster spike rates in general, since the excitatory cells showed only
a modest spike rate effect (data not shown). Adding an I3E
connection multiplier to simulate the reported multiple synapses
made by fast-spiking basket cells onto excitatory cells also im-
proved performance, but only up to a point. We reason that the
small population of I cells relative to total E cell input needs to
amplify its inhibitory impact to drive lateral competition among
the E cells.

Discussion
We have introduced a model, E-I Net, which uses separate pop-
ulations of excitatory (E) and inhibitory (I) spiking neurons to
compute a sparse representation of image patches drawn from

whitened images of natural scenes. Relying solely on synaptically
local plasticity rules, the neurons in this model spontaneously
learn Gabor-like RFs such as those of V1 simple cells. The inhib-
itory neurons in this network enable sparse code formation by
facilitating competition among the excitatory cells, and only a
small number of inhibitory cells is required for sparse code
formation.

Our network uses a form of STDP (Dan and Poo, 2004;
Feldman, 2009). Recent work on another interesting cortical
model (Clopath et al., 2010) also used a form of STDP, but that
network did not produce Gabor-like RFs resembling those from
V1. Another recent study (Evans and Stringer, 2012) considered a
network with separate E and I populations, but their inhibitory
connections were not plastic, and they studied neither the shapes
of the RFs learned by their excitatory cells nor the specific repre-
sentation of the stimulus formed by the neuronal activities.

In our E-I Net, the primary role of the inhibitory neurons is to
suppress future spiking activity that can be predicted from spikes
that have already occurred, thus implementing a form of predic-
tive coding (Rao and Ballard, 1999) to facilitate explaining away
via feedback inhibition (Lochmann et al., 2012). By suppressing
predicted spikes, the I cells actively decorrelate the neural popu-
lation generally, consistent with observations that inhibitory cells
perform decorrelation in V1 (Haider et al., 2010), which in turn
increases the sparseness of the V1 representation (Vinje and
Gallant, 2000).

The inhibitory cells can successfully drive decorrelation using
only a relatively small number of cells. If the inhibitory neurons
themselves are decorrelated, and thus orthogonal to each other,
each neuron can divide the neural population in half, allowing NI

inhibitory cells to decorrelate 2NI excitatory cells, or equivalently
requiring only NI � log2NE inhibitory cells to decorrelate NE

neurons. Consistent with this prediction, we were able to decor-
relate 400 E cells using only 9 I cells in our network.

Our results suggest a functional role for inhibitory neurons
in neural code formation— decorrelating the excitatory neu-
rons. Many spiking models of pattern learning and sparse cod-
ing use direct inhibitory connections between ostensibly
excitatory cells to facilitate competitive learning with the as-
sumption that these connections could be replaced with inhib-
itory interneurons (Masquelier et al., 2009; Savin et al., 2010;
Zylberberg et al., 2011; Masquelier, 2012). Here we show how

Figure 7. Performance is best for networks with I cells that spike faster than the E cells, or with duplicated I3 E connections, or
a combination of both, consistent with V1 physiology. In the surface plots above, the axes show I cell spike rate as a multiple of E cell
spike rate, and synapse duplication multiplier on the I3 E connections. Decorrelation and input reconstruction error performance
was best when total inhibitory input was at the optimal level to drive decorrelation, either by increasing the I cell spike rate,
increasing the number of duplicate I3 E connections, or a combination of both. However, if total inhibitory impact was too high,
network performance degraded.
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this can be achieved with a separate inhibitory population
obeying local plasticity rules.

Accurate predictions of V1 RFs (Olshausen and Field, 1996;
Rehn and Sommer, 2007; Olshausen et al., 2009; Zylberberg et al.,
2011) provide support for longstanding ideas about various
forms of coding efficiency in neural representations (Attneave,
1954; Barlow, 1961; Laughlin, 1981, 2001; Atick and Redlich,
1992; Rieke et al., 1997). In addition, sparse coding models have
successfully predicted response properties at several stages in the
ascending auditory pathway (Klein et al., 2003; Smith and
Lewicki, 2006; Zhao and Zhaoping, 2011; Carlson et al., 2012).
Firing rate statistics also provides evidence for sparse coding in
visual cortex (Vinje and Gallant, 2000, 2002; Lennie, 2003; Gra-
ham and Field, 2006; Haider et al., 2010) and auditory cortex
(DeWeese et al., 2003; Hromádka et al., 2008), though there are
also reports of dense coding (Tolhurst et al., 2009) and mixtures
of both (Sakata and Harris, 2009).

Moreover, experimental observations show that correlations
among similarly tuned V1 neurons is low, suggesting the exis-
tence of a mechanism for active decorrelation in the cortical mi-
crocircuit (Ecker et al., 2010). The orientation tuning similarity
between connected excitatory and inhibitory neurons matches
physiological observations in V1 (Anderson et al., 2000; Hirsch et
al., 2003; Alitto and Dan, 2010). The broader tuning we observed
for inhibitory cells, as well as the positive activity correlation
between connected excitatory and inhibitory cells, matches phys-
iological findings in mouse (Kerlin et al., 2010; Liu et al., 2011)
and rat (Yoshimura et al., 2005) V1; however, these effects may be
species specific as they have not been observed in cat (Anderson
et al., 2000; Hirsch et al., 2003).

Can a particular class of neuron be identified in cerebral cor-
tex that performs the functional role of active decorrelation via
feedback inhibition? One candidate is the parvalbumin-positive
(PV�) basket cell found in both L4 and L2/3 of visual cortex.
These neurons have horizontal connections to each other (Tamás
et al., 1998) in agreement with E-I Net’s model interneurons.
PV� basket cells furthermore form reciprocal connections with
pyramidal cells in L4 of sensory cortex (Ali et al., 2007; Thomson
and Lamy, 2007) and with excitatory cells in L2/3 of rat visual
cortex (Yoshimura et al., 2005).

E-I Net requires only a small percentage of inhibitory neurons
relative to the total neural population (2–10%) to adequately
decorrelate the excitatory cells and learn a sparse code. This
excitatory-to-inhibitory division is well within the 80/20 ratio
seen in visual cortex. Basket cells account for about 50% of all
GABAergic neurons in neocortex (Markram et al., 2004; Alitto
and Dan, 2010), which in turn account for �20% of total neu-
rons, implying that basket cells constitute �10% of the total neu-
ral population in V1.

Basket cells make numerous redundant connections onto
their targets and are observed to fire at faster than average rates
(Thomson and Lamy, 2007). Consistent with this, we found that
network simulations achieved the highest level of E cell decorre-
lation and the lowest input reconstruction error levels when the
inhibitory cells spike at higher average firing rates (up to 4�)
than the excitatory cells, or when the inhibitory cells made mul-
tiple redundant connections onto the excitatory cells, or both.
The increased spike rate or connection count compensated for
the smaller number of inhibitory cells, allowing a relatively small
population to facilitate competition.

It has been proposed that PV� basket cells mediate critical
period plasticity in visual cortex (Hensch, 2005). Consistent with
this, we found that the 80% weakest inhibitory connections could

be deleted after training with negligible effect on network coding
performance, but only if this occurred after synaptic plasticity
was disabled, or if E cell RFs were “locked in” by pruning their
input connections. If we allowed synaptic plasticity to continue
after pruning, the thinned out inhibitory network was unable to
adapt to the changing correlation patterns in the excitatory pop-
ulation caused by changing connection strengths, resulting in
substantially degraded coding performance.

Other inhibitory cell types exhibit reciprocal within-class con-
nections. For example in rat V1, 50% of the targets of calretinin-
positive (CR�) interneurons are other CR� interneurons
(Gonchar and Burkhalter, 1999). Within-class reciprocal con-
nections between inhibitory interneurons may be a general strat-
egy in cortical circuits for facilitating pattern separation in
sensory coding.

Two complementary types of inhibition have been proposed
in sensory cortex: feedforward and feedback (Isaacson and
Scanziani, 2011). In feedforward inhibition, inhibitory inputs
would be expected to be negatively correlated with the target cell
so as to suppress responses that are contradicted by the sensory
input, for example, in a push–pull fashion (Ferster and Miller,
2000; Hirsch et al., 2003). We do not attempt to address feedfor-
ward inhibition here. In place of feedforward inhibition, our
LGN-like inputs can adopt both positive and negative values, a
relaxation of biological constraints that allows us to focus on the
inhibitory feedback mechanism. Feedforward inhibition could
be modeled with a separate population of inhibitory cells receiv-
ing feedforward input from the stimulus, which is an exciting
direction for future work.

In feedback inhibition, the inhibitory mechanism we focus on
here, sensory signals that have already been coded are fed back via
inhibitory interneurons that are positively correlated with the
target cell. Feedback inhibition can be understood as divisive
inhibition (Heeger, 1992) to remove input that can be predicted
or explained away (Lochmann et al., 2012). The output signal
from the excitatory population propagates through the inhibi-
tory interneurons to inhibit excitatory cells with similar RFs, thus
suppressing redundant spiking activity.

Our primary result is that a distinct population of inhibitory
interneurons can enable a biologically realistic spiking network to
learn a sparse code for natural scenes from input data using only
synaptically local plasticity rules. This can be achieved with a
relatively small number of inhibitory cells, in agreement with
excitatory-to-inhibitory neuron ratios observed in visual cortex.
Moreover, performance of our network improves with increasing
firing rates in our inhibitory population, but performance is
largely unaffected by increased firing rates among the excitatory
neurons, suggesting a computational benefit for the observed
high firing rates of the smaller number of inhibitory relative to
excitatory neurons in V1. We show how this can be achieved
using a learning rule that inhibits spikes that can be predicted,
thus suppressing redundant activity that has been explained
away. We have described a mechanism for interneuron-mediated
competition between neurons in the visual cortex; however, our
model may apply to cortical circuits generally.

Notes
Supplemental material for this article is available at http://www.pking.
org/research/EINet. Materials include MATLAB source code for the sim-
ulation available for download. This material has not been peer reviewed.
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