
Cognitive Computation manuscript No.

(will be inserted by the editor)

Hyperdimensional Computing:

An Introduction to Computing in Distributed Representation
with High-Dimensional Random Vectors

Pentti Kanerva

Received: date / Accepted: date

Abstract The 1990s saw the emergence of cognitive models that depend on very high

dimensionality and randomness. They include Holographic Reduced Representations,

Spatter Code, Semantic Vectors, Latent Semantic Analysis, Context-Dependent Thin-

ning, and Vector-Symbolic Architecture. They represent things in high-dimensional

vectors that are manipulated by operations that produce new high-dimensional vec-

tors in the style of traditional computing, in what is called here hyperdimensional

computing on account of the very high dimensionality. The paper presents the main

ideas behind these models, written as a tutorial essay in hopes of making the ideas

accessible and even provocative. A sketch of how we have arrived at these models, with

references and pointers to further reading, is given at the end. The thesis of the pa-

per is that hyperdimensional representation has much to offer to students of cognitive

science, theoretical neuroscience, computer science and engineering, and mathematics.

Keywords Holographic reduced representation · Holistic record · Holistic mapping ·

Random indexing · Cognitive code · von Neumann architecture

1 Introduction: The Brain as a Computer

In this tutorial essay we address the possibility of understanding brainlike computing

in terms familiar to us from conventional computing. To think of brains as computers

responsible for human and animal behavior represents a major challenge. No two brains

are identical yet they can produce the same behavior—they can be functionally equiv-

alent. For example, we learn to make sense of the world, we learn language, and we can

have a meaningful conversation about the world. Even animals without a full-fledged

language can learn by observing each other, and they can communicate and function

in groups and assume roles as the situation demands.

Center for the Study of Language and Information
Stanford University
Tel.: +1–650–327 8594
Fax: +1–650–725 2166
E-mail: pkanerva@csli.stanford.edu

2

This means that brains with different “hardware” and internal code accomplish

the same computing. Furthermore, the details of the code are established over time

through interaction with the world. This is very different from how computers work,

where the operations and code are prescribed in detail from the outside by computer-

design engineers and programmers.

The disparity in architecture between brains and computers is matched by dispar-

ity in performance. Notably, computers excel in routine tasks that we—our brains—

accomplish with effort, such as calculation, whereas they are yet to be programmed for

universal human traits such as flexible learning, language use, and understanding.

Although the disparity in performance need not be due to architecture, brainlike

performance very likely requires brainlike architecture. The opposite is not necessarily

true, however: brainlike architecture does not guarantee brainlike “intelligent” behav-

ior, as evidenced by many kinds of mental illness. Thus we can look at the brain’s

architecture for clues on how to organize computing. However, to build computers

that work at all like brains, we must do more than copy the architecture. We must

understand the principles of computing that the architecture serves.

1.1 An Overview

We will discuss a set of ideas for a computing architecture for cognitive modeling—

we can think of it as a possible infrastructure for cognitive modeling. Section 2 (The

von Neumann architecture) establishes the conventional von Neumann computer ar-

chitecture as a baseline for the discussion that follows. Section 3 (An engineering view

of computing) highlights the central role of representation in computing. Section 4

(Properties of neural representation) looks at the mathematical properties of neural

representation suggested by the brain’s circuits, and in Section 5 (Hyperdimensional

computer) we envisage a computer for dealing with the hypothesized hyperdimen-

sional representation and discuss its arithmetic, which is that of vectors, matrices,

permutations, and probability. Section 6 (Constructing a cognitive code) is concerned

with representing composite entities, such as sets, sequences, and mappings, in terms

of their components—that is, using the arithmetic operations to make new represen-

tations from existing ones. Section 7 (Three examples with cognitive connotations)

suggests ways to use the machinery of the previous two sections in modeling cogni-

tion. The first example, “Context vectors as examples of sets; random indexing” (7.1),

constructs meaningful vectors from random ones by assimilating massive data. The

second example, “Learning to infer by holistic mapping; learning from example” (7.2),

demonstrates the learning of a rule from examples—the rule takes the form of a high-

dimensional vector, and its application is by vector arithmetic. The third example,

“What is the dollar of Mexico?” (7.3), models figurative meaning and analogy with

high-dimensional arithmetic and suggests the blending of formal cognitive structure

and prototypes in our minds. The last two sections (Looking back and Looking forth)

are an overview of the past and a possible future of this kind of computing and of

cognitive modeling based on it, with references to representative literature. Rather

than attempting a scholarly review, they include pointers and terms that are useful for

searching the subject on the Internet.

3

2 The von Neumann Architecture

Modern computer architecture, known as the von Neumann architecture, is a mere 60

years old. It is based on the simple idea that data and the instructions for manipulate

the data are entities of the same kind. Both can be processed and stored as data

in a singe uniform memory. The phenomenal success of this architecture has made

computers an ubiquitous part of our lives.

Our limited success in programming computers for the kind of flexible intelligence

that characterizes human and animal behavior has led many of us to wonder whether

a totally different computing architecture is needed. What kind? Nobody knows. Here

we argue, however, that an architecture very similar to von Neumann’s could work,

and that the burden falls on representation—on the kinds of entities that the computer

computes with.

The basic idea is to compute with large random patterns—that is, with very high-

dimensional random vectors. Such vectors have subtle mathematical properties that

can be used for computing. Even the simplest of high-dimensional vectors, namely

binary (i.e., long bit strings), possess these properties, and so we will demonstrate the

properties with them whenever possible.

The von Neumann architecture consists of a memory (random-access memory,

RAM), a processor (central processing unit, CPU), and channels for accepting data

(input) and presenting results (output). The CPU is further divided into a sequencing

unit for running the program, instruction by instruction, and an arithmetic–logic unit

(ALU) for doing basic math operations such as addition. This paper deals with the

memory and the arithmetic–logic unit for large random patterns. More specifically,

it is about the “arithmetic” operations that would form the basis of computing with

large random patterns. The presentation is necessarily mathematical and, although

slow-paced to mathematicians, it may inspire exploration and discovery also by them.

3 An Engineering View of Computing

In thinking of computing as something that is carried out by physical devices, be they

computers or brains, it is helpful to look at computing in engineering terms. Computing

is the transformation of representations by algorithms that can be described by rules.

A representation is a pattern in some physical medium, for example, the configuration

of ONs and OFFs on a set of switches. The algorithm then tells us how to change

these patterns—how to set the switches from one moment to the next based on their

previous settings.

This characterization of computing is abstract and may even seem pointless. How-

ever, the very nature of computing is abstract and becomes meaningful only when the

patterns correspond in a systematic way to things in the world, or to abstract entities

such as names and numbers—which is to say that they represent—or when they drive

actuators. Thus, from an engineering perspective, computing is the systematized and

mechanized manipulation of patterns.

For transforming patterns, computers have circuits. The adder circuit is an example:

given the patterns representing two numbers, it produces the pattern for their sum.

The algorithm for computing the sum is embodied in the design of the circuit.

The details of circuit design—its “logic”—depend crucially on how numbers are

represented. Computers usually represent numbers in the binary system, that is, in

4

strings of bits, with each bit being either a 0 or a 1. The logical design of the adder

circuit then specifies how each bit of the sum is formed from the bits of the two numbers

being added together. When computer engineers speak of logic, it is in this restricted

sense of how patterns are transformed by circuits.

The materials that a circuit is made of are incidental—we could say, immaterial.

Computer-logic design is therefore abstract and mathematical, and finding suitable

materials for implementing a design is a separate field in its own right. This holds a

lesson for us who want to understand neural circuits: the logical design can be sep-

arated from neural realization. We need all the insight into the brain’s circuits and

representations that neuroscience can provide, but we must then abstract away from

neurotransmitters, ion channels, membrane potentials, and spike trains and face the

challenge as a mathematical puzzle driven by the behavior to be reproduced. Such

abstraction is essential to the understanding of the underlying principles and to the

building of computers based on them.

3.1 An Engineering View of Representation

Representation is crucial to traditional computing as illustrated by the following ex-

ample, and apparently it is equally important to the brain’s computing. Computers

use binary representation almost exclusively, which means that an individual circuit

component has two possible states, usually denoted by 0 and 1. The reason for restrict-

ing to only two states has to do with physics: electronic components are most reliable

when they are bistable. Richer and more meaningful representations are then gotten

by using a set of such binary components. Thus a representation is the pattern of 0s

and 1s on a set of components and it can be thought of as a string of bits or as a binary

vector. In terms of computing theory, the binary-based system is fully general.

Representation must satisfy at least one condition, it must discriminate: the bit

patterns for different things must differ from one another. Beyond that, how the pat-

terns relate to each other determines their possible use for computing. For example,

the representation of numbers must be suited for arithmetic—that is, for computing

in the traditional sense of the word. This is accomplished with positional representa-

tion: by treating a string of bits as a number in the binary number system. The rules

for addition, subtraction, multiplication, and division of binary numbers are relatively

simple and are readily expressed as computer circuits.

The choice of representation is often a compromise. The following example illus-

trates a bias in favor of some operations at the expense of others. Any number (a

positive integer) can be represented as the product of its prime factors. That makes

multiplication easy—less work than multiplication in base-2 arithmetic—but other op-

erations such as addition become unduly complicated. For overall efficiency in arith-

metic, the base-2 system is an excellent compromise. The brain’s representations must

be subject to similar tradeoffs and compromises.

The brain’s representations of number and magnitude are subject to all sorts of

context effects, as seen in the kinds of errors we make, and obviously are not optimized

for fast and reliable arithmetic. Rather than being a design flaw, however, the context

effects very likely reflect a compromise in favor of more vital functions that brains must

perform.

The brain’s representations are carried on components that by and large are non-

binary. Yet many brainlike context effects can be demonstrated with binary patterns

5

and operations, and there is a good reason to do so in our modeling, namely, the im-

portant properties of the representation follow from high dimensionality rather than

from the precise nature of the dimensions. When binary is sufficient for demonstrating

these properties, we should use it because it is the simplest possible and is an excellent

way to show that the system works by general principles rather than by specialized

tailoring of individual components.

Since the dimensionality of representation is a major concern in this paper, we need

to touch upon dimensionality reduction, which is a standard practice in the processing

of high-dimensional data. However, it is also possible that very high dimensionality

actually facilitates processing: instead of being a curse, high dimensionality can be a

blessing. For example, numbers (i.e., scalars), by definition, are one-dimensional, but in

a computer they are represented by strings of bits, that is, by high-dimensional vectors:

a 32-bit integer is a 32-dimensional binary vector. The high-dimensional representa-

tion makes simple algorithms and circuits for high-precision arithmetic possible. We

can contrast this with one-dimensional representation of numbers. The slide rule rep-

resents them one-dimensionally and makes calculating awkward and imprecise. Thus,

the dimensionality of an entity (a number) and the dimensionality of its representation

for computing purposes (a bit vector) are separate issues. One has to do with existence

in the world, the other with the suitability for manipulation by algorithms—that is,

suitability for computing. The algorithms discussed in this paper work by virtue of

their high (hyper)dimensionality.

4 Properties of Neural Representation

4.1 Hyperdimensionality

The brain’s circuits are massive in terms of numbers of neurons and synapses, sug-

gesting that large circuits are fundamental to the brain’s computing. To explore this

idea, we look at computing with ultrawide words—that is, with very high-dimensional

vectors. How would we compute with 10,000-bit words; how like and unlike is it from

computing with 8-to-64-bit words? What is special about 10,000-bit words compared

to 8-to-64-bit words?

Computing with 10,000-bit words takes us into the realm of very high-dimensional

spaces and vectors; we will call them hyperdimensional when the dimensionality is in

the thousands. and we will use hyperspace as shorthand for hyperdimensional space,

and similarly hypervector. In mathematics “hyperspace” usually means a space with

more than three dimensions; in this paper it means a lot more.

The theme of this paper is that hyperspaces have subtle properties on which to base

a new kind of computing. This “new” computing could in reality be the older kind that

made the human mind possible, which in turn invented computers and computing that

now serve as our standard!

High-dimensional modeling of neural circuits goes back several decades under the

rubric of artificial neural networks, parallel distributed processing (PDP), and connec-

tionism. The models derive their power from the properties of high-dimensional spaces

and they have been successful in tasks such as classification and discrimination of pat-

terns. However, much more can be accomplished by further exploiting the properties

of hyperspaces. Here we draw attention to some of those properties.

6

4.2 Robustness

The neural architecture is amazingly tolerant of component failure. The robustness

comes from redundant representation, in which many patterns are considered equiva-

lent: they mean the same thing. It is very unlike the standard binary representation

of, say, numbers in a computer where a single-bit difference means that the numbers

are different—where every bit “counts.”

Error-correcting codes of data communications are robust in the sense that they

tolerate some number of errors. A remarkable property of hyperdimensional represen-

tation is that the number of places at which equivalent patterns may differ can become

quite large: the proportion of allowable “errors” increases with dimensionality.

Replication is a simple way to achieve redundancy. Each of the bits in a nonredun-

dant representation, such as a binary number, can be replaced by three bits, all with

the same value, and letting the majority rule when the three disagree. However, there

are much better ways to achieve redundancy and robustness.

4.3 Independence from Position: Holistic Representation

Electrical recording from neurons shows that even seemingly simple mental events

involve the simultaneous activity of widely dispersed neurons. Finding out directly how

the activity is organized is extremely difficult but we can try to picture it by appealing

to general principles. For maximum robustness—that us, for the most efficient use

of redundancy—the information encoded into a representation should be distributed

“equally” over all the components, that is, over the entire 10,000-bit vector. When bits

fail, the information degrades in relation to the number of failing bits irrespective of

their position. This kind of representation is referred to as holographic or holistic. It is

very different from the encoding of data in computers and databases where the bits are

grouped into fields for different pieces of information, or from binary numbers where

the position of a bit determines its arithmetic value.

Of course some information in the nervous system is tied to physical location and

hence to position within the representation. The closer we are to the periphery—to the

sense organs and to muscles and glands—the more clearly the position of an individual

component—a neuron—corresponds to a specific part of a sense organ, muscle, or gland.

Thus the position-independence applies to representations at higher, more abstract

levels of cognition where information from different senses has been integrated and

where some of the more general computing mechanisms come into play.

4.4 Randomness

We know from neuroanatomy that brains are highly structured but many details are

determined by learning or are left to chance. In other words, the wiring does not follow

a minute plan, and so no two brains are identical. They are incompatible at the level

of hardware and internal patterns—a mind cannot be “downloaded” from one brain to

another.

To deal with the incompatibility of “hardware” and the seeming arbitrariness of

the neural code, our models use randomness. The system builds its model of the world

7

from random patterns—that is, by starting with vectors drawn randomly from the

hyperspace.

The rationale for this is as follows. If random origins can lead to compatible systems,

the incompatibility of hardware ceases to be an issue. The compatibility of systems—

and the equivalence of brains—is sought not in the actual patterns of the internal code

but in the relation of the patterns to one another within each system. Language is a

prime example of a system like that at a higher level: we can say the same thing in

different languages in spite of their different grammars and vocabularies. Likewise at

the level of the internal code, the patterns for girl and boy, for example, should be

more similar than the patterns for girl and locomotive in the same system, whereas

the patterns for girl in different systems need not bear any similarity to each other.

Examples of such model building will be given below.

Randomness has been a part of artificial neural systems from the start. Self-

organizing feature maps and the Boltzmann machine are good examples. We can think

of randomness as the path of least assumptions. A system that works in spite of ran-

domness is easy to design and does not necessarily require randomness. The randomness

assumption is also used as a means to simplify the analysis of a system’s performance.

5 Hyperdimensional Computer

Notation Mathematics will be displayed as follows: lowercase for scalars, variables,

relations, and functions (a, x, f), Latin uppercase for vectors (A, X), and Greek up-

percase for (permutation) matrices (Π,Γ). Letters are chosen to be mnemonic when

possible (A for address, G for grandmother). The order of operations when not shown

by parentheses is the following: multiplication by matrix first (ΠA), then multiplication

by vector (XOR , ∗), and finally addition (+).

5.1 Hyperdimensional Representation

The units with which a computer computes make up its space of representations. In

ordinary computers the space is that of relatively low-dimensional binary vectors. The

memory is commonly addressed in units of eight-bit bytes, and the arithmetic opera-

tions are commonly done in units of 32-bit words. A computer with a 32-bit ALU and

up to four gigabytes of memory can be thought of as having 32-bit binary vectors as

its representational space, denoted mathematically by {0, 1}32. These are the building

blocks from which further representations are made.

Hyperdimensional representational spaces can be of many kinds: the vector com-

ponents can be binary, ternary, real, or complex. They can be further specified as to

sparseness, range of values, and probability distribution. For example, the space of

n-dimensional vectors with i.i.d. components drawn from the normal distribution with

mean 0 and variance 1/n was originally used. A cognitive system can include several

representational spaces. One kind may be appropriate for modeling a sensory system

and another for modeling language.

Important properties of hyperdimensional representation are demonstrated beau-

tifully with 10,000-bit patterns, that is, with 10,000-dimensional binary vectors. The

representational space then consists of all 210 000 such patterns—also called points of

the space. That is truly an enormous number of possible patterns; any conceivable

8

system would ever need but an infinitesimal fraction of them as representations of

meaningful entities.

Our experience with three-dimensional space does not prepare us to intuit the shape

of this hyperspace and so we must tease it out with analysis, example, and analogy.

Like the corner points of an ordinary cube, the space looks identical from any of its

points. That is to say, if we start with any point and measure the distances to all the

other points, we always get the same distribution of distances. In fact, the space is

nothing other than the corners of a 10,000-dimensional unit (hyper)cube.

We can measure distances between points in Euclidean or Hamming metric. For

binary spaces the Hamming distance is the simplest: it is the number of places at which

two binary vectors differ, and it is also the length of the shortest path from one corner

point to the other along the edges of the hypercube. In fact, there are 2k such shortest

paths between two points that are k bits apart. Naturally, the maximum Hamming

distance is 10,000 bits, from any point to its opposite point. The distance is often

expressed relative to the number of dimensions, so that here 10,000 bits equals 1.

Although the points are not concentrated or clustered anywhere in the space—

because every point is just like every other point—the distances are highly concentrated

half-way into the space, or around the distance of 5,000 bits, or 0.5. It is easy to see

that half the space is closer to a point than 0.5 and the other half is further away, but

it is somewhat surprising that less than a millionth of the space is closer than 0.476

and less than a thousand-millionth is closer than 0.47; similarly, less than a millionth is

further than 0.524 away and less than a thousand-millionth is further than 0.53. These

figures are based on the binomial distribution with mean 5,000 and standard deviation

(STD) 50, and on its approximation with the normal distribution—the distance from

any point of the space to a randomly drawn point follows the binomial distribution.

These distance ranges give the impression that a 600-bit wide “bulge” around the

mean distance of 5,000 bits contains nearly all of the space! In other words, if we

take two vectors at random and use them to represent meaningful entities, they differ

in approximately 5,000 bits, and if we then take a third vector at random, it differs

from each of the first two in approximately 5,000 bits. We can go on taking vectors at

random without needing to worry about running out of vectors—we run out of time

before we run out of vectors. We say that such vectors are unrelated. Measured in

standard deviations, the bulk of the space, and the unrelated vectors, are 100 STDs

away from any given vector.

This peculiar distribution of the space makes hyperdimensional representation ro-

bust. When meaningful entities are represented by 10,000-bit vectors, many of the bits

can be changed—more than a third—by natural variation in stimulus and by random

errors and noise, and the resulting vector can still be identified with the correct one, in

that it is closer to the original “error-free” vector than to any unrelated vector chosen

so far, with near certainty.

The robustness is illustrated further by the following example. Let us assume that

two meaningful vectors A and B are only 2,500 bits apart—when only 1/4 of their

bits differ. The probability of this happening by chance is about zero, but a system

can create such vectors when their meanings are related; more on such relations will

be said later. So let us assume that 1/3 of the bits of A are changed at random; will

the resulting “noisy” A vector be closer to B than to A—would it be falsely identified

with B? It is possible but most unlikely because the noisy vector would be 4,166 bits

away from B, on the average, and only 3,333 bits from A; the difference is 17 STDs.

The (relative) distance from the noisy A vector to B is given by d + e − 2de with d

9

= 1/4 and e = 1/3. Thus, adding e amount of noise to the first vector increases the

distance to the second vector by (1 − 2d)e on the average. Intuitively, most directions

that are away from A in hyperspace are also away from B.

The similarity of patterns is the flip-side of distance. We say that two patterns,

vectors, points are similar to each other when the distance between them is considerably

smaller than 0.5. We can now describe points of the space and their neighborhoods as

follows. Each point has a large “private” neighborhood in terms of distance: the volume

of space within, say, 1/3 or 3,333 bits is insignificant compared to the total space. The

rest of the space—all the unrelated “stuff”—becomes significant only when the distance

approaches 0.5. In a certain probabilistic sense, then, two points even as far as 0.45

apart are very close to each other. Furthermore, the “private” neighborhoods of any two

unrelated points have points in common—there are patterns that are closely related to

any two unrelated patterns. For example, a point C half-way between unrelated points

A and B is very closely related to both, and another half-way point D can be unrelated

to the first, C. This can be shown with as few as four dimensions: A = 0000, B = 0011,

C = 0001, and D = 0010. However, the “unusual” probabilities implied by these relative

distances require high dimensionality. This is significant when representing objects and

concepts with points of the hyperspace, and significantly different from what we are

accustomed to in ordinary three-dimensional space.

In addition to being related by similarity, patterns can relate to each another by

transformation—that is, by how one is transformed into another or how several patterns

are combined to form a new pattern, in a kind of pattern arithmetic. This is analogous

to what ordinary computers do: new patterns are created from existing ones by arith-

metic operations that are built into the computer’s circuits. This way of interpreting

the neural code is mostly unexplored. We have much to say about it below.

5.2 Hyperdimensional Memory

Memory is a vital part of an ordinary computer, and we would expect that something

like it would also be a part of any computer for emulating cognition. An ordinary

computer memory is an array of addressable registers, also called memory locations.

Each location holds a string of bits of a fixed length; the length is called the word size.

The contents of a location are made available for processing by probing the memory

with the location’s address, which likewise is a string of bits. An n-bit address can access

a memory with 2n locations, with memories of 230 or a thousand million eight-bit wide

locations becoming more and more common.

It is possible to build a memory for storing 10,000-bit vectors that is also addressed

with 10,000-bit vectors, although 210 000 locations is far too many ever to be built or

needed. In artificial neural-net research they are called associative memories. An asso-

ciative memory can work somewhat like an ordinary computer memory in that when

the pattern X is stored using the pattern A as the address, X can later be retrieved

by addressing the memory with A. Furthermore, X can be retrieved by addressing the

memory with a pattern A′ that is similar to A.

This mode of storage is called heteroassociative, to be contrasted with autoassocia-

tive. Both are based on the same mechanism, the difference being that autoassociative

storage is achieved by storing each pattern X using X itself as the address. This may

appear silly but in fact is useful because it allows the original stored X to be recovered

from an approximate or noisy version of it, X′, thus making the memory robust. Such

10

recovery typically takes several iterations (fewer than ten) where the address X′ is used

to retrieve X′′ is used to retrieve X′′′ . . . as the process converges to X. However, if

the amount of noise is too great—if X′ is too far from X—the original X will not be

recovered. The pattern X is called a point attractor, the region of space surrounding it

is called the basin of attraction, and the memory is referred to as content addressable.

The same kind of iteration to a noise-free X is not possible in heteroassociative

storage. If the memory is probed with a noisy address A′, the retrieved pattern X′

will usually have some noise relative to X. If the memory is then addressed with X′

there is no guarantee that anything useful will be retrieved. We therefore envisage a

cognitive computing architecture that relies primarily on autoassociative memory. It

will serve as an item memory or clean-up memory, which is discussed below.

5.3 Hyperdimensional Arithmetic

The arithmetic–logic unit (ALU) is an essential part of a computer. It has the circuits

for the computer’s built-in operations—its inherent capabilities. For example, it has

the adder circuit that produces the sum—a binary string for the sum—of two numbers

given to it as arguments. The ALU is a transformer of bit patterns.

The idea that also brains compute with a set of built-in operations is sound, al-

though trying to locate the equivalent of an ALU seems foolish, and so we will merely

look for operations on hyperdimensional patterns that could be used for computing.

We will view the patterns as vectors because we can then tap into the vast body of

knowledge about vectors, matrices, linear algebra, and beyond. This indeed has been

the tradition in artificial neural-net research, yet rich areas of high-dimensional repre-

sentation remain to be explored. By being thoroughly mathematical such exploration

may seem peripheral to neuroscience, but the shared goal of understanding the brain’s

computing can actually make it quite central. Time will tell.

We will start with some operations on real vectors (vectors with real-number com-

ponents), which are commonly used in artificial neural-net research.

Weighting with a constant is a very basic operation that is often combined with

other, more complex operations, such as addition. The math is most simple: each

component of the vector is multiplied with the same number, and the result is a vector.

The comparison of two vectors (e.g., with the cosine) is another basic operation,

and the resulting measure of similarity, a number, is often used as a weighting factor

in further computations.

A set of vectors can be combined by componentwise addition, resulting in a vec-

tor of the same dimensionality. To conform to the distributional assumptions about

the representation, the arithmetic-sum-vector is normalized, yielding a mean vector. It

is this mean-vector that is usually meant when we speak of the sum of a set of vec-

tors. The simplest kind of normalization is achieved with weighting. Other kinds are

achieved with other transformations of the vector components, for example by applying

a threshold to get a binary vector.

The sum (and the mean) of random vectors has the following important property: it

is similar to each of the vectors being added together. The similarity is very pronounced

when only a few vectors are added and it plays a major role in artificial neural-net

models. The sum-vector is a possible representation for the set that makes up the sum.

11

Subtracting one vector from another is accomplished by adding the vector’s com-

plement. The complement of a real vector is gotten by multiplying each component

with −1, and of a binary vector by flipping its bit (turning 0s into 1s and 1s into 0s).

Multiplication comes in several forms, the simplest being weighting, when a vector

is multiplied with a number as described above. Two vectors can be multiplied to form

a number, called the inner product, that can be used as a measure of similarity between

the vectors. The cosine of two vectors is a special case of their inner product. Another

way of multiplying two vectors yields a matrix called the outer product. It is used

extensively for adjusting the weights of a network and thus plays an important role in

many learning algorithms. Multiplication of a vector with a matrix, resulting in a vector,

is yet another kind, ubiquitous in artificial neural nets. Usually the result from a matrix

multiplication needs to be normalized; normalizing was mentioned above. Permutation

is the shuffling of the vector components and it can be represented mathematically by

multiplication with a special kind of matrix, called the permutation matrix, that is

filled with 0s except for exactly one 1 in every row and every column.

The above examples of multiplication differ from addition in one important respect,

they are heterogeneous: besides vectors they involve numbers and matrices. In contrast,

addition is homogeneous, as all participants are vectors of the same kind: we start with

vectors and end up with a vector of the same dimensionality.

A much more powerful representational system becomes possible when the oper-

ations also include multiplication that is homogeneous—in mathematical terms when

the system is closed under both addition and multiplication. Further desiderata include

that the

– multiplication is invertible, i.e., no information is lost,

– multiplication distributes over addition,

– multiplication preserves distance and, as a rule,

– product is dissimilar to the vectors being multiplied.

The product’s being dissimilar is in contrast with the sum that is similar to the vectors

that are added together. These desired properties of multiplication make it possible

to encode compositional structure into a hypervector and to analyze the contents of

composed hypervectors, as will be seen below. We now merely state that multiplication

operations of that kind exist for binary, real, and complex vectors, and will discus them

later.

The above examples of vector arithmetic suggest that computing in hyperdimen-

sional representation—with large random patterns—can be much like conventional

computing with numbers. We will next look at how the various operations can be used

to build a system of internal representations—what can be called a cognitive code. One

example has already been mentioned, namely, that a sum-vector can represent a set.

The cognitive equivalence of brains should then be sought in part in how representa-

tions are computed from one another rather than what the specific activity patterns,

the exact vectors, are. Thus we can think of hyperdimensional random vectors as the

medium that makes certain kinds of computing possible.

6 Constructing a Cognitive Code

Conventional computing uses a uniform system for representation that allows different

kinds of entities to be represented in the same way. This is accomplished with point-

12

ers, which are addresses into memory; they are also numbers that can take part in

arithmetic calculations. Pointers are the basis of symbolic computing.

Corresponding to traditional pointers we have hypervectors, corresponding to tradi-

tional memory we have content-addressable memory for hypervectors, and correspond-

ing to the ALU operations we have hyperdimensional arithmetic. How might we use

them for building a representational system for entities of various kinds?

6.1 Item Memory

When a pattern—a hypervector—is chosen to represent an entity it becomes mean-

ingful. It is recorded in an item memory for later reference, and so the item memory

becomes a catalog of meaningful patterns. The item memory is an autoassociative mem-

ory that recognizes patterns even when they contain some noise. When probed with

a noisy pattern, the memory puts out the noise-free stored pattern; its job is nearest-

neighbor search among the set of stored (meaningful) patterns. The item memory is

therefore also called a clean-up memory. Many “arithmetic” operations on patterns

produce approximate or noisy results that require cleaning up in order to recover the

original pattern. We will see examples of this below.

Some operations produce meaningful patterns that are very similar to each other

and can thereby interfere with each other’s retrieval from the item memory. For exam-

ple, the sum pattern is similar to the patterns that make up the sum. In such cases it

is possible to transform a pattern—map it into a different part of the space—before

storing it, so long as the mapping can later be reversed when needed. We will see

examples of this as well.

6.2 Representing Basic Entities with Random Vectors

Classical formal systems start with a set of primitives, that is, with “individuals” or

“atoms” and predicates. and build up a universe of discourse by using functions, rela-

tions, first-order logic, quantification, and other such means. We will borrow from this

tradition and assume a world with basic atomic entities. This assumption, however, is

for convenience—it is to get our representation story underway—rather than a com-

mitment to a world with basic atomic entities for cognitive systems to discover and

deal with.

The smallest meaningful unit of the cognitive code is a large pattern, a hypervec-

tor, a point in hyperspace. The atomic entities or individuals are then represented by

random points of the space. In fact, when we need to represent anything new that is

not composed of things already represented in the system, we simply draw a vector at

random from the space. When a vector is chosen to represent an entity in the system,

it is stored in the item memory for later reference.

Because of hyperdimensionality the new random vector will be unrelated to all the

vectors that already have meaning; its distance from all of them is very close to 5,000

bits. In mathematical terms, it is approximately orthogonal to the vectors that are

already in use. A 10,000-dimensional space has 10,000 orthogonal vectors but it has

a huge number of nearly orthogonal vectors. The ease of making nearly orthogonal

vectors is a major reason for using hyperdimensional representation.

13

6.3 Representing Sets with Sums

The mathematical notion of a set implies an unordered collection of elements. We

want to represent both the set and its elements with hypervectors. The operation for

combining the elements needs therefore to be commutative so that the order does not

matter. The simplest such operation is vector addition, and the sum-vector (or the

mean-vector) has the property of being similar to the vectors added together. Thus

the elements are “visible” in the representation of the set, and sets that share elements

give rise to similar sums.

If we want the vector for the set to look different from the vectors for the set’s

elements, we must map it into a different part of space before storing it in the item

memory. The mapping should be invertible so that the original sum-vector can be

recovered exactly, and it should preserve distance so that the memory can be probed

with partial and noisy sums. Mapping with multiplication has these properties and is

discussed below.

Elements are recovered from a stored sum-vector by first restoring the sum (with

the inverse mapping) and then probing the item memory with it for the best match.

The element that is found will then be subtracted off the sum-vector and the difference-

vector is used to probe the item memory, to recover another of the set’s elements. The

process is repeated to recover more and more of the sets’s elements. However, only

small sets can be analyzed into their elements in this way, and slightly larger sets can,

by accumulating a (partial) sum from the vectors recovered so far, and by subtracting

it from the original (total) sum before probing for the next element. However, if the

unmapped sum has been stored in the item memory, this method fails because probing

the (autoassociative) memory with the sum will always retrieve the sum rather than

any of its elements.

It is also possible to find previously stored sets (i.e., sums) that contain a specific

element by probing the memory with that element (with it’s vector). Before probing,

the element must be mapped into the same part of space—with the same mapping—as

sums are before they are stored. As above, after one vector has been recovered it can be

subtracted off the probe and the memory can be reprobed for another set that would

contain that particular element.

Besides being unordered, the strict notion of a set implies that no element is du-

plicated, and thus a set is an enumeration of the kinds of elements that went into it.

A slightly more general notion is multiset, also called a bag. It, too, is unordered, but

any specific kind of element can occur multiple times. We might then say that a set is

a collection of types whereas a multiset is a collection of tokens.

A multiset can be represented in the same way as a set, by the sum of the multiset’s

elements, and elements can be extracted from the sum also in the same way. In this case,

the frequent elements would be the first ones to be recovered, but reconstructing the

entire multiset from this representation would be difficult because there is no reliable

way to recover the frequencies of occurrence. For example, the normalized sum is not

affected by doubling the counts of all the elements in the multiset.

6.4 Two Kinds of Multiplication, Two Ways to Map

Existing patterns can give rise to new patterns by mappings of various kinds, also

called functions. One example of a function has already been discussed at length:

14

the (componentwise) addition of two or more vectors that produces a sum-vector or

a mean-vector. The following discussion about multiplication is in terms of binary

vectors, although the ideas apply much more generally.

6.4.1 Multiplication by Vector

A very basic and simple multiplication of binary vectors is by componentwise Exclusive-

Or (XOR). The XOR of two vectors has 0s where the two agree and it has 1s where

they disagree. For example, 0011 . . . 10 XOR 0101 . . . 00 = 0110 . . . 10. Mathematically,

the XOR is the arithmetic sum modulo 2. The (1,−1)-binary system, also called bipo-

lar, is equivalent to the (0, 1)-binary system when the XOR is replaced by ordinary

multiplication. We will use the notation A ∗ B for the multiplication of the vectors A

and B—for their product-vector. Here ∗ is the XOR unless otherwise noted.

The XOR commutes, A∗B = B∗A, and is its own inverse so that A∗A = O, where

O is the vector of all 0s (in algebra terms O is the unit vector because A ∗ O = A).

Since the XOR-vector has 1s where the two vectors disagree, the number of 1s in it

is the Hamming distance between the two vectors. By denoting the number of 1s in a

binary vector X with |X| we can write the Hamming distance d between A and B as

d(A,B) = |A ∗ B|.

Multiplication can be thought of as a mapping of points in the space. Multiplying

the vector X with A maps it to the vector XA = A∗X which is as far from X as there

are 1s in A (i.e., d(XA, X) = |XA ∗ X| = |(A ∗ X) ∗ X| = |A ∗ X ∗ X| = |A|). If A is a

typical (random) vector of the space, about half of its bits are 1s, and so XA is in the

part of the space that is unrelated to X in terms of the distance criterion. Thus we can

say that multiplication randomizes.

Mapping with multiplication preserves distance. This is seen readily by considering

XA = A ∗ X and YA = A ∗ Y , taking their XOR, and noting that the two As cancel

out thus:

XA ∗ YA = (A ∗ X) ∗ (A ∗ Y) = A ∗ X ∗ A ∗ Y = X ∗ Y

Since the XOR-vector is the same, the Hamming distance is the same: |XA ∗ YA| =

|X ∗ Y |. Consequently, when a set of points is mapped by multiplying with the same

vector, the distances are maintained—it is like moving a constellation of points bodily

into a different (and indifferent) part of the space while maintaining the relations

(distances) between them. Such mappings could play a role in high-level cognitive

functions such as analogy and the grammatical use of language where the relations

between objects is more important than the objects themselves.

In the example above we think of the vector A as a mapping applied to vectors X

and Y . The same math applies if we take two mappings A and B and look at their

effect on the same vector X: X will be mapped on to two vectors that are exactly as

far from each other as mapping A is from mapping B. Thus, when vectors represent

mappings we can say that the mappings are similar when the vectors are similar; similar

mappings map any vector to two similar vectors. Notice that any of the 210 000 vectors

of the representational space is potentially a mapping, so that what was said above

about the similarity of vectors in the space holds equally to similarity of mappings.

Because multiplication preserves distance it also preserves noise: if a vector contains

a certain amount of noise, the result of mapping it contains exactly the same noise.

If each of the multiplied vectors contains independent random noise, the amount of

noise in the product—its distance to the noise-free product-vector—is given by e =

15

f + g − 2fg, where f and g are the relative amounts of noise in the two vectors being

multiplied.

A very useful property of multiplication is that it distributes over addition. That

means, for example, that

A ∗ [X + Y + Z] = [A ∗ X + A ∗ Y + A ∗ Z]

The brackets [. . .] stand for normalization. Distributivity is invaluable in analyzing

these representations and in understanding how they work and fail.

Distributivity for binary vectors is most easily shown when they are bipolar. The

vector components then are 1s and −1s, the vectors are added together into an or-

dinary arithmetic-sum-vector, and the (normalized) bipolar-sum-vector is gotten by

considering the sign of each component (the signum function). The XOR becomes now

ordinary multiplication (with 1s and −1s), and since it distributes over ordinary ad-

dition, it does so also in this bipolar case. If the number of vectors added together is

even, we end up with a ternary system unless we break the ties for example by adding

a random vector.

6.4.2 Permutation as Multiplication

Permutations reorder the vector components and thus are very simple; they are also

very useful in constructing a cognitive code. We will denote the permutation of a vector

with a multiplication by a matrix (the permutation matrix Π), thus XΠ = ΠX. We

can also describe the permutation of n elements as the list of the integers 1, 2, 3, . . . ,

n in the permuted order. A random permutation is then one where the order of the list

is random—it is a permutation chosen randomly from the n! possible permutations.

As a mapping operation, permutation resembles vector multiplication: (1) it is

invertible, (2) it distributes over addition—in fact, it distributes over any componen-

twise operation including multiplication with the XOR—and as a rule (3) the result

is dissimilar to the vector being permuted. Because permutation merely reorders the

coordinates, (4) the distances between points are maintained just as they are in multi-

plication with a vector, thus ΠX ∗ ΠY = Π(X ∗ Y) and d(ΠX,ΠY) = |ΠX ∗ ΠY | =

|Π(X ∗ Y)| = |X ∗ Y | = d(X, Y).

Although permutations are not elements of the space of representations (they are

not n-dimensional hypervectors), they have their own rules of composition—permu-

tations are a rich mathematical topic in themselves—and they can be assessed for

similarity by how they map vectors. As above, we can map the same vector with two

different permutations and ask how similar the resulting vectors are: by permuting X

with Π and Γ , what is the distance between ΠX and ΓX, what can we say of the

vector Z = ΠX ∗ ΓX? Unlike above with multiplication by a vector, this depends on

the vector X (e.g., the 0-vector is unaffected by permutation), so we will consider the

effect on a typical X of random 0s and 1s, half of each. Wherever the two permutations

(represented as lists of integers) agree, they move a component of X to the same place

making that bit of Z a 0; let us denote the number of such places with a. In the n− a

remaining places where the two permutations disagree, the bits of ΠX and ΓX come

from different places in X and thus their XOR is a 1 with probability 1/2. We then have

that the probability of 1s in Z equals (n−a)/2. If the permutations Π and Γ are chosen

at random they agree in only one position (a = 1) on the average, and so the distance

between ΠX and ΓX is approximately 0.5; random permutations map a given point to

16

(in)different parts of the space. In fact, pairs of permutations (of 10,000 elements) that

agree in an appreciable number of places are extremely rare among all possible pairs

of permutations. Thus we can say that, by being dissimilar from one another, random

permutations randomize, just as does multiplying with random vectors as seen above.

6.5 Representing Sequences with Pointer Chains

Sequences are all-important for representing things that occur in time. We can even

think of the life of a system as one long sequence—the system’s individual history—

where many subsequences repeat approximately. For a cognitive system to learn from

experience it must be able to store and recall sequences.

One possible representation of sequences is with pointer chains or linked lists in

an associative memory. The sequence of patterns ABCDE . . . is stored by storing the

pattern B using A as the address, by storing C using B as the address, by storing D

using C as the address, and so forth; this is a special case of heteroassociative storage.

Probing the memory with A will then recall B, probing it with B will recall C, and

so forth. Furthermore, the recall can start from anywhere in the sequence, proceeding

from there on, and the sequence can be retrieved even if the initial probe is noisy,

as subsequent retrievals will converge to the noise-free stored sequence in a manner

resembling convergence to a fixed point in an autoassociative memory.

Although straightforward and simple, this way of representing sequences has its

problems. If two sequences contain the same pattern, progressing past it is left to

chance. For example, if ABCDE . . . and XY CDZ . . . have been stored in memory and

we start the recall with A, we would recall BCD reliably but could thereafter branch

off to Z because D would point somewhere between E and Z. Clearly, more of the

history is needed for deciding where to go from D. Longer histories can be included by

storing links that skip over elements of the sequence (e.g., by storing E using B as the

address) and by delaying their retrieval according to the number of elements skipped.

The element evoked by the more distant past would then bias the retrieval toward the

original sequence.

6.6 Representing Sequences by Permuting Sums

As with sets, several elements of a sequence can be represented in a single hypervec-

tor. This is called flattening or leveling the sequence. However, sequences cannot be

flattened with the sum alone because the order of the elements would be lost. Before

computing the vector sum, the elements must be “labeled” according to their position

in the sequence so that X one time step ago appears different from the present X, and

that the vectors for AAB and ABA will be different. Such labeling can be done with

permutations.

Let us first look at one step of a sequence, for example, that D is followed by E.

This corresponds to one step of heteroassociative storage, which was discussed above.

The order of the elements can be captured by permuting one of them before computing

their sum. We will permute the first and represent the pair with the sum

S = ΠD + E

17

and we will store S in the item memory. The entire sequence can then be stored by

storing each of its elements and each two-element sum such as S above in the item

memory. If we later encounter D we can predict the next element by probing the

memory not with D itself but with a permuted version of it, ΠD. It will retrieve S by

being similar to it. We can then retrieve E by subtracting ΠD from S and by probing

the memory with the resulting vector.

Here we have encoded the sequence step DE so that the previous element, D,

can be used to retrieve the next, E. However, we can also encode the sequence so

that the two previous elements C and D are used for retrieving E. In storing the

sequence we merely substitute the encoding of CD for D, that is to say, we replace

D with ΠC + D. After the substitution the S of the preceding paragraph becomes

S = Π(ΠC + D) + E = ΠΠC + ΠD + E, which is stored in memory. When CD

is subsequently encountered it allows us to make the probe ΠΠC + ΠD which will

retrieve S as above, which in turn is used to retrieve E as above.

We can go on like this, including more and more elements of the sequence in each

stored pattern and thereby including more and more of the history in them and in their

retrieval. Thus, with one more element included in the history, the vector that is stored

in the item memory encodes the sequence BCDE with S = ΠΠΠB+ΠΠC+ΠD+E,

and later when encountered with BCD we would start the retrieval of E by probing

the item memory with ΠΠΠB + ΠΠC + ΠD. By now the stored vectors contain

enough information to discriminate between ABCDE and XY CDZ so that E will be

retrieved rather than Z.

Even if it is possible to encode ever longer histories into a single vector, the pre-

diction of the next element does not necessarily keep on improving. For example, if

the sequence is kth order Markov, encoding more than k + 1 elements into a single

vector weakens the prediction. Furthermore, the capacity of a single binary vector sets

a limit on the length of history that it can represent reliably. How best to encode the

history for the purposes of prediction depends of course on the statistical nature of the

sequence.

A simple recurrent network can be used to produce flattened histories of this kind

if the history at one moment is permuted and then fed back and added to the vector

for the next moment. By normalizing the vector after each addition we actually get

a flattened history that most strongly reflects the most recent past and is unaffected

by the distant past. If we indicate normalization with brackets, the sequence ABCDE

will give rise to the sum

S = Π [Π [Π [ΠA + B] + C] + D] + E

= [[[ΠΠΠΠA + ΠΠΠB] + ΠΠC] + ΠD] + E

The last element E has equal weight to the history up to it, irrespective of the length

of the history—the distant past simply fades away. Some kind of weighting may be

needed to keep it from fading too fast, the proper rate depending on the nature of

the sequence. As before, the various permutations keep track of how far back in the

sequence each specific element occurs without affecting the relative contribution of that

element.

Several remarks about permutations are in order. An iterated permutation, such

as ΠΠΠ above, is just another permutation, and if Π is chosen randomly, iterated

versions of it appear random to each other with high probability. However, all per-

mutations are made of loops in which bits return to their original places after some

18

number of iterations (every bit returns at least once in n iterations), and so some care

is needed to guarantee permutations with good loops.

Pseudorandom-number generators are one-dimensional analogs. The simpler ones

get the next number by multiplying the previous number with a constant and trun-

cating the product to fit the computer’s word—they lop off the most significant bits.

Such generators necessarily run in loops, however long. Incidentally, the random per-

mutations of our computer simulations are made with random-number generators.

A feed-back circuit for a permutation is particularly simple: one wire goes out of

each component of the vector and one wire comes back in, the pairing is random, and

the outgoing signal is fed back after one time-step delay. The inverse permutation has

the same connections taken in the opposite direction.

6.7 Representing Pairs with Vector Multiplication

A pair is a basic unit of association, when two elements A and B correspond to each

other. Pairs can be represented with multiplication: in C = A∗B the vector C represents

the pair. If we know the product C and one of its elements, say A, we can find the

other by multiplying C with the inverse of A.

The XOR as the multiplication operation can “overperform” because it both com-

mutes (A XOR B = B XOR A) and is its own inverse (A XOR A = O). For example,

any pair of two identical vectors will be represented by the 0-vector. This can be avoided

with a slightly different multiplication that neither commutes nor is a self-inverse. As

with sequences, we can encode the order of the operands by permuting one of them

before combining them. By permuting the first we get

C = A ∗ B = ΠA XOR B

This kind of multiplication has all the desired properties: (1) it is invertible although

the right and the left-inverse operations are different, (2) it distributes over addition,

(3) it preserves distance, and (4) the product is dissimilar to both A and B. We can

extract the first element from C by canceling out the second and permuting back

(right-inverse of ∗),

Π−1(C XOR B) = Π−1((ΠA XOR B) XOR B) = Π−1ΠA = A

where Π−1 is the inverse permutation of Π , and we can extract the second element by

canceling out the permuted version of the first (left-inverse of ∗),

ΠA XOR C = ΠA XOR (ΠA XOR B) = B

Because of the permutation, however, this multiplication is not associative: (A∗B)∗C 6=

A ∗ (B ∗ C). For simplicity in the examples that follow, the multiplication operator ∗

will be the XOR.

6.8 Representing Bindings with Pairs

In traditional computing, memory locations—their addresses—represent variables and

their contents represent values. The values are set by assignment, and we say that it

binds a variable to a value. A number stored in one location can mean age and the same

19

number—the same bit pattern—stored in another location can mean distance. Thus

the meaningful entity is the address–value pair. The value can be many other things

besides a number. In particular, it can be a memory address. Data structures are built

from such pairs and they are the basis of symbolic representation and processing.

In holistic representation, the variable, the value, and the bound pair are all hyper-

vectors of the same dimensionality. If X is the vector for the variable x and A is the

vector for the value a, then the bound pair x = a can be represented by the product-

vector X ∗A. It is dissimilar to both X and A but either one can be recovered from it

given the other. Unbinding means that we take the vector for the bound pair and find

one of its elements, say A, by multiplying with the other, as seen above. In cognitive

modeling, variables are often called roles and values are called fillers.

6.9 Representing Data Records with Sets of Bound Pairs

Complex objects of ordinary computing are represented by data records composed

of fields, and by pointers to such data records. Each field in the record represents a

variable (a role). The roles are implicit—they are implied by the location of the field in

the record. Holistic representation makes the roles explicit by representing them with

vectors. Vectors for unrelated roles, such as name and age, can be chosen at random.

The role x with the filler a, i.e., x = a, will then be represented by X ∗ A as shown

above.

A data record combines several role–filler pairs into a single entity. For example, a

record for a person might include name, sex, and the year of birth, and the record for

Mary could contain the values ‘Mary Myrtle’, female, and 1966. Its vector representa-

tion combines vectors for the variables and their values—name (X), sex (Y), year of

birth (Z), ‘Mary Myrtle’ (A), female (B), and 1966 (C)—by binding each variable to

its value and by adding the three resulting vectors into the holistic sum-vector H :

H = X ∗ A + Y ∗ B + Z ∗ C

The vector H is self-contained in that it is made of the bit patterns for the variables

and their values, with nothing left implicit. Being a sum, H is similar to each of the

three pairs, but the pairs by being products “hide” the identity of their elements so

that H is dissimilar to each of A,B, C, X, Y, Z. However, the information about them

is contained in H and can be recovered by unbinding. For example, to find the value

of x in H we multiply H with (the inverse of) X and probe the item memory with the

result, retrieving A. The math works out as follows:

X ∗ H = X ∗ (X ∗ A + Y ∗ B + Z ∗ C)

= X ∗ X ∗ A + X ∗ Y ∗ B + X ∗ Z ∗ C

= A + R1 + R2

where multiplication by X is distributed over the three vectors that make up the sum,

and where the Xs in X ∗ X ∗ A cancel out each other. The result of the unbinding (of

multiplying with X) can thus be expressed as the sum of three vectors, A, R1, and

R2. Of these, A has been stored in the item memory, whereas nothing similar to R1 or

R2 has been and so they act as random noise. For example, by being a product, R1 is

dissimilar to each of X, Y , and B. Therefore, X ∗H retrieves A from the item memory.

Notice that unbinding a pair such as X ∗ A requires no clean-up.

20

Holistic representation accommodates the adding of “fields” into a data record.

Supplementing H with two more variables u and v with values d and e gives us a

sum-vector X ∗A + Y ∗B + Z ∗C + U ∗D + V ∗E that is very similar to H because it

shares three pairs with H . In other words, we need not worry about aligning the fields

of a record because each “field” spans the entire vector.

6.10 Representing Substitution with a Computed Mapping

The power of the human mind comes largely from our ability to understand things by

analogy. In computing terms it means substituting one set of particulars for an other

within a framework. The frameworks of traditional computing are record structures—

that is, the variables or roles—and the particulars are the values or fillers.

In holistic representation, substitution can be done with multiplication. We have

seen that X ∗ A can represent the binding of the variable x to the value a. If we want

to substitute d for a—to bind d to the variable that a is bound to—we can recover the

variable first by unbinding with A, (X ∗A) ∗ A = X, and then bind the result to D to

get X ∗D. This can be written as ((X ∗A) ∗A) ∗D based on how we arrived at X, and

it equals (X ∗A)∗ (A∗D). Thus the substitution of d for a is affected by multiplication

with A∗D—that is, by mapping the previously bound pair with a pair that represents

the substitution.

This is a simple case of computing a mapping. The product-vector A∗D can be used

as a mapping that performs a substitution. The ability to compute such mappings is a

key feature of hyperdimensional representation and it is due to the absence of implicit

information. Moreover, these formulas are a way of saying that x = a and a = d

equals x = d while blurring the distinction between variables and values. Such blurring

actually seems cognitively more realistic than the strict distinction between variables

and values that is usually made in formal systems.

6.11 Multiple Substitutions with a Holistic Mapping

The idea of a computed mapping can be taken further. Here we consider two records

with identical roles but different fillers—such as in two records of a database. One is

the H above and the other fills the same roles x, y, z with d, e, f and thus is encoded

by

K = X ∗ D + Y ∗ E + Z ∗ F

When the fillers A, B, C, D, E, F are dissimilar to one another, the vectors H and

K will be dissimilar. However, we can compute a mapping M that transforms one to

the other:

M = H ∗ K

(i.e., H ∗M = K and K ∗M = H). The analysis of M shows that it contains the three

matched pairs of fillers—namely, it contains A ∗ D + B ∗ E + C ∗ F , we will denote

it with M ′—plus other terms that act as noise. Therefore M ′ is similar to M . From

the three pairs of substitutions we can thus compute the mapping M ′ that maps one

holistic record approximately to the other: from H ∗ M = H ∗ (M ′ + noise) = K we

get that H ∗ M ′ + H ∗ noise = K and hence

H ∗ M ′ = H ∗ (A ∗ D + B ∗ E + C ∗ F) = K′ ≈ K

21

The exact K would then be recovered by probing the item memory with K′. Again we

will emphasize that such mapping is possible because all the information is encoded into

the holistic record—no information is implicit, making the mapping a simple matter

of hyperdimensional vector arithmetic.

So as not to paint too rosy a picture of substituting within a record we need to point

out cases where it works less well if at all. Consider the mapping between two records

that agree in two roles and disagree in one, where the respective values are a, b, c and

a, b, f . Only one substitution is needed, and so the mapping vector M ′ becomes C ∗F .

When applied to H we get that

H ∗ M ′ = H ∗ (C ∗ F)

= X ∗ A ∗ C ∗ F + Y ∗ B ∗ C ∗ F + Z ∗ C ∗ C ∗ F

= noise + noise + Z ∗ F

which still resembles X ∗ A + Y ∗ B + Z ∗ F but the two bound pairs at which the

records agree have been lost.

7 Three Examples with Cognitive Connotations

Modeling the brain’s representations with holistic hypervectors has been justified on

several grounds: the size of neural circuits, the brain’s tolerance for variation and noise

in the input signal, robustness against component failure, and the match between

our subjective judgments of similarity of concepts and the distribution of distances

in hyperspace. Here we see that the modeling is further justified by hyperdimensional

arithmetic—by its producing effects that suggest cognitive functions.

We are still some way from a fully worked-out architecture for cognitive computing.

The examples below are meant to serve not as a recipe but as a source of ideas for

future modelers. Worth pointing out is the likeness of hyperdimensional computing to

conventional computing: things are represented with vectors, and new representations

are computed from existing ones with (arithmetic) operations on the vectors. This idea

is central and should be taken to future models.

7.1 Context Vectors as Examples of Sets; Random Indexing

Context vectors are a statistical means for studying relations between words of a lan-

guage. They are high-dimensional representations of words based on their contexts.

They provide us with an excellent example of random initial vectors giving rise to

compatible systems.

The idea is that words with similar or related meanings appear in the same and

similar contexts and therefore should give rise to similar vectors. For example, the

vectors for synonyms such as ‘happy’ and ‘glad’ should be similar, as should be the

vectors for related words such as ‘sugar’ and ‘salt’, whereas the vectors for unrelated

words such as ‘glad’ and ‘salt’ should be dissimilar. This indeed is achieved with all

context vectors described below, including the ones that are built from random vectors.

The context vector for a word is computed from the contexts in which the word

occurs in a large body of text. For any given instance of the word, its context is the

surrounding text, which is usually considered in one of two ways: (1) as all the other

22

words within a short distance from where the word occurs, referred to as a context

window, or (2) as a lump, referred to as a document. A context window is usually

narrow, limited to half a dozen or so nearby words. A document is usually several

hundred words of text on a single topic, a news article being a good example. Each

occurrence of a word in a text corpus thus adds to the word’s context so that massive

amounts of text, such as available on the Internet, can provide a large amount of

context information for a large number of words. When a word’s context information is

represented as a vector, it is called that word’s context vector. One way to characterize

the two kinds of context vectors is that one represents the multiset of words (a bag of

words) in all the context windows for a given word, and the other kind represents the

multiset of documents in which a given word appears.

The context information is typically collected into a large matrix of frequencies

where each word in the vocabulary has its own row in the matrix. The columns refer

either to words of the vocabulary (one column per word) or to documents (one col-

umn per document). The rows are perfectly valid context vectors as such, but they

are usually transformed into better context vectors, in the sense that the distances be-

tween vectors corresponds more closely to similarity of meanings. The transformations

include logarithms, inverses, and frequency cut-offs, as well as principal components

of the (transformed) frequency matrix. Perhaps the best known method is Latent Se-

mantic Analysis (LSA), which uses singular-value decomposition and reduces the di-

mensionality of the data by discarding a large number of the least significant principal

components.

Random-vector methods are singularly suited for making context vectors, and they

even overcome some drawbacks of the more “exact” methods. The idea will be demon-

strated when documents are used as the contexts in which words occur. The standard

practice of LSA is to collect the word frequencies into a matrix that has a row for

each word of the vocabulary (for each “term”) and a column for each document of the

corpus. Thus for each document there is a column that shows the number of times that

the different words occur in that document. The resulting matrix is very sparse because

most words don’t occur in most documents. For example, if the vocabulary consists of

100,000 words, then a 500-word document—a page of text—will have a column with

at most 500 non-0s (out of 100,000). A fairly large corpus could have 200,000 docu-

ments. The resulting matrix of frequencies would then have 100,000 rows and 200,000

columns, and the “raw” context vectors for words would be 200,000-dimensional. LSA

reconstructs the frequency matrix from several hundred of the most significant princi-

pal components arrived at by singular-value decomposition of the 100,000-by-200,000

matrix. One drawback is the computational cost of extracting principal components

of a matrix of that size. Another, more serious, is encountered when data are added,

when the documents grow into the millions. Updating the context vectors—computing

the singular-value decomposition of an ever larger matrix—becomes impractical.

Random-vector methods can prevent the growth of the matrix as documents are

added. In a method called Random Indexing, instead of collecting the data into a

100,000-by-200,000 matrix, we collect it into a 100,000-by-10,000 matrix. Each word

in the vocabulary still has its own row in the matrix, but each document no longer

has its own column. Instead, each document is assigned a small number of columns at

random, say, 20 columns out of 10,000, and we say that the document activates those

columns. A 10,000-dimensional vector mostly of 0s except for the twenty 1s where the

activated columns are located is called that document’s random index vector.

23

When the frequencies are collected into a matrix in standard LSA, each word in

a document adds a 1 in the column for that document, whereas in random indexing

each word adds a 1 in all 20 columns that the document activates. Another way of

saying it is that each time a word occurs in the document, the document’s random

index vector is added to the row corresponding to that word. So this method is very

much like the standard method of accumulating the frequency matrix, and it produces

a matrix whose rows are valid context vector for words, akin to the “raw” context

vectors described above.

The context vectors—the rows—of this matrix can be transformed by extracting

dominant principal components, as in LSA, but such further computing may not be

necessary. Context vectors nearly as good as the ones from LSA have been obtained

with a variant of random indexing that assigns each document a small number (e.g.,

10) of “positive” columns and the same number of “negative” columns, at random. In

the positive columns 1s are added as above, whereas in the negative columns 1s are

subtracted. The random index vectors for documents are now ternary with a small

number of 1s and −1s placed randomly among a large number of 0s, and the resulting

context vectors have a mean of 0—their components add up to 0.

Several things about random indexing are worth noting. (1) Information about

documents is distributed randomly among the columns. In LSA, information starts

out localized and is distributed according to the dominant principal components. (2)

Adding documents—i.e., including new data—is very simple: all we need to do is to

select a new set of columns at random. This can go on into millions of documents

without needing to increase the number of columns in the matrix. In LSA, columns

need to be added for new documents, and singular-value decomposition needs to be

updated. (3) Random indexing can be applied equally to the vocabulary so that the

matrix will have fewer rows than there are words in the vocabulary, and that new words

will not require adding rows into the matrix. In that case individual rows no longer

serve as context vectors for words, but the context vectors are readily computed by

adding together the rows that the word activates. (4) Semantic vectors for documents

can be computed by adding together the columns that the documents activate. (5)

Random indexing can be used also when words in a sliding context window are used

as the context. (6) And, of course, all the context vectors discussed in this section

capture meaning, in that words with similar meaning have similar context vectors and

unrelated words have dissimilar context vectors.

Two further comments of a technical nature are in order, one mathematical, the

other linguistic. We have seen above that the sum-vector of high-dimensional random

vectors is similar to the vectors that make up the sum and it is therefore a good

representation of a set. When the context of a word is defined as a set of documents,

as above, it is naturally represented by the sum of the vectors for those documents.

That is exactly what random indexing does: a context vector is the sum of the random

index vectors for the documents in which the word occurs. Thus two words that share

contexts share many documents, and so their context vectors share many index vectors

in their respective sums, making the sums—i.e., the context vectors—similar.

The other comment concerns the linguistic adequacy of context vectors. The con-

texts of words contain much richer linguistic information than is captured by the con-

text vectors in the examples above. In fact, these context vectors are linguistically

impoverished and crude—with language we can tell a story, with a bag of words we

might be able to tell what the story is about. The technical reason is that only one op-

eration is used for making the context vectors, namely, vector addition, and so only sets

24

can be represented adequately. However, other operations on vectors besides addition

have already been mentioned, and they can be used for encoding relational information

about words. The making of linguistically richer context vectors is possible but mostly

unexplored.

To sum up, high-dimensional random vectors—that is, large random patterns—can

serve as the basis of a cognitive code that captures regularities in data. The simplicity

and flexibility of random-vector methods can surpass those of more exact methods,

and the principles apply to a wide range of tasks—beyond the computing of context

vectors. They are particularly apt for situations where data keep on accumulating.

Thus random-vector-based methods are good candidates for use in incremental on-line

learning and in building a cognitive code.

7.2 Learning to Infer by Holistic Mapping; Learning from Example

Logic deals with inference. It lets us write down general statements—call them rules—

which, when applied to specific cases, yield specific statements that are true. Here we

look at such rules in terms of hyperdimensional arithmetic.

Let us look at the rule ‘If x is the mother of y and y is the father of z then x is the

grandmother of z.’ If we substitute the names of a specific mother, son, and baby for

x, y, and z, we get a true statement about a specific grandmother. How might the rule

be encoded in distributed representation, and how might it be learned from specific

examples of it?

Here we have three relations, ‘mother of’, ‘father of’, and ‘grandmother of’; let

us denote them with the letters M, F, and G. Each relation has two constituents or

arguments; we will label them with subscripts 1 and 2. That x is the mother of y can

then be represented by Mxy = M1 ∗ X + M2 ∗ Y . Binding X and Y to two different

vectors M1 and M2 keeps track of which variable, x or y, goes with which of the

two arguments, and the sum combines the two bound pairs into a vector representing

the relation ‘mother of’. Similarly, Fyz = F1 ∗ Y + F2 ∗ Z for ‘father of’ and Gxz =

G1 ∗ X + G2 ∗ Z for ‘grandmother of’.

Next, how to represent the implication? The left side—the antecedent—has two

parts combined with an ‘and’; we can represent it with addition: Mxy +Fyz. The right

side—the consequent Gxz—is implied by the left; we need an expression that maps the

antecedent to the consequent. With XOR as the multiplication operator, the mapping

is effected by the product-vector

Rxyz = Gxz ∗ (Mxy + Fyz)

So the mapping Rxyz represents our rule and it can be applied to specific cases of

mother, son, baby.

Now let us apply the rule. We will encode ‘Anna is the mother of Bill’ with Mab =

M1 ∗ A + M2 ∗ B and ‘Bill is the father of Cid’ with Fbc = F1 ∗ B + F2 ∗ C, combine

them into the antecedent Mab + Fbc, and map it with the rule Rxyz:

Rxyz ∗ (Mab + Fbc) = Gxz ∗ (Mxy + Fyz) ∗ (Mab + Fbc)

The resulting vector, we will call it G′

ac, is more similar to Gac (i.e., more similar to

G1∗A+G2∗C) than to any other vector representing a relation of these same elements,

thus letting us infer that Anna is the grandmother of Cid.

25

The above example of inference can also be interpreted as learning from example.

It uses a traditional formal framework with variables and values to represent relations,

merely encoding them in distributed representation. The traditional framework relies

on two-place relations and on the variables x, y, and z to identify individuals across the

relations that make up the rule. However, because variables in distributed representa-

tion are represented explicitly by vectors, just as individuals are, the encoding of the

rule ‘mother–son–baby implies grandmother’, and of an instance of it involving Anna,

Bill, and Cid, are identical in form. We can therefore regard the rule itself as a specific

instance of it(self); we can regard it as an example. Thus we can interpret the above

description as computing from one example or instance of mother–son–baby implying

grandmother another instance of grandmother. It is remarkable that learning from a

single example would lead to the correct inference.

We can go further and learn from several examples. If one example gives us the

mapping (rule) Rxyz and we have another example involving u, v, and w—think of

them as a second set of specific individuals—we can recompute the same “rule” to get

Ruvw = Guw ∗ (Muv + Fvw). If we combine these two rules simply by adding them

together we get an improved rule based on two examples: R = Rxyz + Ruvw . The new

rule is better in the sense that if applied to—multiplied by—the antecedent involving

Anna, Bill, and Cid, as above, we get a vector G′′

ac that improves upon G′

ac by being

closer to Gac. We can go on adding examples, further improving the result somewhat.

This can also be thought of as learning by analogy. The thing to note is that everything

is done with simple arithmetic on random hypervectors.

So as not to give the impression that all kinds of inference will work out as simply

as this, we need to point out when they don’t. Things work out here because the

relations in the antecedent and the consequent are different. However, some of them

could be the same. Examples of such include (1) ‘if x is the mother of y and y is

a brother of z (and not half-bother) then x is the mother of z,’ and the transitive

relation (2) ‘if x is a brother of y and y is a brother of z (different from x) then x

is a brother of z.’ When these are encoded in the same way as the mother–son–baby

example above and the resulting rule applied to a, b, and c, the computed inference

correlates positively with the correct inference but a relation that is a part of the

antecedent—a tautology—correlates more highly; in both cases ‘b is a brother of c’

wins over the intended conclusion about a’s relation to c. An analysis shows the reason

for the failure. It shows that the mapping rule includes the identity vector, which then

takes the antecedent into the computed inference. The analysis is not complicated but

it is lengthy and is not presented here.

A major advantage of distributed representation of this kind is that it lends itself

to analysis. We can find out why something works or fails, and what could be done to

work around a failure.

7.3 What is the Dollar of Mexico?

Much of language use, rather than being literal, is indirect or figurative. For example,

we might refer to the peso as the Mexican dollar because the two have the same role

in their respective countries. For the figurative expression to work, we must be able to

infer the literal meaning from it. That implies the need to compute the literal meaning

from the figurative.

26

The following example suggests that the inference can be achieved with holistic

mapping. We will encode the country (x) and its monetary unit (y) with a two-field

“record.” The holistic record for the United States then is A = X ∗ U + Y ∗ D and

for Mexico it is B = X ∗ M + Y ∗ P , where U, M, D, P are random 10,000-bit vectors

representing United States, Mexico, dollar, and peso, respectively.

From the record for United States A we can find its monetary unit by unbinding

(multiplying it) with the variable Y . We can also find what role dollar plays in A by

multiplying it with the dollar D: D∗A = D∗X ∗U +D∗Y ∗D = D∗X ∗U +Y ≈ Y . If

we take the literal approach and ask what role dollar plays in the record for Mexico B

we get nonsense: D ∗B = D ∗X ∗M +D ∗Y ∗P is unrecognizable. But we have already

found out above the role that dollar plays in another context, namely the role Y , and so

we can use it to unbind B and get P ′ that is similar to P for peso. The interesting thing

is that we can find the Mexican dollar without ever explicitly recovering the variable

Y ; we simply ask what in Mexico corresponds to the dollar in the United States? This

question is encoded with (D∗A)∗B, and the result approximately equals P . The math

is an exercise in distributivity, with vectors occasionally canceling out each other, and

is given here in detail:

(D ∗ A) ∗ B = (D ∗ (X ∗ U + Y ∗ D)) ∗ (X ∗ M + Y ∗ P)

= (D ∗ (X ∗ U) + D ∗ (Y ∗ D)) ∗ (X ∗ M + Y ∗ P)

= (D ∗ X ∗ U + D ∗ Y ∗ D) ∗ (X ∗ M + Y ∗ P)

= (D ∗ X ∗ U + Y) ∗ (X ∗ M + Y ∗ P)

= (D ∗ X ∗ U + Y) ∗ (X ∗ M) + (D ∗ X ∗ U + Y) ∗ (Y ∗ P)

= ((D ∗ X ∗ U) ∗ (X ∗ M) + Y ∗ (X ∗ M))

+ ((D ∗ X ∗ U) ∗ (Y ∗ P) + Y ∗ (Y ∗ P))

= (D ∗ X ∗ U ∗ X ∗ M + Y ∗ X ∗ M) + (D ∗ X ∗ U ∗ Y ∗ P + Y ∗ Y ∗ P)

= (D ∗ U ∗ M + Y ∗ X ∗ M) + (D ∗ X ∗ U ∗ Y ∗ P + P)

The only meaningful term in the result is P . The other three terms act as random

noise.

7.3.1 Cognitive Structure Based on Prototypes

The last two examples let us question the primacy of variables in cognitive represen-

tation. We have learned to think in abstract terms such as country and monetary unit

and to represent more concrete objects in terms of them, as above, but we can also

think in terms of prototypes and base computing on them, accepting expressions such

as ‘the dollar of Mexico’ and ‘the dollar of France’ as perfectly normal. In fact, this is

more like how children start out talking. Mom and Dad are specific persons to them,

and somebody else’s mother and father become understood in terms of my relation

to Mom and Dad. The instances encountered early in life become the prototypes, and

later instances are understood in terms of them. This kind of prototyping is very ap-

parent to us when as adults we are learning a second language. To make sense of what

we hear or read, we translate into our native tongue. Even after becoming fluent in the

new language, idioms of the mother tongue can creep into our use of the other tongue.

To reflect this view, we can leave out X and Y from the representations above

and encode United States as a prototype, namely, A0 = U + D. The holistic record

27

for Mexico is then encoded in terms of it, giving B0 = U ∗ M + D ∗ P . The dollar of

Mexico now becomes simply D ∗B0 = D ∗ (U ∗M +D ∗P) = D ∗U ∗M + D ∗D ∗P =

D ∗ U ∗ M + P = P ′ ≈ P , with U and D taking the place of the variables X and Y .

Using U and D as variables, we can in turn interpret ‘the peso of France’ exactly as

‘the dollar of Mexico’ is interpreted in the original example.

8 Looking Back

Artificial neural-net associative memories were the first cognitive models to embrace

truly high dimensionality and to see it as a possible asset. The early models were the

linear correlation-matrix memories of Anderson [1] and Kohonen [2] that equate stored

patterns with the eigenvectors of the memory (weight) matrix. Later models were made

nonlinear with the application of a squashing function to the memory output vector,

making stored patterns into point attractors. The best-known of these models is the

Hopfield net [3]. They have one matrix of weights, which limits the memory storage

capacity—the number of patters that can be stored—to a fraction of the dimensionality

of the stored vectors. By adding a fixed layer (a matrix) of random weights, the Sparse

Distributed Memory [4] allows the building of associative memories of arbitrarily large

capacity. The computationally most efficient implementation of it, by Karlsson [5], is

equivalent to the RAM-based WISARD of Aleksander et al. [6]. Representative early

work on associative memories appears in a 1981 book edited by Hinton and Anderson

[7], more recent by Hassoun [8], and more detailed analyses of these memories have

been given by Kohonen [9] and Palm [10].

The next major development is marked by the 1990 special issue of Artificial Intel-

ligence (vol. 46) on connectionist symbol processing edited by Geoffrey Hinton. In it

Hinton [11] argues for the necessity of a reduced representation if structured informa-

tion such as hierarchies were to be handled by neural nets. Smolensky [12] introduced

tensor-product variable binding, which allows the (neural-net-like) distributed repre-

sentation of traditional symbolic structures. However, the tensor product carries all

low-level information to each higher level at the expense of increasing the size of the

representation—it fails to reduce. This problem was solved by Plate in the Holographic

Reduced Representation (HRR) [13]. The solution compresses the n×n outer product

of two real vectors of dimensionality n into a single n-dimensional vector with circular

convolution, it being the multiplication operator. The method requires a clean-up mem-

ory, to recover information that is lost when the representation is reduced. The problem

of clean-up had already been solved, in theory at least, by autoassociative memory. We

now have a system of n-dimensional distributed representation with operators for addi-

tion and multiplication, that is closed under these operations and sufficient for encoding

and decoding of compositional structure, as discussed above.

Plate also discusses HRR with complex vectors [14]. The addition operator for them

is componentwise addition, as above, and the multiplication operator is componentwise

multiplication. HRR for binary vectors is called the Spatter Code [15] for which com-

ponentwise XOR is an appropriate multiplication operator; for the equivalent bipolar

spatter code it is componentwise multiplication, making the spatter code equivalent to

the complex HRR when the “complex” vector components are restricted to the values

1 and −1.

The circular convolution includes all n × n elements of the outer-product matrix.

However, Plate points out that multiplication can also be accomplished with a subset

28

of the elements. The simplest such has been used successfully by Gayler [16] by tak-

ing only the n diagonal elements of the outer-product matrix, making that system a

generalization of the bipolar spatter code.

Permutation is a very versatile multiplication operator for hyperdimensional vec-

tors, as discussed above. Rachkovskij and Kussul use it to label the variables of a

relation [17], and Kussul and Baidyk mark positions of a sequence with permutations

[18]. Gayler [16] uses permutations for “hiding” information in holographic represen-

tation. Rachkovskij and Kussul [17] use them for Context-Dependent Thinning, which

is a method of normalizing binary vectors—that is, of achieving a desired sparseness

in vectors that are produced by operations such as addition.

When a variable that is represented with a permutation is bound to a value that

is represented with a hypervector, the inverse permutation will recover the value vec-

tor. Similarly, when a holistic record of several variables is constructed as a sum of

permuted values—each variable having its own random permutation—the inverse per-

mutations will recover approximate value vectors. However, there is no practical way

to compute the permutations—to find the variables—from the holistic record and to

determine what variable is associated with a given value. In that sense binding with

vector multiplication and with permutation are very different.

Another thread in the development of these models leads to Latent Semantic Anal-

ysis (LSA), which is described in detail by Landauer and Dumais [19]. LSA takes a

large sparse matrix of word frequencies in documents and represents it with several

hundred dominant principal components of the (transformed) frequency matrix. The

desire to avoid the computational task of extracting principal components inspired

Random Indexing by Kanerva et al. [20], the idea of which is discussed above. Random

indexing is a special case of Random Projections by Papadimitriou et al. [21] and Ran-

dom Mappings by Kaski [22]. All are examples of low-distortion geometric embedding,

which has been reviewed by Indyk [23].

Language is a prime motivator and a rich source of ideas and challenges for hyper-

dimensional models. The original word-space model of Schütze [24] and the Hyperspace

Analogue to Language (HAL) model of Lund et al. [25], as well as LSA, are here called

“exact” because they do not distribute the frequency information with random vectors.

Sahlgren’s [26] results at capturing word meaning with random indexing are compara-

ble. However, context vectors that are based solely on the co-occurrence of words ignore

a major source of linguistic information, namely, grammar. First attempts at includ-

ing grammar have been made by encoding word order into the context vectors. Jones

and Mewhort [27] do it with circular convolution applied to real-valued HRR-vectors,

Sahlgren et al. [28] do it with permutations applied to ternary random-index vectors.

Notice that both use multiplication—both circular convolution and permutation are

multiplication operators. Widdows [29] covers numerous studies that represent word

meaning with points of a high-dimensional space.

We can conclude from all of the above that we are dealing with very general proper-

ties of high-dimensional spaces. There is a whole family of mathematical systems that

can be used as the basis of computing, referred to here as hyperdimensional computing

and broadly covered under holographic reduced representation, the definitive work on

which is Plate’s book [14] based on his 1994 PhD thesis.

29

9 Looking Forth; Discussion

In trying to understand brains, the most fundamental questions are philosophical: How

does the human mind arise from the matter we are made of? What makes us so special,

at least in our own eyes? Can we build robots with the intelligence of, say, a crow or

a bear? Can we build robots that will listen, understand, and learn to talk?

According to one view, such questions will be answered in the positive once we

understand how brains compute. The seeming paradox of the brain’s understanding its

own understanding is avoided by modeling. If our theories allow us to build a system

whose behavior is indistinguishable from the behavior of the intended “target” system,

we have understood that system—the theory embodies our understanding of it. This

view places the burden on modeling.

This paper describes a set of ideas for cognitive modeling, the key ones being very

high dimensionality and randomness. They are a mathematical abstraction of certain

apparent properties of real neural systems, and they are amenable to building into

cognitive models. It is equally important that cognition, and behavior in general, are

described well at the phenomenal level with all their subtleties, for example, how we

actually think—or fail to—how we remember, forget, and confuse, how we learn, how

we use language, what are the concepts we use, their relation to perception. With all

of it being somehow produced by our brains, the modeler’s task is to find a plausible

explanation in underlying mechanisms. That calls for a deep understanding of both

the phenomenon and the proposed mechanisms.

Experimental psychologists have a host of ways of testing and measuring behavior.

Examples include reaction time, memory recognition and recall rates, confusions and

errors introduced by priming and distractions, thresholds of perception, judgments of

quantity, eye-tracking, and now also imaging brain activity. We can foresee the testing

of hyperdimensional cognitive codes in a multitude of psychological experiments.

If you have never doubted your perceptions, visit a psychophysicist—or a magician.

It is amazing how our senses are fooled. All the effects are produced by our nervous

systems and so tell of its workings. They seriously challenge our cognitive modeling,

and serve as a useful guide. Hyperdimensional representation may explain at least some

illusions, and possibly our bistable perception of the Necker cube.

Language has been cited above as a test-bed for ideas on representation, for which

it is particularly suited on several accounts. The information has already been filtered

by our brains and encoded into letters, words, sentences, passages, and stories. It is

therefore strongly influenced by the brain’s mechanisms, thus reflecting them. Linguists

can tell us about language structure, tolerance of apparent ambiguity, stages of learning,

literal and figurative uses, slips of the tongue, and much more, presenting us with a host

of issues to challenge our modeling. Data are available in ever-increasing amounts on

the Internet, in many languages, easily manipulated by computers. If we were to limit

the development and testing of ideas about the brain’s representations and processing

to a single area of study, language would be an excellent choice. Our present models

barely scratch the surface.

Neuroscience can benefit from mathematical ideas about representation and pro-

cessing. Work at the level of individual neurons cannot tell us much about higher

mental functions, but theoretical—i.e., mathematical—considerations can suggest how

an individual component or a circuit needs to work to achieve a certain function. The

mathematical modeler, in turn, can follow some leads and dismiss others by looking at

the neural data.

30

It has been pointed out above that no two brains are identical yet they can be equiv-

alent. The flip side is individual differences, which can be explained by randomness. An

individual’s internal code can be especially suited or unsuited for some functions simply

by chance. This is particularly evident in the savant’s feats of mental arithmetic, which

to a computer engineer is clearly a matter of the internal code. The blending of sensory

modalities in synesthesia is another sign of random variation in the internal code. The

specifics of encoding that would result in these and other anomalies of behavior and

perception are yet to be discovered—as are the specifics that lead to normal behavior!

The thesis of this paper is that discovering the code is a deeply mathematical problem,

The mathematics of hyperdimensional representation as discussed above is basic

to mathematicians, and the models based on it will surely fall short of explaining the

brain’s computing. Yet they show promise and could pave the way to more comprehen-

sive models based on deeper mathematics. The problem is in identifying mathematical

systems that mirror ever more closely the behavior of cognitive systems we want to

understand. We can hope that some mathematicians become immersed in the problem

and will show us the way.

Of the ideas discussed in this paper, random indexing is ready for practical ap-

plication. The example here is of language, but the method can be used in any task

that involves a large and ever increasing sparse matrix of frequencies. The analysis of

dynamic networks of many sorts—social networks, communications networks—come

readily to mind, but there are many others. The benefit is in being able to accommo-

date unpredictable growth in data within broad limits, in a fixed amount of computer

memory by distributing the data randomly and by reconstructing it statistically when

needed.

The ideas have been presented here in terms familiar to us from computers. They

suggest a new breed of computers that, contrasted to present-day computers, work

more like brains and, by implication, can produce behavior more like that produced

by brains. This kind of neural-net computing emphasizes computer-like operations on

vectors—directly computing representations for composite entities from those of the

components—and deemphasizes iterative searching of high-dimensional “energy land-

scapes,” which is at the core of many present-day neural-net algorithms. The forming

of an efficient energy landscape in a neural net would still have a role in making efficient

item memories.

Very large word size—i.e., hyperdimensionality—means that the new computers

will be very large in terms of numbers of components. In light of the phenomenal

progress in electronics technology, the required size will be achieved in less than a

lifetime. In fact, computer engineers will soon be looking for appropriate architectures

for the massive circuits they are able to manufacture. The computing discussed here

can use circuits that are not produced in identical duplicates, and so the manufacturing

of circuits for the new computers could resemble the growing of neural circuits in the

brain. It falls upon those of us who work on the theory of computing to work out the

architecture. In that spirit, we are encouraged to explore the possibilities hidden in

very high dimensionality and randomness.

A major challenge for cognitive modeling is to identify mathematical systems of

representation with operations that mirror cognitive phenomena of interest. This alone

would satisfy the engineering objective of building computers with new capabilities. The

mathematical systems should ultimately be realizable in neural substratum. Computing

with hyperdimensional vectors is meant to take us in that direction.

31

Acknowledgements Real Wold Computing Project funding by Japan’s Ministry of Interna-
tional Trade and Industry to the Swedish Institute of Computer Science in 1994–2001 made it
possible for us to develop the ideas for high-dimensional binary representation. The support
of Dr. Nobuyuki Otsu throughout the project was most valuable. Dr. Dmitri Rachkovskij pro-
vided information on early use of permutations to encode sequences by researchers in Ukraine.
Dikran Karagueuzian of CSLI Publications accepted for publication Plate’s book on Holo-
graphic Reduced Representation after a publishing agreement elsewhere fell through. Discus-
sions with Tony Plate and Ross Gayler have helped shape the ideas and their presentation
here. Sincere thanks to you all, as well as to my coauthors on papers on representation and to
three anonymous reviewers of the present manuscript.

References

1. Anderson JA. A simple neural network generating an interactive memory. Mathematical
Biosciences 1972;14:197–220.

2. Kohonen T. Correlation matrix memories. IEEE Transactions on Computers 1984;C21(4):
353–359.

3. Hopfield JJ. Neural networks and physical systems with emergent collective computational
abilities. Proc. National Academy of Sciences USA 1982;79(8):2554–2558.

4. Kanerva P. Sparse distributed memory. Cambridge, MA: MIT Press; 1988.
5. Karlsson R. A fast activation mechanism for the Kanerva SDM memory. In: Uesaka Y,

Kanerva P, Asoh H, editors. Foundations of real-world computing. Stanford: CSLI; 2001. p.
289–293.

6. Aleksander I, Stonham TJ, Wilkie BA. Computer vision systems for industry: WISARD
and the like. Digital Systems for Industrial Automation 1982;1:305–323.

7. Hinton GH, Anderson JA, editors. Parallel models of associative memory. Hillsdale, NJ:
Erlbaum; 1981.

8. Hassoun MH, editor. Associative neural memories: theory and implementation. New York,
Oxford: Oxford University Press; 1993.

9. Kohonen T. Self-organization and associative memory. 3rd ed. Berlin: Springer; 1989.
10. Palm G. Neural assemblies: an alternative approach to artificial intelligence. Berlin, Hei-

delberg, New York: Springer; 1982.
11. Hinton GE. Mapping part–whole hierarchies into connectionist networks. Artificial Intel-

ligence 1990;46(1–2):47–75.
12. Smolensky P. Tensor product variable binding and the representation of symbolic struc-

tures in connectionist networks. Artificial Intelligence 1990;46(1–2):159–216.
13. Plate T. Holographic Reduced Representations: convolution algebra for compositional dis-

tributed representations. In: Mylopoulos J, Reiter R, editors. Proc. 12th Int’l Joint Confer-
ence on Artificial Intelligence (IJCAI). San Mateo, CA: Kaufmann; 1991. p. 30–35.

14. Plate TA. Holographic reduced representation: distributed representation of cognitive
structure. Stanford: CSLI; 2003.

15. Kanerva P. Binary spatter-coding of ordered K-tuples. In: von der Malsburg C, von Seelen
W, Vorbruggen JC, Sendhoff B, editors. Artificial Neural Networks – ICANN 96 Proceedings
(Lecture Notes in Computer Science, vol. 1112). Berlin: Springer, 1996. p. 869–873.

16. Gayler RW. Multiplicative binding, representation operators, and analogy. Poster abstract.
In: Holyoak K, Gentner D, Kokinov B, editors. Advances in analogy research. Sofia: New
Bulgarian University; 1998. p. 405. Full poster http://cogprints.org/502/ accessed 15 Nov
2008.

17. Rachkovskij DA, Kussul EM. Binding and normalization of binary sparse distributed rep-
resentations by context-dependent thinning. Neural Computation 2001;13(2):411–452.

18. Kussul EM, Baidyk TN. On Information encoding in associative–projective neural net-
works. Report 93–3. Kiev, Ukraine: V.M. Glushkov Inst. of Cybernetics; 1993 (in Russian).

19. Landauer T, Dumais S. A solution to Plato’s problem: the Latent Semantic Analy-
sis theory of acquisition, induction and representation of knowledge. Psychological Review
1997;104(2):211–240.

20. Kanerva P, Kristoferson J, Holst A. Random Indexing of text samples for latent semantic
analysis. Poster abstract. In: Gleitman LR, Josh AK, editors. Proc. 22nd Annual Confer-
ence of the Cognitive Science Society. Mahwah, NJ: Erlbaum; 2000. p. 1036. Full poster
http://www.rni.org/kanerva/cogsci2k-poster.txt accessed 23 Nov 2008.

32

21. Papadimitriou C, Raghavan P, Tamaki H, Vempala S. Latent semantic indexing: a prob-
abilistic analysis. Proc. 17th ACM Symposium on the Principles of Database Systems. New
York: ACM Press; 1998. p. 159–168.

22. Kaski S. Dimensionality reduction by random mapping: fast similarity computation for
clustering. Proc. Int’l Joint Conference on Neural Networks, IJCNN’98. Piscataway, NJ:
IEEE Service Center; 1999. p. 413–418.

23. Indyk P. Algorithmic aspects of low-distortion geometric embeddings. Annual Symposium
on Foundations of Computer Science (FOCS) 2001 tutorial
http://people.csail.mit.edu/indyk/tut.ps accessed 15 Nov 2008.

24. Schütze H. Word space. In: Hanson SJ, Cowan JD, Giles CL, editors. Advances in neural
information processing systems 5. San Mateo, CA: Kaufmann; 1993. p. 895–902.

25. Lund K, Burgess C, Atchley R. Semantic and associative priming in high-dimensional
semantic space. Proc. 17th Annual Conference of the Cognitive Science Society. Mahwah,
NJ: Erlbaum; 1995. p. 660–665.

26. Sahlgren M. The word-space model. Doctoral dissertation. Department of Linguistics,
Stockholm University; 2006.
http://www.sics.se/∼mange/TheWordSpaceModel.pdf accessed 23 Nov 2008.

27. Jones MN, Mewhort DJK. Representing word meaning and order information in a com-
posite holographic lexicon. Psychological Review 2007;114(1):1–37.

28. Sahlgren M, Holst A, Kanerva P. Permutations as a means to encode order in word space.
Proc. 30th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Sci-
ence Society. p. 1300–1305.

29. Widdows D. Geometry and meaning. Stanford: CSLI; 2004.

Kanerva, P. Hyperdimensional computing: An introduction to computing in

distributed representation with high-dimensional random vectors.

Cognitive Computation 1(2):139--159, 2009.

