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Abstract

A new algorithm is proposed for a) unsupervised learning of sparse representa-
tions from subsampled measurements and b) estimating the parameters required
for linearly reconstructing signals from the sparse codes. We verify that the new
algorithm performs efficient data compression on par with the recent method of
compressive sampling. Further, we demonstrate that the algorithm performs ro-
bustly when stacked in several stages or when applied in undercomplete or over-
complete situations. The new algorithm can explain how neural populations in
the brain that receive subsampled input through fiber bottlenecks are able to form
coherent response properties.

1 Introduction

In the nervous system, sensory and motor information, as well as internal brain states, are repre-
sented by action potentials in populations of neurons. Most localized structures, such as sensory
organs, subcortical nuclei and cortical regions, are functionally specialized and need to communi-
cate through fiber projections to produce coherent brain function [14]. Computational studies of the
brain usually investigate particular functionally and spatially defined brain structures. Our scope
here is different as we are not concerned with any particular brain region or function. Rather, we
study the following fundamental communication problem: How can a localized neural population
interpret a signal sent to its synaptic inputs without knowledge of how the signal was sampled or
what it represents? We consider the generic case that information is encoded in the activity of a local
population (e.g. neurons of a sensory organ or a peripheral sensory area) and then communicated to
the target region through an axonal fiber projection. Any solution of this communication problem is
constrained by the following known properties of axonal fiber projections:

Exact point-to-point connectivity genetically undefined: During development, genetically in-
formed chemical gradients coarsely guide the growth of fiber projections but are unlikely to specify
the precise synaptic patterns to target neurons [17]. Thus, learning mechanisms and synaptic plas-
ticity seem necessary to form the precise wiring patterns from projection fibers to target neurons.

Fiber projections constitute wiring bottlenecks: The number of axons connecting a pair of regions
is often significantly smaller than the number of neurons encoding the representation within each
region [10]. Thus, communication across fiber projections seems to rely on a form of compression.
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Sizes of origin and target regions may differ: In general, the sizes of the region sending the fibers
and the region targeted by them will be different. Thus, communication across fiber projections will
often involve a form of recoding.

We present a new algorithm for establishing and maintaining communication that satisfies all three
constraints above. To model imprecise wiring, we assume that connections between regions are
configured randomly and that the wiring scheme is unknown to the target region. To account for
the bottleneck, we assume these connections contain only subsampled portions of the information
emanating from the sender region; i.e., learning in the target region is based on subsampled data and
not the original.

Our work suggests that axon fiber projections can establish interfaces with other regions according
to the following simple strategy: Connect to distant regions randomly, roughly guided by chemical
gradients, then use local unsupervised learning at the target location to form meaningful repre-
sentations of the input data. Our results can explain experiments in which retinal projections were
redirected neonatally to the auditory thalamus and the rerouting produced visually responsive cells in
auditory thalamus and cortex, with properties that are typical of cells in visual cortex [12]. Further,
our model makes predictions about the sparsity of neural representations. Specifically, we predict
that neuronal firing is sparser in locally projecting neurons (upper cortical layers) and less sparse in
neurons with nonlocal axonal fiber projections. In addition to the neurobiological impact, we also
address potential technical applications of the new algorithm and relations to other methods in the
literature.

2 Background

Sparse signals: It has been shown that many natural signals falling onto sensor organs have a higher-
order structure that can be well-captured by sparse representations in an adequate basis; see [9, 6]
for visual input and [1, 11] for auditory. The following definitions are pivotal to this work.

Definition 1: An ensemble of signals X within Rn has sparse underlying structure if there is a
dictionary Ω ∈ Rn×p so that any point x ∈ Rn drawn from X can be expressed as x = Ωv for a
sparse vector v ∈ Rp.

Definition 2: An ensemble of sparse vectors V within Rp is a sparse representation of a signal
ensemble X in Rn if there exists a dictionary Ω ∈ Rn×p such that the random variable X satisfies
X = ΩV .

For theoretical reasons, we consider ensembles of random vectors (i.e. random variables) which
arise from an underlying probability distribution on some measure space, although for real data sets
(e.g. natural image patches) we cannot guarantee this to be the case. Nonetheless, the theoretical
consequences of this assumption (e.g. Theorem 4.2) appear to match what happens in practice for
real data (figures 2-4).

Compressive sampling with a fixed basis: Compressive sampling (CS) [2] is a recent method for
representing data with sparse structure using fewer samples than required by the Nyquist-Shannon
theorem. In one formulation [15], a signal x ∈ Rn is assumed to be k-sparse in an n× p dictionary
matrix Ψ; that is, x = Ψa for some vector a ∈ Rp with at most k nonzero entries. Next, x is
subsampled using an m × n incoherent matrix Φ to give noisy measurements y = Φx + w with
m � n and independent noise w ∼ N (0, σ2Im×m). To recover the original signal, the following
convex optimization problem (called Lasso in the literature) is solved:

b̂(y) := arg min
a

{
1

2n
||y − ΦΨb||22 + λ|b|1

}
, (1)

and then x̂ := Ψb̂ is set to be the approximate recovery of x. Remarkably, as can be shown using
[15, Theorem 1], the preceding algorithm determines a unique b̂ and is guaranteed to be exact within
the noise range:

||x− x̂||2 = O(σ) (2)

with high probability (exponential in m/k) as long as the matrix ΦΨ satisfies mild incoherence
hypotheses, λ = Θ(σ

√
(log p)/m), and the sparsity is on the order k = O(m/ log p).
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Typically, the matrix Ψ is p× p orthogonal, and the incoherence conditions reduce to deterministic
constraints on Φ only. Although in general it is very difficult to decide whether a given Φ satisfies
these conditions, it is known that many random ensembles, such as i.i.d. Φij ∼ N (0, 1/m), satisfy
them with high probability. In particular, compression ratios on the order (k log p)/p are achievable
for k-sparse signals using a random Φ chosen this way.

Dictionary learning by sparse coding: For some natural signals there are well-known bases (e.g.
Gabor wavelets, the DCT) in which those signals are sparse or nearly sparse. However, an arbitrary
class of signals can be sparse in unknown bases, some of which give better encodings than others.
It is compelling to learn a sparse dictionary for a class of signals instead of specifying one in ad-
vance. Sparse coding methods [6] learn dictionaries by minimizing the empirical mean of an energy
function that combines the `2 reconstruction error with a sparseness penalty on the encoding:

E(x,a,Ψ) = ||x−Ψa||22 + λS(a). (3)

A common choice for the sparsity penalty S(a) that works well in practice is the `1 penalty
S(a) = |a|1. Fixing Ψ and x and minimizing (3) with respect to a produces a vector â(x) that
approximates a sparse encoding for x.1 For a fixed set of signals x and encodings a, minimizing
the mean value of (3) with respect to Ψ and renormalizing columns produces an improved sparse
dictionary. Alternating optimization steps of this form, one can learn a dictionary that is tuned to the
statistics of the class of signals studied. Sparse coding on natural stimuli has been shown to learn
basis vectors that resemble the receptive fields of neurons in early sensory areas [6, 7, 8]. Notice that
once an (incoherent) sparsity-inducing dictionary Ψ is learned, inferring sparse vectors â(x) from
signals x is an instance of the Lasso convex optimization problem.

Blind Compressed Sensing: With access to an uncompressed class of sparse signals, dictionary
learning can find a sparsity-inducing basis which can then be used for compressive sampling. But
what if the uncompressed signal is unavailable? Recently, this question was investigated in [4] using
the following problem statement.

Blind compressed sensing (BCS): Given a measurement matrix Φ and measurements {y1, . . . ,yN}
of signals {x1, . . . ,xN} drawn from an ensemble X , find a dictionary Ψ and k-sparse vectors
{b1, . . . ,bN} such that xi = Ψbi for each i = 1, . . . , N .

It turns out that the BCS problem is ill-posed in the general case [4]. The difficulty is that though
it is possible to learn a sparsity-inducing dictionary Θ for the measurements Y , there are many
decompositions of this dictionary into Φ and a matrix Ψ since Φ has a nullspace. Thus, without
additional assumptions, one cannot uniquely recover a dictionary Ψ that can reconstruct x as Ψb.

3 Adaptive Compressive Sampling

It is tantalizing to hypothesize that a neural population in the brain could combine the principles
of compressive sampling and dictionary learning to form sparse representations of inputs arriving
through long-range fiber projections. Note that information processing in the brain should rely on
faithful representations of the original signals but does not require a solution of the ill-posed BCS
problem which involves the full reconstruction of the original signals. Thus, the generic challenge
a neural population embedded in the brain might have to solve can be captured by the following
problem.

Adaptive compressive sampling (ACS): Given measurements Y = ΦX generated from an unknown
Φ and unknown signal ensemble X with sparse underlying structure, find signals B(Y ) which are
sparse representations of X .

Note the two key differences between the ACS and the BCS problem. First, the ACS problem
asks only for sparse representations b of the data, not full reconstruction. Second, the compression
matrix Φ is unknown in the ACS problem but is known in the BCS problem. Since it is unrealistic
to assume that a brain region could have knowledge of how an efferent fiber bundle subsamples the
brain region it originates from, the second difference is also crucial. We propose a relatively simple
algorithm for potentially solving the ACS problem: use sparse coding for dictionary learning in the

1As a convention in this paper, a vs. b denotes a sparse representation inferred from full vs. compressed
signals.
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y b ΘΦxa Ψ

RM Figure 1: ACS schematic. A sig-
nal x with sparse structure in dictio-
nary Ψ is sampled by a compressing
measurement matrix Φ, constituting
a transmission bottleneck. The ACS
coding circuit learns a dictionary Θ
for y in the compressed space, but
can be seen to form sparse represen-
tations b of the original data x as
witnessed by the matrix RM in (6).

compressed space. The proposed ACS objective function is defined as:
E(y,b,Θ) = ||y −Θb||22 + λS(b). (4)

Iterated minimization of the empirical mean of this function first with respect to b and then with
respect to Θ will produce a sparsity dictionary Θ for the compressed space and sparse representations
b̂(y) of the y. Our results verify theoretically and experimentally that once the dictionary matrix Θ
has converged, the objective (4) can be used to infer sparse representations of the original signals x
from the compressed data y. As has been shown in the BCS work, one cannot uniquely determine
Ψ with access only to the compressed signals y. But this does not imply that no such matrix exists.
In fact, given a separate set of uncompressed signals x′, we calculate a reconstruction matrix RM
demonstrating that the b̂ are indeed sparse representations of the original x. Importantly, the x′ are
not used to solve the ACS problem, but rather to demonstrate that a solution was found.

The process for computingRM using the x′ is analogous to the process used by electrophysiologists
to measure the receptive fields of neurons. Electrophysiologists are interested in characterizing how
neurons in a region respond to different stimuli. They use a simple approach to determine these
stimulus-response properties: probe the neurons with an ensemble of stimuli and compute stimulus-
response correlations. Typically it is assumed that a neural response b is a linear function of the
stimulus x; that is, b = RFx for some receptive field matrix RF . One may then calculate an RF
by minimizing the empirical mean of the prediction error: E(RF ) = ‖b − RFx‖22. As shown in
[13], the closed-form solution to this minimization is RF = C−1

ss Csr, in which Css is the stimulus
autocorrelation matrix 〈xx>〉X , and Csr is the stimulus-response cross-correlation matrix 〈xb>〉X .

In contrast to the assumption of a linear response typically made in electrophysiology, here we
assume a linear generative model: x = Ψa. Thus, instead of minimizing the prediction error, we
ask for the reconstruction matrixRM that minimizes the empirical mean of the reconstruction error:

E(RM) = ‖x−RMb‖22. (5)
In this case, the closed form solution of this minimization is given by

RM = CsrC
−1
rr , (6)

in which Csr is the stimulus-response cross-correlation matrix as before and Crr is the response
autocorrelation matrix 〈b̂(y(x))b̂(y(x))>〉X . As we show below, calculating (6) from a set of
uncompressed signals x′ yields an RM that reconstructs the original signal x from b̂ as x = RM b̂.
Thus, we can conclude that encodings b̂ computed by ACS are sparse representations of the original
signals.

4 Theoretical Results

The following hold for ACS under mild hypotheses (we postpone details for a future work).

Theorem 4.1 Suppose that an ensemble of signals is compressed with a random projection Φ. If
ACS converges on a sparsity-inducing dictionary Θ and Crr is invertible, then Θ = Φ ·RM .

Theorem 4.2 Suppose that an ensemble of signals has a sparse representation with dictionary Ψ.
If ACS converges on a sparsity-inducing dictionary, then the outputs of ACS are a sparse represen-
tation for the original signals in the dictionary of the reconstruction matrixRM given by (6). More-
over, there exists a diagonal matrixD and a partial permutation matrix P such that Ψ = RM ·DP .
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(a) (b) (c)

Figure 2: Subsets of the reconstruction matrices RM for the ACS networks trained on synthetic
sparse data generated using bases (a) standard 2D, (b) 2D DCT, (c) learned by sparse coding on
natural images. The components of RM in (a) and (b) are arranged by spatial location and spatial
frequency respectively to help with visual interpretation.

5 Experimental results

To demonstrate that the ACS algorithm solves the ACS problem in practice, we train ACS networks
on synthetic and natural image patches. We use 16 × 16 image patches which are compressed by
an i.i.d. gaussian measurement matrix before ACS sees them. Unless otherwise stated we use a
compression factor of 2; that is, the 256 dimensional patches were captured by 128 measurements
sent to the ACS circuit (current experiments are successful with a compression factor of 10). The
feature sign algorithm developed in [5] is used for inference of b in (4). After the inference step,
Θ is updated using gradient decent in (4). The matrix Θ is initialized randomly and renormalized
to have unit length columns after each learning step. Learning is performed until the ACS circuit
converges on a sparsity basis for the compressed space.

To assess whether the sparse representations formed by the ACS circuit are representations of the
original data, we estimate a reconstruction matrix RM as in (6) by correlating a set of 10,000
uncompressed image patches with their encodings b in the ACS circuit. Using RM and the ACS
circuit, we reconstruct original data from compressed data. Reconstruction performance is evaluated
on a test set of 1000 image patches by computing the signal-to-noise ratio of the reconstructed

signals x̂: SNR = 10 log10

(
〈||x||22〉X
〈||x−x̂||22〉X

)
. For comparison, we also performed CS using the

feature sign algorithm to solve (1) using a fixed sparsity basis Ψ and reconstruction given by x̂ =
Ψb̂.

Synthetic Data: To assess ACS performance on data of known sparsity we first generate synthetic
image patches with sparse underlying structure in known bases. We test with three different bases:
the standard 2D basis (i.e. single pixel images), the 2D DCT basis, and a Gabor-like basis learned
by sparse coding on natural images. We generate random sparse binary vectors with k = 8, multiply
these vectors by the chosen basis to get images, and then compress these images to half their original
lengths to get training data. For each type of synthetic data, a separate ACS network is trained with
λ = .1 and reconstruction matrixRM is computed. TheRM corresponding to each generating basis
type is shown in Figure 2(a)-(c). We can see that RM closely resembles a permutation of generating
basis as predicted by Theorem 4.2. The mean SNR of the reconstructed signals in each case is 34.05
dB, 47.05 dB, and 36.38 dB respectively. Further, most ACS encodings are exact in the sense that
they exactly recovered the components used to synthesize the original image. Specifically, for the
DCT basis 95.4% of ACS codes have the same eight active basis vectors as were used to generate
the original image patch. Thresholding to remove small coefficients (coring) makes it 100%.

To explore how ACS performs in cases where the signals cannot be modeled exactly with sparse
representations, we generate sparse synthetic data (k = 8) with the 2D DCT basis and add gaussian
noise. Figure 3(a) compares reconstruction fidelity of ACS and CS for increasing levels of noise.
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(c)

(b)

(d)

Figure 3: Mean SNR of reconstructions. (a) compares ACS performance to CS performance with
true generating basis (DCT) for synthetic images with increasing amounts of gaussian noise. (b) and
(c) compare the performances of ACS, CS with a basis learned by sparse coding on natural images
and CS with the DCT basis. Performances plotted against the compression factor (b) and the value
of λ used for encoding. (d) shows ACS performance on natural images vs. the completeness factor.

(a) (b)

Figure 4: (a) RM for an ACS network trained on natural images with compression factor of 2, (b)
ACS reconstruction of a 128 × 128 image using increasing compression factors. Clockwise from
the top left: the original image, ACS with compression factors of 2, 4, and 8.

For pure sparse data (noise σ2 = 0) CS outperforms ACS significantly. Without noise, CS is limited
by machine precision and reaches a mean SNR which is off the chart at 308.22 dB whereas ACS
is limited by inaccuracies in the learning process as well as inaccuracies in computing RM . For a
large range of noise levels CS and ACS performance become nearly identical. For very high levels
of noise CS and ACS performances begin to diverge as the advantage of knowing the true sparsity
basis becomes apparent again.

Natural Images: Natural image patches have sparse underlying structure in the sense that they can
be well approximated by sparse linear combinations of fixed bases, but they cannot be exactly recon-
structed at a level of sparsity required by the theorems of CS and ACS. Thus, CS and ACS cannot be
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expected to produce exact reconstructions of natural image patches. To explore the performance of
ACS on natural images we train ACS models on compressed image patches from whitened natural
images. The RM matrix for an ACS network using the default compression factor of 2 is shown in
Figure 4(a).

Next we explore how the fidelity of ACS reconstructions varies with the compression factor. Figure
4(b) shows an entire image portion reconstructed patch-wise by ACS for increasing compression
factors. Figure 3(b) compares the SNR of these reconstructions to CS reconstructions. Since there
is no true sparsity basis for natural images, we perform CS either with a dictionary learned from
uncompressed natural images using sparse coding or with the 2D DCT. Both the ACS sparsity basis
and sparse coding basis used with CS are learned with λ fixed at .1 in eq. (3). 3(b) demonstrates
that CS performs much better with the learned dictionary than with the standard 2D DCT. Further,
the plot shows that ACS reconstructions produces slightly higher fidelity reconstructions than CS.
However, the comparison between CS and ACS might be confounded by the sensitivity of these
algorithms to the value of λ used during encoding.

In the context of CS, there is a sweet spot for the sparsity of representations. More sparse encodings
have a better chance of being accurately recovered from the measurements because they obey con-
ditions of the CS theorems better. At the same time, these are less likely to be accurate encodings
of the original signal since they are limited to fewer of the basis vectors for their reconstructions.
As a result, reconstruction fidelity as a function of λ has a maximum at the sweet spot of sparsity
for CS (decreasing the value of λ leads to sparser representations). Values of λ below this point
produce representations that are not sparse enough to be accurately recovered from the compressed
measurements, while values of λ above it produce representations that are too sparse to accurately
model the original signal even if they could be accurately recovered.

To explore how the performance of CS and ACS depends on the sparseness of their representations,
we vary the value of λ used while encoding. Figure 3(c) compares ACS, CS with a sparse coding
basis, and CS with the 2D DCT basis. Once again we see that ACS performs slightly better than
CS with a learned dictionary, and much better than CS with the DCT basis. However, the shape
of the curves with respect to the choice of λ while encoding suggests that our choice of value for
λ while learning (.1 for both ACS and the sparse coding basis used with CS) may be suboptimal.
Additionally, the optimal value of λ for CS may differ from the optimal value of λ for ACS. For
these reasons, it is unclear if ACS exceeds the SNR performance of CS with dictionary learning
when in the optimal regime for both approaches. Most likely, as 3(b) suggests, their performances
are not significantly different. However, one reason ACS might perform better is that learning a
sparsity basis in compressed space tunes the sparsity basis with respect to the measurement matrix
whereas performing dictionary learning for CS estimates the sparsity basis independently of the
measurement matrix. Additionally, having its sparsity basis in the compressed space means that
ACS is more efficient in terms of runtime than dictionary learning for CS because the lengths of
basis vectors are reduced by the compression factor.

ACS in brain communication: When considering ACS as a model of communication in the brain,
one important question is whether it works when the representational dimensions vary from region
to region. Typically in CS, the number of basis functions is chosen to equal the dimension of the
original space. To demonstrate how ACS could model the communication between regions with
different representation dimensions, we train ACS networks whose encoding dimensions are larger
or smaller than the dimension of the original space (overcomplete or undercomplete). As shown in
figure 3(d), the reconstruction fidelity decreases in the undercomplete case because representations
in that space either have fewer total active coding vectors or are significantly less sparse. Interest-
ingly, the reconstruction fidelity increases in the overcomplete case. We suspect that this gain from
overcompleteness also applies in standard CS with an overcomplete dictionary, but this has not been
tested so far.

Figure 5: A subset of RM from each stage of our multistage ACS model.
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Another issue to consider for ACS as a model of communication in the brain is whether signal fidelity
is preserved through repeated communications. To investigate this question we simulated multiple
stages of communication using ACS. In our model the input of compressed natural image patches is
encoded as a sparse representation in the first region, transmitted as a compressed signal to a second
region where it is encoded sparsely, and compressively transmitted once again to a third region that
performs the final encoding. Obviously, this is a vacuous model of neural computation since there is
little use in simply retransmitting the same signal. A meaningful model of cortical processing would
involve additional local computations on the sparse representations before retransmission. However,
this basic model can help us explore the effects of repeated communication by ACS. Using samples
from the uncompressed space, we compute RM for each stage just as for a single stage model.
Figure 5 shows subsets of the components of RM for each stage. Notice that meaningful gabor-like
structure is preserved between stages.

6 Discussion

In this paper, we propose ACS, a new algorithm for learning meaningful sparse representations
of compressively sampled signals without access to the full signals. Two crucial differences set
ACS apart from traditional CS. First, the ACS coding circuit is formed by unsupervised learning
on subsampled signals and does not require knowledge of the sparsity basis of the signals nor of
the measurement matrix used for subsampling. Second, the information in the fully trained ACS
coding circuit is insufficient to reconstruct the original signals. To assess the usefulness of the rep-
resentations formed by ACS, we developed a second estimation procedure that probes the trained
ACS coding circuit with the full signals and correlates signal with encoding. Similarly to the elec-
trophysiological approach of computing receptive fields, we computed a reconstruction matrixRM .
Theorem 4.2 proves that after convergence, ACS produces representations of the full data and that
the estimation procedure finds a reconstruction matrix which can reproduce the full data. Further,
our simulation experiments revealed that the RM matrix contained smooth receptive fields resem-
bling oriented simple cells (Figures 2 and 4), suggesting that the ACS learning scheme can explain
the formation of receptive fields even when the input to the cell population is undersampled (and
thus conventional sparse coding would falter). In addition, the combination of ACS circuit and RM
matrix can be used in practice for data compression and be directly compared with traditional CS.
Interestingly, ACS is fully on par with CS in terms of reconstruction quality (Figure 3). At the same
time it is both flexible and stackable, and it works in overcomplete and undercomplete cases.

The recent work on BCS [4] addressed a similar problem where the sparsity basis of compressed
samples is unknown. A main difference between BCS and ACS is that BCS aims for full reconstruc-
tion of the original signals from compressed signals whereas ACS does not. As a consequence, BCS
is generally ill-posed [4], whereas ACS permits a solution, as we have shown. We have argued that
full data reconstruction is not a prerequisite for communication between brain regions. However,
note that ACS can be made a full reconstruction algorithm if there is limited access to uncompressed
signal. Thus, neither ACS nor practical applications of BCS are fully blind learning algorithms, as
both rely on further constraints [4] inferred from the original data. An alternative to ACS / BCS for
introducing learning in CS was to adapt the measurement matrix to data [3, 16].

The engineering implications of ACS merit further exploration. In particular, our compression re-
sults with overcomplete ACS indicate that the reconstruction quality was significantly higher than
with standard CS. Additionally, the unsupervised learning with ACS may have advantages in situa-
tions where access to uncompressed signals is limited or very expensive to acquire. With ACS it is
possible to do the heavy work of learning a good sparsity basis entirely in the compressed space and
only a small number of samples from the uncompressed space are required to reconstruct with RM .

Perhaps the most intriguing implications of our work concern neurobiology. Our results clearly
demonstrate that meaningful sparse representations can be learned on the far end of wiring bottle-
necks, fully unsupervised, and without any knowledge of the subsampling scheme. In addition, ACS
with overcomplete or undercomplete codes suggests how sparse representations can be communi-
cated between neural populations of different sizes. From our study, we predict that firing patterns
of neurons sending long-range axons might be less sparse than those involved in local connectivity,
a hypothesis that could be experimentally verified. It is intriguing to think that the elegance and
simplicity of compressive sampling and sparse coding could be exploited by the brain.
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