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Abstract

A challenge in image processing is quantifying the perceptual quality of distorted images.
Solutions to this problem allow lossy compression algorithms to be more easily and accu-
rately evaluated. Motivated by failings of mean-squared error (MSE/PSNR), Wang, Bovik,
and others proposed a perceptual image measure called mean structural similarity (MSSIM),
which decomposes the distortion of image patches into three components: a difference in
mean luminance, a difference in luminance variance, and a difference in structure. We
present a new measure, mean discrete structural similarity (MDSSIM), that replaces the
structural comparison of MSSIM with the Hamming distance between suitably discretized
original and distorted image patches. To assess its performance, we apply this new image
measure to a standard human psychophysics dataset, the LIVE Image Quality Assessment
Database (Release 2). The high correlation of MDSSIM with human scores suggests, con-
sistent with experiment and well-known results about lossy compression, that the human
visual system may be fundamentally concerned with discrete structure in natural images.

Introduction

An active area of image processing research is finding accurate and easily calculated
measures of an image’s perceptual quality. Mean-squared error (MSE) is ubiquitous,
but unlike the human visual system (HVS), MSE is very sensitive to luminance shifts
and contrast increases, and is invariant to reordering of pixels, among other issues.
Therefore, researchers have been searching for a perceptual distortion measure [1, 2]
that can replace MSE and its relative, peak signal-to-noise ratio (PSNR).

In 2004, Wang and colleagues developed a full-reference perceptual distortion
measure by assuming that the HVS utilizes “structure” in natural images [3] to discern
differences. The structural similarity index (SSIM) decomposes the distortion of
image patches into a difference in mean luminance, a difference in luminance variance,
and a structural component, the cosine of the angle between the original and distorted
image patch. These components are evaluated and multiplied together for each patch
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Figure 1: Sample LIVE dataset images. Top row (left-to-right): Original, Gaussian
blur, Low-quality JPEG; Bottom row (left-to-right): Original, “Fast fading”, White noise.
(LIVE Dataset URL: http://live.ece.utexas.edu/research/quality/subjective.htm)

in a larger image, and local patch-wise SSIM scores are pooled to calculate the mean
SSIM (MSSIM) of the image. MSSIM and variants thereof [4, 5] have been used
widely, in some cases replacing MSE/PSNR, although the structural component in
MSSIM’s computation is directly related to a local (patch-wise) MSE [6, 7]. Workers
looking to replace MSE have also used features of the DCT basis [8] or models of the
HVS [9] to develop perceptual distortion measures.

Here, we propose a new measure of structural distortion for an image patch: the
Hamming distance between suitable binarizations [10] of the distorted and reference
patch. Our efforts stem from theorems in rate-distortion theory that identify discrete
codings as optimal compressors [11, 12, 13], suggesting that perceptual structure –
even in continuous-valued natural images – is perhaps fundamentally discrete.

In the next section, we give background for SSIM and our discrete approach.
Then, we describe a new perceptual image distortion measure, called mean discrete
structural similarity (MDSSIM), and study its performance using the LIVE image
quality assessment dataset (Release 2); see Fig. 1 for examples from the dataset. We
close with a short discussion examining the potential for our findings.

Background

In this section, we briefly review the MSSIM image measure, discrete recurrent neural
networks, and the image compression approach of [10] that utilizes these networks.

Mean structural similarity index

MSSIM is a full-reference image quality assessment (IQA), in that distortion calcu-
lation requires access to the original (reference) image. Let x ∈ {0, ..., 255}L2

be a

242242



reference image patch of dimensions L × L, and let y ∈ {0, ..., 255}L2
be the cor-

responding distorted image patch. SSIM indices, measuring the similarity between
reference and distorted image patches, are the product of three factors:

SSIM(x,y) = l(x,y)αc(x,y)βs(x,y)γ, (1)

in which l(x,y) measures the dissimilarity in mean luminance, c(x,y) measures the
dissimilarity in variance of luminance, and s(x,y) represents the measure of structural
dissimilarity. Following the original work [3], we define:

l(x,y) =
2μxμy + C1

μ2
x + μ2

y + C1

, (2)

where μx = 1
L2

∑
i xi, μy =

1
L2

∑
i yi. We also define, as in the original work,

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2

, (3)

where σ2
x = 1

L2−1
∑

i(xi− μx)
2, σ2

y = 1
L2−1

∑
i(yi− μy)

2. (The constants C1 = (K1L)
2

and C2 = (K2L)
2 are there to prevent numerical instability.)

Finally, the structural dissimilarity s(x,y) is taken to be the cosine of the angle
between x and y, which is exactly related to the mean-squared error between them
[6, 7]. The exponents are typically set to α = β = γ = 1, and a common choice for
patch size is L = 11. The mean SSIM index, MSSIM, averages the SSIM indices over
all patches.

For the purposes of this work, the MSSIM numbers computed here used the MAT-
LAB routines supplied by the authors of [3].

Discrete recurrent neural networks (DRNNs)

Our definition of structure in an image patch will be an attractor of a Hopfield
network [14] (i.e., a symmetrically-weighted McCulloch-Pitts net [15]) whose weights
are estimated to match the statistics of natural image patches. This section and the
next provide background for this connection to theoretical neuroscience and natural
patch modeling.

We start by reviewing the Lenz-Ising model [16]. Let x = (x1, . . . , xn) ∈ {0, 1}n
be a length-n binary vector. The probability p(x) of a particular state is given by:

p(x) =
1

Z
exp

(∑
i<j

Wijxixj −
n∑

i=1

θixi

)
=

1

Z
exp (−Ex) , (4)

in which W = W� ∈ R
n×n is a symmetric matrix with zero diagonal (the weight

matrix ), the column vector θ ∈ R
n is a bias or threshold term, and Z =

∑
x exp(−Ex)

is the partition function (which normalizes p to sum to 1). States with high probability
p(x) have low energy Ex (defined in Eq. 4), and vice versa.

A Hopfield network equips this set of n “neurons” with a dynamics that, when
given any initial configuration, finds a nearby state that is a local maximum of the
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Figure 2: Example 4 × 4 ON/OFF encoding [10]: Grayscale 256 × 256 “camera-
man”, 64×64 patch means and standard deviations, discrete structural primitives (network
memories/attractors), and reconstruction.

probability distribution. A dynamics update of x consists of replacing (in some fixed
order through all nodes) each xi in x with:

xi =

⎧⎨
⎩

1 if
∑

j �=i Wijxj > θi,

0 otherwise.
(5)

A fundamental property of Hopfield networks is that dynamics does not increase
energy Ex. Using this fact, it can be shown that after a finite number of updates,
each initial state x converges to its attractor x∗ (or memory), which is a fixed-point
of the dynamics. Sometimes this property is expressed by saying that the energy Ex

is a “Lyapunov function” for the network dynamics. Another useful intuition is that
the dynamics is an inference technique, “freezing” a noisy version of a memory into
a probable nearby state.

In some applications, one knows a priori which memories need to be stored by the
neural network. However, in the application considered here, no such knowledge is
available. Instead, we find weights of the Hopfield network by fitting the distribution
in Eq. 4 to the empirical distribution of image patches. One of the fastest ways
to do this is using minimum probability flow (MPF) parameter estimation [17, 18].
Hopfield networks whose weights are estimated using MPF store more memories, more
robustly, and more quickly than other better-known weight-training methods [18].

Discrete image patch coding

Consider a reference grayscale image patch x and a distorted image patch y, both of
size L× L and each normalized to have zero mean pixel intensity; i.e., x is replaced
by x− μx, and similarly for y. We shall explain in this section how to determine for
each such patch a binary vector of size 2L2 representing its structural component.
The structural similarity between the original patches is then computed from the
Hamming distance between the binary components.

Consider first the following discretization scheme from [10] to turn a zero-mean
patch into a binary vector of length 2L2. Every pixel x of the L×L patch is assigned
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Figure 3: Structural components. Discrete structure in distorted images from Fig. 1.
Left-to-right: Gaussian blur, low-quality JPEG, Fast fading, and White noise distortions.

two Hopfield neurons – one “ON” neuron, and one “OFF” neuron. We discretize each
of these x to a pair of binary values (ON,OFF ) ∈ {0, 1}2 according to a parameter
α ≥ 0. When x > α, the discretized pixel is assigned (ON,OFF ) = (1, 0); similarly,
when x < −α, we have (ON,OFF ) = (0, 1); and finally, when x ∈ [−α, α], we have
(ON,OFF ) = (0, 0). We choose α so that 2α is the smallest pixel intensity difference
that can possibly occur. Since we have integer-valued image intensities, this assigns
α = 1/2. We can thus convert any grayscale L× L image patch into a binary vector
of length 2L2, a procedure that we call ON/OFF ternarization.

By collecting these binary vectors over natural images, we inherit a probability
distribution over ternarized patches. And by matching a Lenz-Ising model / Hopfield
network to the empirical distribution of ternarized natural image patches (obtained,
e.g., from the van Hateran image database [19]), we determine a network with dy-
namics that can act on ternarized patches to output discrete attractors. In the case
L = 4, it was found that the attractors of a trained network consisted of all binary
attractors (i.e., the all-zero pattern or those with each ON/OFF pair having exactly
one neuron firing). Thus, the ON/OFF network acts to coarse-grain the space of
possible 3L

2
ON/OFF patterns into the subset of (2L

2
+ 1) binary ones.

Here, we use these attractors as structural representatives for determining im-
age similarity; see Fig. 3 for some examples. However, in the image compression
approach of [10], the attractor was utilized to “recover” a continuous primitive for re-
construction of a continuous patch given the attractor. In this case, representing each
non-overlapping patch in an image with a mean, standard deviation, and continuous
representative of an attractor corresponds to a high quality 4× lossy compression of
a natural image. A sample encoding/decoding is depicted in Fig. 2, and more details
can be found in [10, 20].

Results

Calculating MSSIM consists of two steps: quantifying the structural dissimilarity of
corresponding image patches; and pooling the dissimilarity scores of all the image
patches. Improvements to MSSIM (and other distortion measures) have been made
by carefully considering the way in which patch-wise scores are pooled [5]. We instead
focus on more accurately quantifying dissimilarity by developing a new notion of the
structure of image patches. In other words, we propose altering only the structural
dissimilarity measure s(x,y).
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Figure 4: Perceptual evaluation of DSSIM. Mean opinion scores (MOS) against mean
DSSIM for all reference and distorted images in the UT Austin LIVE dataset (Release 2),
consisting of: 227 JPEG2000 compressed images (red dots), 233 JPEG compressed images
(blue), 174 White noise (green), 174 Gaussian blur (black), 174 Fast fading (cyan).

Let Dx and Dy be the Hopfield attractors, as described above, corresponding
to patches x and y, respectively. The discrete structural similarity index (DSSIM)
replaces the function s(x,y) with one minus the mean of the absolute difference
between Dx and Dy (this is a constant multiple of Hamming distance).

The major finding here is that mean DSSIM (MDSSIM) is significantly correlated
with mean opinion scores (MOS) from the UT Austin LIVE image quality assess-
ment dataset, Release 2. This dataset consists of 779 distorted images (Fig. 1), each
of which received a human quality score from 10 to 90. For simplicity in our anal-
ysis and to also be consistent with the scheme of [10], we computed a mean score
over non-overlapping 4 × 4 patch pairs in the images. Thus, we averaged over all
non-overlapping 4 × 4 regions a similarity score involving the corresponding means,
variances, and discrete structures. In Fig. 3, we show how four different distortions
from the LIVE dataset impact the ON/OFF discretization above.

In Fig. 4, we provide a scatterplot of the MDSSIM scores relative to MOS over all
the reference/distorted image pairs in the LIVE dataset. The shading of the points
in the figure separates the images into their distortion type. To quantitatively assess
correlation between scores, we calculated Pearson correlation, Spearman correlation,
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Table 1: Correlation coefficients with MOS scores

Pearson (linear) Spearman (logistic) Kendall
PSNR .80 .82 .62
MSSIM .74 .85 .66
MDSSIM .89 .90 .71

and Kendall’s rank correlation using the Python package Scipy. Table 1 shows the
results of these calculations.

It should be noted that MSSIM and PSNR predict MOS scores better when passed
through certain nonlinearities. For simplicity here, we use straight linear correlation,
but we stress this limitation in our analysis. In future work, we hope to more thor-
oughly compare our approach with others in the literature.

Discussion

Previous work suggests that the local structure in natural images is well-represented
by cleverly discretized patches [10]. We have modified the structural similarity index
described in [3], using this definition of structure, into an easily-calculable discrete
structural similarity. This, in turn, results in a new perceptual distortion measure for
images called mean discrete structural similarity, MDSSIM.

We have not yet investigated the effects of alternative pooling strategies or multi-
scale extensions, which can greatly improve IQA performance, nor have we studied
its relationship to more modern approaches [8, 9]. However, the results presented
here are promising, suggesting that such variants on DSSIM will continue to yield
improvements. Even without further modification, DSSIM is efficiently calculable,
and so it could be used, for instance, to optimize various lossy compression algorithms
(e.g., using classical rate-distortion theory [20]).

The literature on perceptual distortion contains several proposals for image mea-
sures constructed partly based on our understanding of the human visual system
(e.g., [9]). Conversely, the surprisingly good performance of DSSIM suggests a po-
tential new understanding of part of the transformation performed by the HVS. The
structure in natural image patches postulated by DSSIM involves discretization of
an image patch and subsequent convergence under the network dynamic. Experi-
ments not shown here suggest that the binary discretization rather than the Hopfield
dynamics were key to the high performance of DSSIM as a perceptual distortion mea-
sure. Although the attractors are not necessary for achieving high correlation scores
with MOS, we suspect that they are still helpful for robustness of the image measure,
much as the network was not necessary to see much of the productivity in the image
compression scheme of [10].

Nonetheless, the findings here do suggest that the HVS may be far more responsive
to local discrete structure in natural images than previously expected, pointing the
way towards novel experiments in vision science, e.g. by extending the psychophysics

247247



experiments of [21] to the lossy image model of [10].
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