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1. Introduction

An n × n real matrix J is diagonally dominant if

Δi(J) := |Jii| −
∑
j �=i

|Jij | ≥ 0, for i = 1, . . . , n.

A particularly interesting case is when Δi(J) = 0 for all i; we call such matrices di-
agonally balanced. Irreducible, diagonally dominant matrices are always invertible, and 
such matrices arise often in theory and applications. In this Note we study bounds on 
the determinant of symmetric diagonally dominant matrices that have positive entries. 
These matrices are always positive definite (e.g., by Lemma 2.1).

It is classical that the determinant of a positive semidefinite matrix A is bounded 
above by the product of its diagonal entries:

0 ≤ det(A) ≤
n∏

i=1
Aii.

This well-known result is sometimes called Hadamard’s inequality [5, Theorem 7.8.1]. 
A lower bound of this form, however, is not possible without additional assumptions. 
Surprisingly, there is such an inequality when J is diagonally dominant with positive 
entries.

Theorem 1.1. Let n ≥ 3, and let J be an n × n symmetric diagonally dominant matrix 
with off-diagonal entries m ≥ Jij ≥ � > 0. Then, the following inequality holds:

det(J)∏n
i=1 Jii

≥
(

1 − 1
2(n− 2)

√
m

�

(
1 + m

�

))n−1

→ exp
(
−1

2

√
m

�

(
1 + m

�

))
as n → ∞.

The result above was discovered in an attempt to prove the following difficult norm 
inequality [4]. Let S = (n − 2)In + 1n1�

n be the diagonally balanced matrix whose 
off-diagonal entries are all equal to 1 (In is the n × n identity matrix and 1n is the 
n-dimensional column vector consisting of all ones).

Theorem 1.2. (See [4].) Let n ≥ 3. For any symmetric diagonally dominant matrix J
with Jij ≥ � > 0, we have

∥∥J−1∥∥
∞ ≤ 1

�

∥∥S−1∥∥
∞ = 3n− 4

2�(n− 2)(n− 1) .

Moreover, equality is achieved if and only if J = �S.



C.J. Hillar, A. Wibisono / Linear Algebra and its Applications 472 (2015) 135–141 137
Here, ‖ · ‖∞ is the maximum absolute row sum of a matrix, which is the matrix norm 
induced by the infinity norm | · |∞ on vectors in Rn.

The bound in Theorem 1.1 depends on the largest off-diagonal entry of J (in an 
essential way; see Example 3.3), and thus is ill-adapted to prove Theorem 1.2. For 
instance, combining Theorem 1.1 with Hadamard’s inequality applied to the positive 
definite J� := J−1 det(J) (the adjugate of J) in the obvious way gives estimates which 
are worse than Theorem 1.2. Nevertheless, Theorem 1.1 should be of independent inter-
est, and we prove it in Section 2 using a block matrix factorization.

2. Proof of Theorem 1.1

Our arguments for proving Theorem 1.1 are inspired by block LU factorization ideas 
in [2]. For 1 ≤ i ≤ n, let J(i) be the lower right (n − i + 1)×(n − i + 1) block of J , so 
J(1) = J and J(n) = (Jnn). Also, for 1 ≤ i ≤ n − 1, let b(i) ∈ R

n−i be the column vector 
such that

J(i) =
(

Jii b�(i)
b(i) J(i+1)

)
.

Then our block decomposition takes the form, for 1 ≤ i ≤ n − 1,

J(i) =
(

1 U(i)
0 In−i

)(
si 0
b(i) J(i+1)

)

with

si = Jii

(
1 −

b�(i)J
−1
(i+1)b(i)

Jii

)
and U(i) = b�(i)J

−1
(i+1).

Notice that det(J) = Jnn
∏n−1

i=1 si, or equivalently,

det(J)∏n
i=1 Jii

=
n−1∏
i=1

si
Jii

=
n−1∏
i=1

(
1 −

b�(i)J
−1
(i+1)b(i)

Jii

)
. (1)

It remains to bound each factor si/Jii. We first establish the following results.
Recall the Loewner partial ordering on symmetric matrices: A � B means that A −B

is positive semidefinite.

Lemma 2.1. Let J be a symmetric diagonally balanced n ×n matrix with 0 < � ≤ Jij ≤ m

for i 	= j. Then �S 
 J 
 mS, and the eigenvalues λ1 ≤ · · · ≤ λn of J satisfy

(n− 2)� ≤ λi ≤ (n− 2)m for 1 ≤ i ≤ n− 1 and 2(n− 1)� ≤ λn ≤ 2(n− 1)m.

Moreover, if J is diagonally dominant, then the lower bounds still hold.
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Proof. We first show that if P ≥ 0 is a symmetric diagonally dominant matrix, then 
P � 0. For any x ∈ R

n,

x�Px =
n∑

i=1
Piix

2
i + 2

∑
i<j

Pijxixj ≥
n∑

i=1

(∑
j �=i

Pij

)
x2
i + 2

∑
i<j

Pijxixj

=
∑
i<j

Pij(xi + xj)2 ≥ 0.

Since the matrices P = J − �S and Q = mS− J are symmetric and diagonally balanced 
with nonnegative entries, it follows that P, Q � 0 by the discussion above, which means 
�S 
 J 
 mS. The eigenvalues of S are {n − 2, . . . , n − 2, 2(n − 1)}, so the result follows 
by an application of [5, Corollary 7.7.4]. If J is diagonally dominant, then �S 
 J , and 
hence the lower bounds still hold. �
Lemma 2.2. Let J be a symmetric diagonally balanced n ×n matrix with 0 < � ≤ Jij ≤ m

for i 	= j. For each 1 ≤ i ≤ n, let J(i) be the lower right (n − i + 1)×(n − i + 1) block of 
J as defined above, and suppose the eigenvalues of J(i) are λ1 ≤ · · · ≤ λn−i+1. Then

(n− 2)� ≤ λj ≤ (n− 2)m for 1 ≤ j ≤ n− i and

(2n− i− 1)� ≤ λn−i+1 ≤ (2n− i− 1)m.

Moreover, if J is diagonally dominant, then the lower bounds still hold.

Proof. Write J(i) = H + D, where H is the (n − i + 1)×(n − i + 1) diagonally balanced 
matrix and D is diagonal with nonnegative entries. Note that (i −1)�I 
 D 
 (i −1)mI, 
so (i − 1)�I + H 
 J(i) 
 (i − 1)mI + H. Thus by [5, Corollary 7.7.4] and by applying 
Lemma 2.1 to H, we get, for 1 ≤ j ≤ n − i,

(n− 2)� = (n− i− 1)� + (i− 1)� ≤ λj ≤ (n− i− 1)m + (i− 1)m = (n− 2)m,

and for j = n − i + 1,

(2n− i− 1)� = 2(n− i)� + (i− 1)� ≤ λn−i+1 ≤ 2(n− i)m + (i− 1)m = (2n− i− 1)m.

If J is diagonally dominant, then (i − 1)�I + H 
 J(i) and hence the lower bounds still 
hold. �
Proof of Theorem 1.1. Suppose J is diagonally dominant. For each 1 ≤ i ≤ n − 1 we 
have Jii ≥

∑
j �=i Jij ≥ b�(i)1n−i, and by Lemma 2.2, the maximum eigenvalue of J−1

(i+1)
is at most 1

(n−2)� . Thus,

b�(i)J
−1
(i+1)b(i)

Jii
≤ 1

(n− 2)�
b�(i)b(i)

Jii
≤ 1

(n− 2)�
b�(i)b(i)

b� 1
≤

√
(n− i + 1)m
(n− 2)�

√
b�(i)b(i)

b� 1
.

(i) (i)
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Since each entry of b(i) is bounded by � and m, the reverse Cauchy–Schwarz inequality [7, 
Chapter 5] gives us

b�(i)J
−1
(i+1)b(i)

Jii
≤

√
(n− i + 1)m
(n− 2)�

� + m

2
√

�m(n− i + 1)
= 1

2(n− 2)

√
m

�

(
1 + m

�

)
.

Substituting this inequality into (1) gives us the desired bound. �
3. Examples

We close with several examples.

Example 3.1. The matrix S = (n −2)In+1n1�
n has eigenvalues {n −2, . . . , n −2, 2(n −1)}, 

so

det(S)∏n
i=1 Sii

= 2(n− 2)n−1(n− 1)
(n− 1)n = 2

(
1 − 1

n− 1

)n−1

→ 2
e

as n → ∞. �
Example 3.2. When J is strictly diagonally dominant, the ratio det(J)/ 

∏n
i=1 Jii can be 

arbitrarily close to 1. For instance, consider J = αIn + 1n1�
n with α ≥ n − 2, which has 

eigenvalues {(n + α), α, . . . , α} so

det(J)∏n
i=1 Jii

= (n + α)αn−1

(α + 1)n → 1 as α → ∞. �
Example 3.3. The following example demonstrates that we need an upper bound on the 
entries of J in Theorem 1.1(a). Let n = 2k for some k ∈ N, and consider the matrix J
in the following block form:

J =
(
A B

B A

)
, A = (km + k�− 2�)Ik + �1k1�

k , B = m1k1�
k .

By the determinant block formula (since A and B commute), we have

det(J) = det
(
A2 −B2)

= det
[
(km + k�− 2�)2Ik +

(
2k�m + 3k�2 − 4�2 − km2)1k1�

k

]
= 4�(k − 1)(km + k�− �) · (km + k�− 2�)2k−2,

where the last equality is obtained by considering the eigenvalues of A2 −B2. Then

det(J)∏n
i=1 Jii

= 4�(k − 1)(km + k�− �) · (km + k�− 2�)2k−2

(km + k�− �)2k

→ 4�
� + m

exp
(
− 2�
� + m

)
as k → ∞.

Note that the last quantity above tends to 0 as m/� → ∞. �
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Upon submission of this paper, we also conjectured the following. We thank Minghua 
Lin for allowing us to include his proof [6] of this conjecture.

Conjecture 3.4. For a positive, diagonally balanced symmetric J , we have the bound:

det(J)∏n
i=1 Jii

≤ det(S)
(n− 1)n = 2

(
1 − 1

n− 1

)n−1

→ 2
e
.

Without loss of generality, we may assume Jii = 1 for all i. Then we can write 
J = In +B, where B is a symmetric stochastic matrix with Bii = 0 for all i. Recall that 
a (row) stochastic matrix is a square matrix of nonnegative real numbers with each row 
summing to 1.

Theorem 3.5 (Minghua Lin). Let B be an n ×n symmetric stochastic matrix with Bii = 0
for all i. Then

det(In + B) ≤ 2
(

1 − 1
n− 1

)n−1

. (2)

Moreover, this inequality is sharp.

We start with some lemmas that are needed in the proof.

Lemma 3.6. If B is an n × n symmetric stochastic matrix with Bii = 0 for all i, then 
trB2 ≥ n

n−1 . Equality holds if and only if Bij = 1
n−1 for all i 	= j.

Proof. By the Cauchy–Schwarz inequality,

(
n2 − n

)∑
i�=j

B2
ij ≥

(∑
i�=j

Bij

)2

= n2,

so

trB2 =
∑
i�=j

B2
ij ≥

n

n− 1 .

The equality case is trivial. �
Lemma 3.7. For a > 0, the function f(t) = (1 + at)(1 − t/a)a2 , 0 ≤ t ≤ a, is decreasing.

Proof. It suffices to show that f̃(t) = log f(t) is decreasing for 0 < t < a. Observing that

f̃ ′(t) = a

1 + at
− a

1 − t/a
= − a(1 + a2)t

(1 + at)(a− t) < 0,

the conclusion follows. �
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The key to the proof of Theorem 3.5 is the following lemma.

Lemma 3.8. (See [1] or [3, Eq. (1.2)].) Let A be an n × n positive semidefinite matrix. 
If m = tr A

n and s =
√

tr A2

n −m2, then

(m− s
√
n− 1)(m + s/

√
n− 1)n−1 ≤ detA ≤ (m + s

√
n− 1)(m− s/

√
n− 1)n−1.

Proof of Theorem 3.5. Let A = In + B so that A is positive semidefinite. A calculation 
gives m = tr A

n = 1 and s2 = tr A2

n −m2 = tr B2

n . Thus, by Lemma 3.8, we have

det(In + B) ≤ (1 + s
√
n− 1)(1 − s/

√
n− 1)n−1, (3)

where s =
√

tr B2

n . Note that trB2 =
∑

i�=j B
2
ij < n2−n for n ≥ 3, so s <

√
n− 1. On the 

other hand, by Lemma 3.6, we have tr B2

n ≥ 1
n−1 , so s ≥ 1√

n−1 . By Lemma 3.7, we know 

f(s) = (1 +s
√
n− 1)(1 −s/

√
n− 1)n−1 is decreasing with respect to s ∈ [ 1√

n−1 , 
√
n− 1). 

Thus,

f(s) ≤ f

(
1√
n− 1

)
= 2

(
1 − 1

n− 1

)n−1

. (4)

Inequality (2) now follows from (3) and (4).
Taking Bij = 1

n−1 for all i 	= j, equality in (2) holds. This proves the sharpness 
of (2). �
Remark 3.9. The lower bound of detA in (3) does not give a useful lower bound for 
det(In + B) in Theorem 3.5. Indeed, define g(s) = (1 − s

√
n− 1)(1 + s/

√
n− 1)n−1

for s =
√

tr B2

n ≥ 1√
n−1 . Then in order that g(s) ≥ 0, we must have s ≤ 1√

n−1 , but 
g( 1√

n−1 ) = 0.

Remark 3.10. In the proof of Theorem 3.5, we do not require that the entries of B be 
positive. Thus Theorem 3.5 is also valid for diagonally balanced symmetric matrices 
In + B with entries of B negative.
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