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ABSTRACT

The Hopfield network is a well-known model of memory and
collective processing in networks of abstract neurons, but it
has been dismissed for use in signal processing because of its
small pattern capacity, difficulty to train, and lack of practi-
cal applications. In the last few years, however, it has been
demonstrated that exponential storage is possible for special
classes of patterns and network connectivity structures. Over
the same time period, advances in training large-scale net-
works have also appeared. Here, we train Hopfield networks
on discretizations of grayscale digital photographs using a
learning technique called minimum probability flow (MPF).
After training, we demonstrate that these networks have ex-
ponential memory capacity, allowing them to perform state-
of-the-art image compression in the high quality regime. Our
findings suggest that the local structure of images is remark-
ably well-modeled by a binary recurrent neural network.

Index Terms— image compression, Hopfield network,
Ising model, recurrent neural network, probability flow, JPEG

1. INTRODUCTION

Hopfield networks [1] are classical models of memory and
collective processing in networks of abstract McCulloch-Pitts
[2] neurons, but they have not been widely used in signal pro-
cessing (although see [3]) as they usually have small memory
capacity (scaling linearly in the number of neurons) and are
challenging to train, especially on noisy data. Recently, how-
ever, it has been shown that exponential storage in Hopfield
[4] (see also Fig. 2) and Hopfield-like [5, 6, 7, 8] networks is
possible for special classes of patterns and connectivity struc-
tures. Additionally, training of large networks is now tractable
[9], due to advances in statistical estimation [10].

Moreover, several studies in computer vision [11], retinal
neuroscience [12], and even commercial quantum computa-
tion [13] have pointed to the importance and ubiquity of the
underlying discrete probabilistic model in the Hopfield net-
work: the Lenz–Ising model of statistical physics [14]. Addi-
tionally, “deep network” architectures, which have similar un-
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derlying models of data, have made a resurgence in the fields
of machine learning [15] and image modeling [16].

We present a simple, efficient, high-quality compression
scheme for digital images using discrete Hopfield networks
trained on natural images. Our method performs 4× com-
pression (v.s. PNG originals) at high quality on two stan-
dard 512× 512 grayscale images in computer vision (Figs. 4,
5), matching the corresponding coding cost of the JPEG al-
gorithm [17]. Interestingly, our method has smaller coding
cost compared to JPEG when compressing images with added
noise. For instance, our scheme outperforms JPEG by 10%
when compressing low additive Gaussian white noise (σ ≈ 6;
2% of dynamic range) versions of these images. The model is
also easy to train (< 10 minutes on a standard desktop) and re-
quires < 17MBs of free space to store the 65, 535 (structure
averages of) network memories that code discretized 4 × 4
grayscale digital image patches (Fig. 2).

In the next section, we review Hopfield networks, includ-
ing training and capacity. The following section explains
standard methods for image compression, and then our novel
algorithm is outlined in detail in Section 3.3 (and Fig. 3).

2. BACKGROUND

2.1. Hopfield auto-associative pattern memory

We first define the underlying probabilistic model of data in
the Hopfield network. This is the non-ferromagnetic1 Lenz–
Ising model [14] from statistical physics, more generally
called a Markov random field in the machine learning liter-
ature, and the underlying probability distribution of a fully
observable Boltzmann machine [18] in artificial intelligence.
This discrete probability distribution has as states all length
n column vectors of 0s and 1s, with the probability px of a
particular state x = (x1, . . . , xn) ∈ {0, 1}n given by:

px =
1

Z
exp

∑
i<j

Jijxixj −
∑
i

θixi

 =
1

Z
exp (−Ex) ,

(1)
1In the literature, “non-ferromagnetic” (also “spin-glass”) means that all-

to-all and positive or negative connectivity is allowed in the network, unlike
the classical “nearest-neighbor” connectivity of the Lenz–Ising model [14].
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Fig. 1. Small Hopfield network. A 3-node Hopfield network with
coupling matrix J and zero threshold vector θ. A state vector x =
(x1, x2, x3)

> has energyEx as labeled on the y-axis of the diagram.
Arrows represent one iteration of the network dynamics; i.e., x1, x2,
and x3 are updated by Eq. (3) in the order of the clockwise arrow.
Resulting memories / fixed-points x∗ are indicated by blue circles.

in which J ∈ Rn×n is a real symmetric matrix (the coupling
matrix), the column vector θ ∈ Rn is a bias or threshold term,
and Z =

∑
x exp(−Ex) is the partition function. The energy

of a state x is given by the quadratic Hamiltonian:

Ex = −1

2
x>Jx+ θ>x. (2)

Intuitively, we are to think of matrix entry Jij as the weight of
the “statistical coupling” between binary variables {xi, xj}.

A Hopfield network [1] is a recurrent network of bi-
nary nodes (representing spiking neurons) with deterministic
dynamics that act to locally minimize an energy given by
Eq. (2). Formally, the network on n nodes {1, . . . , n} con-
sists of a symmetric coupling matrix J ∈ Rn×n with zero
diagonal and a threshold vector θ ∈ Rn. (See e.g. Fig. 1.) A
dynamics update of state x consists of replacing each xi in x
with the value (in consecutive order starting with i = 1):

xi =


1 if

∑
j 6=i Jijxj > θi,

0 otherwise.
(3)

Update Eq. (3) is inspired by computations in neurons [19, 2].
A fundamental property of Hopfield networks is that asyn-

chronous dynamics updates, Eq. (3), do not increase energy.
Thus, after a finite (and usually small) number of updates,
each initial state x converges to a fixed-point x∗ (also called
stable-point or memory) of the dynamics. Intuitively, we may
interpret the dynamics as an inference technique, producing
the most probable nearby memory given a noisy version.

2.2. Training Hopfield networks

A basic problem is to construct Hopfield networks with a
given dataset D of binary patterns as memories. Such net-
works are useful for denoising and retrieval since corrupted
versions of patterns in D will converge through the dynamics
to the originals. In [1], Hopfield defined a learning rule that

stores n/(4 log n) patterns without errors in an n-node net-
work [20, 21], and since then improved methods to fit Hop-
field networks have been developed (e.g., [22]).

To estimate Hopfield network parameters, we use the re-
cently discovered minimum probability flow (MPF) technique
[10] for fitting parameterized distributions that avoids com-
putation with the partition function Z. Applied to the context
of a Hopfield network / Lenz–Ising model, Eqn. (1), the min-
imum probability flow (MPF) objective function [10, 9] is:

KD(J, θ) =
∑
x∈D

∑
x′∈N (x)

exp

(
Ex − Ex′

2

)
. (4)

Here, the neighborhood N (x) of x is defined as those bi-
nary vectors which are Hamming distance 1 away from x (i.e.,
those x′ with exactly one bit different from x).

When compared with classical techniques for Hopfield
pattern storage, minimizing the MPF objective function,
Eq. (4), provides superior efficiency and generalization; and,
more surprisingly, allows for the storage of patterns from
(unlabeled) highly corrupted / noisy training samples [9].

2.3. Exponential pattern capacity

Independent of the method to fit Hopfield networks, argu-
ments of Cover [23] can be used to show that the number of
generic (or “randomly generated”) patterns robustly storable
in a Hopfield network with n nodes is at most 2n. Here, “ro-
bustly stored” means that the dynamics can recover the pat-
tern even if a fixed, positive fraction of its bits are changed.

Nonetheless, theoretical and experimental evidence sug-
gest that Hopfield networks usually have exponentially many
memories (fixed-points of the dynamics). For instance,
choosing couplings randomly from a normal distribution
produces exponentially many fixed-points asymptotically
[24]. Although a generic Hopfield network has exponential
capacity, its basins of attraction are shallow and difficult to
predetermine from the network, leading many researchers to
speculate that such spurious minima are to be avoided.

a b

Fig. 2. ON/OFF Hopfield network memories. a) Top occurring
16 × 16 = 256 (of 65535 total) 4 × 4 ON/OFF 32-bit memories
ordered more likely top-bottom, left-right. White pixels represent
(ON,OFF) = (1,0); black, (0,1); gray, (0,0). b) Average grayscale
normalized patch converging to the corresponding memory in a.



A surprising recent finding [4], however, is that special
connectivity structures can create networks with robust mem-
ories in an exponential number of useful combinatorial con-
figurations (e.g. cliques in graphs), opening up new possibil-
ities. In fact, as demonstrated in Section 3.3, continuous nat-
ural images appear to have an exponential discrete structure
(Fig. 2) that can be well-captured (Figs. 4, 5) with a Hopfield
network that self-organizes its weights using MPF learning.

3. DIGITAL IMAGE CODING AND COMPRESSION

We explain standard strategies for image compression and
then describe our method to use Hopfield networks.

3.1. Linear methods

Standard Fourier and wavelet-based methods, such as JPEG
which uses the discrete cosine transform (DCT), first mean-
zero an image patch (usually 8 × 8 pixels) and then code it
with increasing numbers of (quantized) linear transform co-
efficients, much like principal components analysis (PCA) is
used for dimensionality reduction in data analysis. There are
also modern variants which do more complicated operations
in the frequency domain [27]. Although these algorithms usu-
ally operate on non-overlapping patches of an image and are
decades old, the high quality regimes of e.g. JPEG offer state-
of-the-art compression. These schemes get expressive power
from linear algebra – modeling a patch as a linear combina-
tion of columns of a real matrix (e.g. DCT matrix). We have
not yet compared our work to wavelet-based JPEG 2000.

means (1 byte) std deviations (1 byte)original (16 bytes per 4x4 patch)

reconstruction 
(16 bytes to 3.5 bytes) 

memory averages4x4 ON/OFF converged memories 
(1.5 bytes per 4x4 patch on avg. )

ca b

ed f

Fig. 3. Hopfield neural network image compression algorithm.
a) 256 × 256 portion of 8-bit grayscale “baboon” PNG, b) means
of each 4 × 4 non-overlapping continuous patch in a, c) standard
deviations of these patches, d) replacement of each patch with its
network converged ON/OFF discretization (Fig. 2a), e) as in d but
with memory averages (Fig. 2b), f) reconstruction by adjusting the
memory averages to have means b and standard deviations c.

Fig. 4. Rate-distortion performance of image compression with a
Hopfield network trained on discretized 4×4 natural image patches.
The “+” / “x”s are JPEG codings of a standard 512×512 pixel, 8-bit
image (boat, baboon / σ = 7.5, σ = 5 additive Gaussian white noisy
versions). Circles / triangles indicate the file size (in bytes on disk)
and reconstruction error (1 - MSSIM) of a 4 × 4 ON/OFF Hopfield
network coding of these novel images. The (≤ 1) mean structural
similarity index MSSIM [25] is thought to capture human perceptual
image quality [26]. Black line is near-perceptual indistinguishability.

3.2. Unsupervised feature learning

There are several methods which try to leverage modeling
the structure in natural images; e.g., independent component
analysis [28, 29, 30], sparse coding [31]. Most of these tech-
niques utilize “codebooks” of features, typically learned un-
supervised over natural image datasets (usually by optimizing
reconstruction error). These methods also code image patches
as a linear combination of continuous structures. It is diffi-
cult to measure our performance against these methods since
rarely is the rate expressed as bytes on disk. Instead, coding
cost is in terms of the number of coefficients used in a coding.

3.3. High quality image coding with a Hopfield network

We map continuous image patches to binary vectors, inspired
by the response properties of ON/OFF mammalian retinal
ganglion cells [32]. Given a grayscale 4 × 4 patch, we re-
move the mean from each pixel and then normalize the patch’s
variance to be 1. We call such a patch normalized. Next, we
partition the (mean-zero) intensity spectrum of the patch into
three intervals and discretize pixel intensities accordingly.

A single pixel intensity is thus mapped onto two Hopfield
neurons (one “ON” and one “OFF”) as follows: if the pixel
intensity is in the lowest interval, then only the OFF neuron
fires; if the pixel intensity is in the middle interval, then nei-
ther neuron fires; and if the pixel intensity is in the highest
interval, then only the ON neuron fires. In this way, we can
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Fig. 5. 256× 256 portions of images coded in Fig. 4. a) Originals;
b) JPEG LVL (84) Boat: BYTES (57K), MSSIM (.95), PSNR (37),
JPEG LVL (61) Baboon: BYTES (53K), MSSIM (.91), PSNR (29);
c) ON/OFF Hopfield network Boat: BYTES (54K), MSSIM (.95),
PSNR (33), Baboon: BYTES (58K), MSSIM (.91), PSNR (27).

convert any 4 × 4 grayscale image patch into a 32-bit binary
vector of abstract ON and OFF neurons.

A collection of 3, 000, 000 4 × 4 natural image patches
were chosen randomly from the van Hateren natural image
database [30], and a Hopfield network with n = 32 nodes was
trained using MPF parameter estimation on discretizations of
these patches. Training time on a standard workstation com-
puter running Mac OS X with 16GB RAM is < 10 minutes.

After training, we examined memories in the Hopfield
network by collecting (over natural images) converged dis-
cretized ON/OFF patterns. We found that the dynamics col-
lapses millions of ON/OFF binary activity patterns into one
of 65, 535 memories2, the most likely occurring 256 of which
are displayed in Fig. 2a. For each of these 32-bit patterns, we
also computed the average of normalized continuous patches
converging to it; see Fig. 2b. The entropy H of 4 × 4 nat-

2Interestingly, these 216 − 1 converged patterns consist of all 4 × 4
ON/OFF patterns without (ON,OFF) = (0, 0) pixels (except for the zero
patch), but excluding all-ON and all-OFF configurations; see Fig. 2a.

ural image patches after such a discretization is H ≈ 12.3
bits (versus H ≈ 13.2 when not applying the dynamics – al-
though in this case we need at least 1GB on disk to store the
more than 4 million binary patterns and continuous averages).

To compress a novel digital image, we partition it into
non-overlapping 4×4 patches. We then normalize, discretize,
and converge each patch to obtain an ON/OFF 32-bit code-
word (which we Huffman encode), saving the means and vari-
ances as lossless PNG (“Portable Network Graphics”) im-
ages. To reconstruct an image, we simply replace each binary
patch code (Fig. 2a) with its corresponding continuous aver-
age (Fig. 2b) and then restore means and variances (see Fig. 3
for an example). Remarkably, this scheme performs state-of-
the-art high quality compression (Figs. 4, 5), even though the
model is not explicitly minimizing reconstruction error.

4. SUMMARY OF RESULTS

On two standard images (see Fig. 4), we achieve an average
coding cost on disk BYTES (56K), perceptual reconstruction
quality MSSIM (.93), and peak signal-to-noise PSNR (30).
Average bytes for the PNG originals is 210K. For each image,
we determined the JPEG coding level with the same MSSIM
score as the Hopfield reconstruction (see Fig. 5). These two
JPEG codings averaged a cost BYTES (55K) and PSNR (33).
With additive Gaussian white noise versions of these images
(boat, baboon) having standard deviations σ = (7.5, 5), our
scheme achieves a coding cost BYTES (58K, 59K), MSSIM
(.90, .90), and PSNR (30, 27); while the JPEG cost for this
same MSSIM is BYTES (70K, 60K) with PSNR (33, 29).
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