
Efficient and optimal binary Hopfield associative
memory storage using minimum probability flow

Christopher Hillar
Redwood Center for Theoretical Neuroscience

University of California, Berkeley
Berkeley, CA 94720

chillar@msri.org

Jascha Sohl-Dickstein
Redwood Center for Theoretical Neuroscience

University of California, Berkeley
Berkeley, CA 94720

jascha.sohldickstein@gmail.com

Kilian Koepsell
Redwood Center for Theoretical Neuroscience

University of California, Berkeley
Berkeley, CA 94720

kilian@berkeley.edu

Abstract

We present an algorithm to store binary memories in a Hopfield neural network
using minimum probability flow, a recent technique to fit parameters in energy-
based probabilistic models. In the case of memories without noise, our algorithm
provably achieves optimal pattern storage (which we show is at least one pattern
per neuron) and outperforms classical methods both in speed and memory recov-
ery. Moreover, when trained on noisy or corrupted versions of a fixed set of binary
patterns, our algorithm finds networks which correctly store the originals. We also
demonstrate this finding visually with the unsupervised storage and clean-up of
large binary fingerprint images from significantly corrupted samples.1

Introduction. In 1982, motivated by neural modeling work of [1] and the Ising spin glass model
from statistical physics [2], Hopfield introduced a method for the storage and retrieval of binary
patterns in an auto-associative neural-network [3]. Even today, this model and its various exten-
sions [4, 5] provide a plausible mechanism for memory formation in the brain. However, existing
techniques for training Hopfield networks suffer either from limited pattern capacity or excessive
training time, and they exhibit poor performance when trained on unlabeled, corrupted memories.

Our main theoretical contributions here are the introduction of a tractable and neurally-plausible
algorithm for the optimal storage of patterns in a Hopfield network, a proof that the capacity of
such a network is at least one pattern per neuron, and a novel local learning rule for training neural
networks. Our approach is inspired by minimum probability flow [6], a recent technique for fit-
ting probabilistic models that avoids computations with a partition function, the usually intractable
normalization constant of a parameterized probability distribution.

We also present several experimental results. When compared with standard techniques for Hop-
field pattern storage, our method is shown to be superior in efficiency and generalization. Another
finding is that our algorithm can store many patterns in a Hopfield network from highly corrupted
(unlabeled) samples of them. This discovery is also corroborated visually by the storage of 64× 64
binary images of human fingerprints from highly corrupted versions, as in Fig. 1.

1Supported by an NSF All-Institutes Postdoctoral Fellowship administered by the Mathematical Sciences
Research Institute through its core grant DMS-0441170 (CH) and by NSF grant IIS-0917342 (KK). This work
appeared at the 2012 Neural Information Processing Systems (NIPS) workshop on Discrete Optimization in
Machine Learning (DISCML).

1



Figure 1: Learning from corrupted samples. We stored 80 fingerprints (64× 64 binary images) in
a Hopfield network with n = 642 = 4096 nodes by minimizing the MPF objective (4) over a large
set of randomly generated (and unlabeled) “noisy” versions (each training pattern had a random
subset of 1228 of its bits flipped; e.g., a,e). After training, all 80 fingerprints were stored as fixed-
points of the network. a. Sample training fingerprint with 30% corruption. b. Fingerprint with 40%
corruption. c. State of network after one dynamics update initialized at b. d. Converged network
dynamics equal to original fingerprint. e-h. As in a-d, but for different fingerprint.

Background. A Hopfield networkH = (J, θ) on n nodes {1, . . . , n} consists of a symmetric weight
matrix J = J> ∈ Rn×n with zero diagonal and a threshold vector θ = (θ1, . . . , θn)> ∈ Rn. We
do not allow any row Ji of the matrix J to be zero. The possible states of the network are all length
n binary strings {0, 1}n, which we represent as binary column vectors x = (x1, . . . , xn)>, each
xi ∈ {0, 1} indicating the state xi of node i. Given any state x = (x1, . . . , xn)>, an (asynchronous)
dynamical update of x consists of replacing xi in x (in consecutive order starting with i = 1) with
the value

xi = H(Jix− θi). (1)
Here, Ji is the ith row of J and H is the Heaviside function given by H(r) = 1 if r > 0 and
H(r) = 0 if r ≤ 0.

The energy Ex of a binary pattern x in a Hopfield network is defined to be

Ex(J, θ) := −1

2
x>Jx + θ>x = −

∑
i<j

xixjJij +

n∑
i=1

θixi, (2)

identical to the energy function for an Ising spin glass. In fact, the dynamics of a Hopfield network
can be seen as 0-temperature Gibbs sampling of this energy function. A fundamental property of
Hopfield networks is that asynchronous dynamical updates do not increase the energy (2). Thus,
after a finite number of updates, each initial state x converges to a fixed-point x∗ = (x∗1, . . . , x

∗
n)>

of the dynamics; that is, x∗i = H(Jix
∗ − θi) for each i.

Given a binary pattern x, the neighborhood N (x) of x consists of those binary vectors which are
Hamming distance 1 away from x (i.e., those with exactly one bit different from x). We say that x
is a strict local minimum if every x′ ∈ N (x) has a strictly larger energy:

0 > Ex − Ex′ = (Jix− θi)δi, (3)

where δi = 1− 2xi and xi is the bit that differs between x and x′. It is straightforward to verify that
if x is a strict local minimum, then it is a fixed-point of the dynamics.

A basic problem is to construct Hopfield networks with a given set D of binary patterns as fixed-
points or strict local minima of the energy function (2). Such networks are useful for memory
denoising and retrieval since corrupted versions of patterns inD will converge through the dynamics
to the originals. Traditional approaches to this problem consist of iterating overD a learning rule [7]
that updates a network’s weights and thresholds given a training pattern x ∈ D. For the purposes of

2



this work, we call a rule local when the learning updates to the three parameters Jij , θi, and θj can
be computed with access solely to xi, xj , the feedforward inputs Jix, Jjx, and the thresholds θi,
θj ; otherwise, we call the rule nonlocal. The locality of a rule is an important feature in a network
training algorithm because of its necessity in theoretical models of computation in neuroscience.

In [3], Hopfield defined an outer-product learning rule (OPR) for finding such networks. OPR is a
local rule since only the binary states of nodes xi and xj are required to update a coupling term Jij
during training (and only the state of xi is required to update θi). Using OPR, at most n/(4 log n)
patterns can be stored without errors in an n-node Hopfield network [8, 9]. In particular, the ratio
of patterns storable to the number of nodes using this rule is at most 1/(4 log n) memories per
neuron, which approaches zero as n increases. If a small percentage of incorrect bits is tolerated,
then approximately 0.15n patterns can be stored [3, 10].

The perceptron learning rule (PER) [11, 12, 7] provides an alternative method to store patterns in a
Hopfield network [13]. PER is also a local rule since updating Jij requires only Jix and Jjx (and
updating θi requires Jix). Unlike OPR, it achieves optimal storage capacity, in that if it is possible
for a collection of patterns D to be fixed-points of a Hopfield network, then PER will converge
to parameters J, θ for which all of D are fixed-points. However, training frequently takes many
parameter update steps (see Fig. 2), and the resulting Hopfield networks do not generalize well (see
Fig. 3) nor store patterns from corrupted samples (see Fig. 4).

Despite the connection to the Ising model energy function, and the common usage of Ising spin
glasses (otherwise referred to as Boltzmann machines [5]) to build probabilistic models of binary
data, we are aware of no previous work on associative memories that takes advantage of a prob-
abilistic interpretation during training. (Although probabilistic interpretations have been used for
pattern recovery [14].)

Theoretical Results. We give an efficient algorithm for storing at least n binary patterns as strict
local minima (and thus fixed-points) in an n-node Hopfield network, and we prove that this algorithm
achieves the optimal storage capacity achievable in such a network. We also present a novel local
learning rule for the training of neural networks.

Consider a collection of m binary n-bit patterns D to be stored as strict local minima in a Hopfield
network. Not all collections of m such patterns D can so be stored; for instance, from (3) we see
that no two binary patterns one bit apart can be stored simultaneously. Nevertheless, we say that the
collection D can be stored as local minima of a Hopfield network if there is some H = (J, θ) such
that each x ∈ D is a strict local minimum of the energy function Ex(J, θ) in (2).

The minimum probability flow (MPF) objective function [6] given the collection D is

KD(J, θ) :=
∑
x∈D

∑
x′∈N (x)

exp

(
Ex − Ex′

2

)
. (4)

The function in (4) is infinitely differentiable and (generically, strictly) convex in the parameters.
Notice that when KD(J, θ) is small, the energy differences Ex − Ex′ between x ∈ D and patterns
x′ in neighborhoods N (x) will satisfy (3), making x a fixed-point of the dynamics.

As the following result explains, minimizing (4) given a storable set of patterns will determine a
Hopfield network storing those patterns.

Theorem 1. If a set of binary vectors D can be stored as local minima of a Hopfield network, then
minimizing the convex MPF objective (4) will find such a network.

Our next result is that at least n patterns in an n-node Hopfield network can be stored by minimizing
(4) (see also [15, 16]). To make this statement mathematically precise, we introduce some notation.
Let r(m,n) < 1 be the probability that a collection ofm binary patterns chosen uniformly at random
from all

(
2n

m

)
m-element subsets of {0, 1}n can be made local minima of a Hopfield network. The

pattern capacity (per neuron) of the Hopfield network is defined to be the supremum of all real
numbers a > 0 such that limn→∞ r(an, n) = 1.

Theorem 2. The capacity of an n-node Hopfield network is at least 1 pattern per neuron.

In other words, for any fixed a < 1, the fraction of all subsets of m = an patterns that can be
made strict local minima (and thus fixed-points) of a Hopfield network with n nodes converges to

3



Figure 2: (Left) Shows fraction of patterns made fixed-points of a Hopfield network using OPR
(outer-product rule), MPF (minimum probability flow), and PER (perceptron) as a function of the
number of randomly generated training patterns m. Here, n = 64 binary nodes and we have av-
eraged over t = 20 trials. The slight difference in performance between MPF and PER is due to
the extraordinary number of iterations required for PER to achieve perfect storage of patterns near
the critical pattern capacity of the Hopfield network. See also Fig. 2. (Right) Shows time (on a log
scale) to train a Hopfield network with n = 64 neurons to store m patterns using OPR, PER, and
MPF (averaged over t = 20 trials).

1 as n tends to infinity. Moreover, by Theorem 1, such networks can be found by minimizing (4).
Experimental evidence suggests that the capacity limit above is 1 for all a < 1.5, but converges to
0 for a > 1.7 (see Fig. 2). Although the Cover bound [17] forces a ≤ 2, it is an open problem to
determine the exact critical value of a (i.e., the exact pattern capacity of the Hopfield network).

We close this section by defining a new learning rule for a neural network. In words, the minimum
probability flow learning rule (MPF) takes an input training pattern x and moves the parameters
(J, θ) a small amount in the direction of steepest descent of the MPF objective function KD(J, θ)
with D = {x}. These updates for Jij and θi take the form (where again, δ = 1− 2x):

∆Jij ∝ −δixje
1
2 (Jix−θi)δi − δjxie

1
2 (Jjx−θj)δj (5)

∆θi ∝ δie
1
2 (Jix−θi)δi . (6)

It is clear from (5) and (6) that MPF is a local learning rule.

Experimental results. We performed several experiments comparing standard techniques for fit-
ting Hopfield networks with minimizing the MPF objective function (4). All computations were
performed on standard desktop computers, and we used used the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm [18] to minimize (4).

In our first experiment, we compared MPF to the two methods OPR and PER for finding 64-node
Hopfield networks storing a given set of patterns D. For each of 20 trials, we used the three tech-
niques to store a randomly generated set of m binary patterns, where m ranged from 1 to 120. The
results are displayed in Fig. 2 and support the conclusions of Theorem 1 and Theorem 2.

To evaluate the efficiency of our method relative to standard techniques, we compared training time
of a 64-node network as in Fig. 2 with the three techniques OPR, MPF, and PER. The resulting
computation times are displayed in Fig. 2 on a logarithmic scale. Notice that computation time for
MPF and PER significantly increases near the capacity threshold of the Hopfield network.

For our third experiment, we compared the denoising performance of MPF and PER. For each of
four values form in a 128-node Hopfield network, we determined weights and thresholds for storing
all of a set of m randomly generated binary patterns using both MPF and PER. We then flipped 0 to
64 of the bits in the stored patterns and let the dynamics (1) converge (with weights and thresholds
given by MPF and PER), recording if the converged pattern was identical to the original pattern or
not. Our results are shown in Fig 3, and they demonstrate the superior corrupted memory retrieval
performance of MPF.

4



0 10 20 30 40 50 60 70
Number of corrupted bits

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
p
a
tt

e
rn

s 
re

co
v
e
re

d
 e

x
a
ct

ly m=16
m=32
m=51
m=89

0 10 20 30 40 50 60 70
Number of corrupted bits

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
p
a
tt

e
rn

s 
re

co
v
e
re

d
 e

x
a
ct

ly m=16
m=32
m=51
m=89

Figure 3: Shows fraction of exact pattern recovery for a perfectly trained n = 128 Hopfield network
using rules PER (figure on the left) and MPF (figure on the right) as a function of bit corruption at
start of recovery dynamics for various numbers m of patterns to store. We remark that this figure
and the next do not include OPR as its performance was far worse than MPF or PER.

0 5 10 15 20 25 30 35 40
Number of patterns (m)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
p
a
tt

e
rn

s 
/ 

b
it

s 
st

o
re

d

MPF (patterns)
PER (patterns)
MPF (bits)
PER (bits)

Figure 4: Shows fraction of patterns (shown in red for MPF and blue for PER) and fraction of bits
(shown in dotted red for MPF and dotted blue for PER) recalled of trained networks (with n = 64
nodes each) as a function of the number of patternsm to be stored. Training patterns were presented
repeatedly with 20 bit corruption (i.e., 31% of the bits flipped). (averaged over t = 13 trials.)

We also tested the how the efficiency of our algorithm scales with the number of nodes n. For
varying n, we fit m = n/4 (randomly generated) patterns in n-node Hopfield networks using MPF
over 50 trials and examined the training time. Our experiments show that the average training time
to fit Hopfield networks with MPF is well-modeled by a polynomial O(n5/2).

A surprising final finding in our investigation was that MPF can store patterns from highly corrupted
or noisy versions on its own and without supervision. This result is explained in Fig 4. To illustrate
the experiment visually, we stored m = 80 binary fingerprints in a 4096-node Hopfield network
using a large set of training samples which were corrupted by flipping at random 30% of the original
bits; see Fig. 1 for more details.

Discussion. We have presented a novel technique for the storage of patterns in a Hopfield associa-
tive memory. The first step of the method is to fit an Ising model using minimum probability flow
learning to a discrete distribution supported equally on a set of binary target patterns. Next, we use
the learned Ising model parameters to define a Hopfield network. We show that when the set of
target patterns is storable, these steps result in a Hopfield network that stores all of the patterns as
fixed-points. We have also demonstrated that the resulting (convex) algorithm outperforms current
techniques for training Hopfield networks. We have shown improved recovery of memories from
noisy patterns and improved training speed as compared to training by PER. We have demonstrated
optimal storage capacity in the noiseless case, outperforming OPR. We have also demonstrated the
unsupervised storage of memories from heavily corrupted training data. Furthermore, the learn-

5



ing rule that results from our method is local; that is, updating the weights between two units re-
quires only their states and feedforward input. As MPF allows the fitting of large Hopfield networks
quickly, new investigations into the structure of Hopfield networks are posssible [19]. It is our
hope that the robustness and speed of this learning technique will enable practical use of Hopfield
associative memories in computational neuroscience, computer science, and scientific modeling.

References

[1] W. Little, “The existence of persistent states in the brain,” Mathematical Biosciences, vol. 19,
no. 1, pp. 101–120, 1974.

[2] E. Ising, “Beitrag zur Theorie des Ferromagnetismus,” Zeitschrift fur Physik, vol. 31, pp. 253–
258, Feb. 1925.

[3] J. Hopfield, “Neural networks and physical systems with emergent collective computational
abilities,” Proceedings of the National Academy of Sciences of the United States of America,
vol. 79, no. 8, p. 2554, 1982.

[4] M. Cohen and S. Grossberg, “Absolute stability of global pattern formation and parallel mem-
ory storage by competitive neural networks.” IEEE Transactions on Systems, Man, & Cyber-
netics, 1983.

[5] G. Hinton and T. Sejnowski, “Learning and relearning in boltzmann machines,” Parallel dis-
tributed processing: Explorations in the microstructure of cognition, vol. 1, pp. 282–317, 1986.

[6] J. Sohl-Dickstein, P. B. Battaglino, and M. R. DeWeese, “New method for parameter estimation
in probabilistic models: minimum probability flow,” Physical review letters, vol. 107, no. 22,
p. 220601, 2011.

[7] J. Hertz, A. Krogh, and R. Palmer, Introduction to the theory of neural computation. Westview
press, 1991, vol. 1.

[8] G. Weisbuch and F. Fogelman-Soulié, “Scaling laws for the attractors of Hopfield networks,”
Journal de Physique Lettres, vol. 46, no. 14, pp. 623–630, 1985.

[9] R. McEliece, E. Posner, E. Rodemich, and S. Venkatesh, “The capacity of the Hopfield as-
sociative memory,” Information Theory, IEEE Transactions on, vol. 33, no. 4, pp. 461–482,
1987.

[10] D. Amit, H. Gutfreund, and H. Sompolinsky, “Statistical mechanics of neural networks near
saturation,” Annals of Physics, vol. 173, no. 1, pp. 30–67, 1987.

[11] F. Rosenblatt, “The perceptron: a perceiving and recognizing automation (projet para), cornell
aeronautical laboratory report,” 1957.

[12] M. Minsky and S. Papert, Perceptrons. MIT press, 1988.
[13] M. Jinwen, “The asymmetric hopfield model for associative memory,” in Neural Networks,

1993. IJCNN’93-Nagoya. Proceedings of 1993 International Joint Conference on, vol. 3.
IEEE, 1993, pp. 2611–2614.

[14] F. Sommer and P. Dayan, “Bayesian retrieval in associative memories with storage errors,”
Neural Networks, IEEE Transactions on, vol. 9, no. 4, pp. 705–713, 1998.

[15] L. Personnaz, I. Guyon, and G. Dreyfus, “Collective computational properties of neural net-
works: New learning mechanisms,” Physical Review A, vol. 34, no. 5, p. 4217, 1986.

[16] I. Kanter and H. Sompolinsky, “Associative recall of memory without errors,” Physical Review
A, vol. 35, no. 1, p. 380, 1987.

[17] T. Cover, “Geometrical and statistical properties of systems of linear inequalities with applica-
tions in pattern recognition,” Electronic Computers, IEEE Transactions on, no. 3, pp. 326–334,
1965.

[18] J. Nocedal, “Updating quasi-newton matrices with limited storage,” Mathematics of computa-
tion, vol. 35, no. 151, pp. 773–782, 1980.

[19] C. Hillar and N. Tran, “Robust exponential memory in Hopfield networks,” ArXiv e-prints.

6


