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Efficient,  accurate  and  validated  automatic  spike-sorting  methods  needed.
Introduces  ViSAPy,  a Python  tool  for  generating  model-based  benchmarking  data  sets.
ViSAPy  allows  arbitrary  electrode  geometries,  neuron  models  and realistic  noise.
Tetrode,  polytrode  (in  vivo  cortex)  and MEA  (in  vitro  retina)  benchmark  sets  provided.
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a  b  s  t  r  a  c  t

Background:  New,  silicon-based  multielectrodes  comprising  hundreds  or  more  electrode  contacts  offer
the  possibility  to  record  spike  trains  from  thousands  of  neurons  simultaneously.  This  potential  cannot  be
realized  unless  accurate,  reliable  automated  methods  for  spike  sorting  are  developed,  in turn  requiring
benchmarking  data  sets  with  known  ground-truth  spike  times.
New  method:  We  here  present  a general  simulation  tool  for  computing  benchmarking  data  for  evalua-
tion  of  spike-sorting  algorithms  entitled  ViSAPy  (Virtual  Spiking  Activity  in  Python).  The  tool
is  based  on  a well-established  biophysical  forward-modeling  scheme  and  is implemented  as  a Python
package  built on  top  of  the  neuronal  simulator  NEURON  and the  Python  tool  LFPy.
Results:  ViSAPy  allows  for arbitrary  combinations  of  multicompartmental  neuron  models  and  geometries
of recording  multielectrodes.  Three  example  benchmarking  data  sets are  generated,  i.e., tetrode  and
polytrode  data  mimicking  in  vivo  cortical  recordings  and  microelectrode  array  (MEA)  recordings  of in  vitro
activity  in  salamander  retinas.  The  synthesized  example  benchmarking  data  mimics  salient  features  of
typical  experimental  recordings,  for example,  spike  waveforms  depending  on interspike  interval.
Comparison  with  existing  methods:  ViSAPy  goes  beyond  existing  methods  as  it  includes  biologically  real-
istic model  noise,  synaptic  activation  by recurrent  spiking  networks,  finite-sized  electrode  contacts,  and

allows  for  inhomogeneous  electrical  conductivities.  ViSAPy  is  optimized  to allow  for  generation  of  long
time  series  of benchmarking  data,  spanning  minutes  of  biological  time,  by  parallel  execution  on multi-core
computers.
Conclusion:  ViSAPy  is  an  open-ended  tool  as  it can  be  generalized  to produce  benchmarking  data  or

arbitrary  recording-electrode  g
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. Introduction

Action potentials are the main carrier of information between
eurons in the brain. They are characterized by fast inward and
utward electrical currents across the cell membranes, resulting
n transient deflections in the extracellular potential recorded in
he vicinity of the source neurons. The extracellular waveforms of
ction potentials are commonly referred to as spikes.  Spike wave-
orms recorded by extracellular recording devices vary in shape
nd amplitude between neurons due to morphological and electri-
al features of each neuron and position of the recording electrode
Henze et al., 2000; Gold et al., 2006, 2007, 2009; Pettersen and
inevoll, 2008). Extracellular recording devices typically record the
ombined activity of all nearby neurons, and it is not straightfor-
ard to assign individual spikes to individual neurons. However,

n many applications it is crucial to know what neuron each spike
ame from, and this grouping process is referred to as spike sorting

Lewicki, 1998; Quiroga, 2007; Einevoll et al., 2012). An example
llustration of such a spike-sorting process based on classification of

aveforms is shown in Fig. 1. Here the final outcome is the assign-
ent of recorded spikes to different neural sources illustrated with

ig. 1. Spike-sorting problem exemplified by offline spike sorting of in vivo tetrode data 

vents  (for filter settings see Section 2.7). (b) Spike waveforms across electrode channe
rojections of principal component 1 (PC1) of detected waveforms with corresponding 

hannels. Detection, clustering and sorting were performed using the SpikesSort packa
own-slope threshold of 10 �V, ± 1 ms  alignment window, and removal of duplicates wit
assilvitskii, 2007) on the first two principal components of the waveforms across each e
e Methods 245 (2015) 182–204 183

different colors. For a more detailed graphical overview of the steps
involved in spike sorting, see Fig. 1 in Einevoll et al. (2012).

Spike sorting remains a formidable challenge in analysis of elec-
trophysiological data: ideally, spike-sorting algorithms should be
able to account for signals with poor signal-to-noise ratios, tem-
porally overlapping spikes from several neurons, waveforms with
a wide variety of spatiotemporal shapes (i.e., temporal shapes
recorded simultaneously on several electrode contacts), wave-
forms that depend on the on-going neuronal firing dynamics (e.g.,
bursting/non-bursting, adaptation), and waveforms that change
over the time-course of the measurement (Franke et al., 2010;
Einevoll et al., 2012). Traditional spike-sorting procedures for
recordings with one or just a few electrode channels involve a
major manual component, and are therefore both idiosyncratic
and labor intensive (Harris et al., 2000; Wood et al., 2004; Einevoll
et al., 2012). The new generation of silicon-based multielectrodes
with hundreds or more electrode contacts (Buzsáki, 2004; Blanche

et al., 2005; Frey et al., 2009; Lambacher et al., 2011; Fiscella et al.,
2012; Einevoll et al., 2012) offers exciting opportunities for simulta-
neous spike-train recordings from thousands of neurons. However,
this potential can only be realized if these advances in electrode

measured in mouse visual cortex. (a) Band-pass filtered recordings expose spiking
ls extracted from band-pass filtered data, aligned to their minima. (c) Clustered

distributions in each electrode channel. (d) Clustered waveforms across electrode
ge in Python (http://spikesort.org). Spikes were detected on ch. 3 and ch. 4, with a
hin ± 0.25 ms.  Features were clustered using the K-means++ algorithm (Arthur and
lectrode channel, assuming five spiking neurons to be present in the recording.

http://spikesort.org
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Fig. 2. Schematic illustration of framework for generation of model benchmarking data where ground truth is known, mimicking an in vivo situation. (a) Extracellular noise
generated from a descriptive noise model mimicking experimental noise, Section 2.6. (b) Raster plots of excitatory and inhibitory synapse activation times for conductance-
based excitatory and inhibitory synapses, Section 2.3. Each row of dots represent synaptic activation times from presynaptic neurons, and the colors signify the postsynaptic
target  cell. (c) Recording device (here a linear tetrode) with population of biophysically detailed multicompartment model neurons, Section 2.2. (d) Superposition of extracel-
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ular  potentials (EP) from model population and synthetic noise. (f) Somatic membra
g)  which allows for unambiguous evaluation (e) of the result from applying spike-s
olor  in this figure legend, the reader is referred to the web  version of the article.)

ardware are accompanied by the development of accurate and
eliable automatic methods for spike-train extraction (Lewicki,
998; Quiroga, 2007; Einevoll et al., 2012; Franke et al., 2012).

Methods for reduction of manual involvement in spike sor-
ing have been, and still are, an active topic of research (Lewicki,
998; Quiroga, 2007; Einevoll et al., 2012), but the problem remains

argely unresolved. Numerous automatic spike-sorting algorithms
ave been developed, but their accuracy have been difficult to
ssess due to lack of suitable benchmarking data sets for sys-
ematic evaluation of their performance. While measures on the
erformance of spike-sorting algorithms without explicit knowl-
dge about the underlying activity can be constructed (Hill et al.,
011), comprehensive evaluation of such algorithms require access
o benchmarking spike-data sets where the ground truth, i.e., the
nderlying neuronal spike trains, are known (Einevoll et al., 2012).
uch ground-truth data sets, analogous to well-established bench-
arking data sets in computer science (Hockney, 1996), can in

rinciple be obtained experimentally by means of joint intra-
ellular and extracellular recordings of action potentials (Henze
t al., 2000; Harris et al., 2000), but such double recordings are
ifficult to do, and in practice limited to a modest number of
eurons.

A natural alternative is to use synthetic benchmark data,
ither constructed from experimentally measured spike wave-
orms (Wood et al., 2004; Thorbergsson et al., 2010), biophysical
orward modeling (Menne et al., 2002; Eaton and Henriquez, 2005;
mith and Mtetwa, 2007; Franke et al., 2010; Thorbergsson et al.,

002), or a combination of both (Martinez et al., 2009; Camuñas
esa and Quiroga, 2013). A limitation with use of experimentally

ecorded waveform templates is that not only the spike amplitude,
ut also the spike shape, depend on electrode position. Thus the
tential from each spiking model neuron used to assess the ground-truth spike times
 algorithms on extracellular model data (d). (For interpretation of the references to

generated benchmark data will a priori be limited to testing spike-
sorting algorithms in situations very similar to those for which
the templates were recorded (e.g., similar electrode types, simi-
lar neuron morphologies and dynamics, similar brain states, and
similar distances between neuron and electrode contacts). A fur-
ther complication is that even with fixed electrode positions, the
spike waveform may  be non-stationary, i.e., vary with time. For
example, during bursting behavior where a handful of spikes are
fired in rapid succession, the amplitude of the successive spikes
is generally seen to decrease (Ranck, 1973; Fee et al., 1996; Quirk
and Wilson, 1999; Harris et al., 2001; Delescluse and Pouzat, 2006;
Stratton et al., 2012).

Generation of benchmarking data by means of biophysical for-
ward modeling has no such principled limitations. This approach
takes advantage of the well-known biophysical cable properties
of neurons, and the link between intracellular and extracellular
potentials provided by volume conduction theory (Rall, 1962; Holt
and Koch, 1999). The theory allows for detailed simulation of the
extracellular signatures of spikes and how they depend on, e.g.,
position of the electrode relative to the neuron, neuronal morphol-
ogy and dynamic state, as well as the surrounding network and level
of firing synchrony (Gold et al., 2006, 2007; Pettersen et al., 2008;
Pettersen and Einevoll, 2008; Franke et al., 2010; Thorbergsson
et al., 2002; Camuñas Mesa and Quiroga, 2013). Such forward mod-
eling typically proceeds in two  steps (Lindén et al., 2014). First,
the transmembrane neuronal currents during action-potential fir-
ing are calculated using multicompartmental modeling. Next, the

extracellular potential is found by summing over the transmem-
brane current of each compartment, inversely weighted with the
distance between the neuronal compartment and the (virtual) elec-
trode contact points.
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We  here present ViSAPy (Virtual Spiking Activity in
ython), a general simulation tool based on this biophysical
orward-modeling scheme, for generation of benchmark data for
valuation of spike-sorting algorithms. ViSAPy has a modular
esign, and the illustration in Fig. 2 presents the main steps in
enchmark data generation. For a benchmark dataset emulating
n in vivo tetrode recording, we first generate synthetic noise sig-
als with frequency content and covariance between channels
xtracted from experimental recordings (Fig. 2a). We  then gener-
te activation times for excitatory and inhibitory synaptic events
Fig. 2b) that in turn are spatially distributed across the mor-
hologies of several biophysically detailed, multicompartmental
odel neurons positioned in close proximity of the electrode con-

acts (Fig. 2c). From the multicompartment neuron models we
ompute the extracellular potential across electrode contacts, i.e.,
ecording channels, and subsequently superimpose the synthetic
oise (Fig. 2d). The resulting traces represent benchmarking data
o be used as input when testing different spike-sorting algorithms
including preprocessing steps). From the somatic membrane vol-
ages in each neuron (Fig. 2f) we extract the ground-truth spiking
ctivity (Fig. 2g), hence allowing for a direct comparison between
stimated spike trains and the ground truth during the evalua-
ion step (Fig. 2e). In ViSAPy each main component of the model
etup illustrated in Fig. 2a–c is represented as programming objects,
ence the individual components such as neuron models, synap-
ic stimulation models and electrode models may  be exchanged or

odified at wish depending on the application.
The ViSAPy tool is implemented as a Python1 package

Langtangen, 2009) building on top of the neuronal simulator NEU-
ON (Hines et al., 2009) and the Python tool LFPy for calculating
xtracellular potentials (Lindén et al., 2014). ViSAPy relies on NEST
Gewaltig and Diesmann, 2007) for simulations of point-neuron
etwork simulations providing synaptic input onto the multicom-
artmental neurons generating the extracellular potential. ViSAPy
llows for (i) use of arbitrary combinations of multicompartmen-
al neuron models, (ii) arbitrary geometries of recording electrodes
e.g., single electrodes, tetrodes (Gray et al., 1995), polytrodes, i.e.,
inear multielectrodes (Ulbert et al., 2001; Blanche et al., 2005),

icroelectrode arrays (MEAs) (Taketani and Baudry, 2006)), (iii)
nite-sized electrode contacts, (iv) addition of realistic background
oise extracted directly from experiments, and (v) tailored excit-
tory and inhibitory synaptic activation to, e.g., drive the spiking
eurons with well-controlled correlated synaptic inputs. Impor-
antly, ViSAPy has been optimized to allow for generation of long
ime series of benchmark data, spanning minutes of biological time,
y parallel execution on multi-core computers. ViSAPy is made
vailable on GitHub (http://github.com/espenhgn/ViSAPy), is open
ource and released under GPLv3.2

To illustrate the application of ViSAPy, three different electrode
onfigurations are considered: a tetrode with four closely spaced
lectrode contacts, a polytrode, i.e., (linear) multielectrode, with 16
ontacts positioned along a line, and a two-dimensional electrode
ontact grid (microelectrode array, MEA) comprising 102 electrode
ontacts. Tetrodes and polytrodes are typically used in in vivo recor-
ings in cortex or hippocampus, and in the present examples we
enerated virtual spike data for these recording devices from a set
f biophysically detailed layer-5b pyramidal model cells (Hay et al.,
011) with background noise extracted from in vivo experiments
uperimposed on the signal. Interestingly, we found that with our

n vivo-like synaptic inputs (generated by separate simulations of
eaky integrate-and-fire (LIF) neurons in recurrent networks), a bio-
ogically plausible spike waveform variability was automatically

1 http://www.python.org
2 http://gnu.org/licenses/gpl.html
e Methods 245 (2015) 182–204 185

obtained in the simulations. In the MEA  example, where the het-
erogenous electrical conductivity from the electrode device, tissue
and saline influence the spike waveforms compared to the typical
in vivo situation (Ness et al., 2012, 2015), we made benchmarking
data mimicking in vitro recordings of spiking retinal ganglion cells
(Segev et al., 2004).

While our focus is on generating benchmarking data for testing
of spike-sorting algorithms, ViSAPy can also give direct insight into
the link between neural activity and what is measured with extra-
cellular electrodes (Holt and Koch, 1999; Gold et al., 2006; Pettersen
et al., 2008, 2012; Pettersen and Einevoll, 2008; Lindén et al., 2010,
2011; Einevoll et al., 2013a,b; Łęski et al., 2013; Reimann et al.,
2013). Note also that the biophysical forward-modeling scheme
in ViSAPy is not only applicable for modeling spikes. The tool is
equally suitable for calculating the low-frequency components of
the extracellular potential, i.e., the local field potential (Einevoll
et al., 2013a,b).

The paper is organized as follows: The methods behind ViSAPy
are presented in Section 2. In Section 3 we  first consider in detail
the properties of the extracellular spike from the layer-5b cortical
model cell (Hay et al., 2011), investigating how the spike waveform
depends on electrode size and neuronal state (in particular how
the spike waveform depends on the time since the previous spike).
Finally, we show example results for generated benchmarking data
for the tetrode, polytrode and MEA, respectively.

2. Materials and methods

2.1. Experimental procedures

In order to produce both example data (cf. Fig. 1) and real-
istic models for background noise to use in the generation of
benchmarking data, experimental recordings were made in visual
cortex of a CB57 mouse (3 months old). The animal was  sedated
with an intramuscular injection of chlorprothixene (0.2 mg  in
0.05 ml  sterile water), and anesthetized with 1–2% isoflurane in air
(80 ml  min−1). To achieve mydriasis and cycloplegia, tropicamide
was applied to the eyes (one drop per eye). Silicone oil was applied
to prevent drying and cataract, yet allowing clear optical trans-
mission. The animal was maintained at 37 ◦C (MouseStat system).
The scalp was  retracted and a craniotomy performed (2 mm in
diameter, 1 mm anterior and 3 mm lateral to lambda). The exposed
cortical surface was  covered with artificial cerebrospinal fluid (Har-
vard Apparatus). The electrode was  lowered into the brain to a
depth of 1000 �m in the center of the craniotomy, and was allowed
to settle for 20 min  before recording. Recordings were made with
a polytrode (linear multicontact silicone probe) from NeuroNexus
with 16 sites spaced at 50 �m intervals (A1×16-3mm-50-177-
A16). The polytrode was connected to the recording equipment
(Axona, Herts, U.K.) via AC-coupled unity-gain operational ampli-
fiers close to the animal’s head. Continuous sampling of unfiltered
raw data at 16 bit and 48 kHz was  done for a duration of 10 min.
Drifting gratings (Psychophysics Toolbox (Brainard, 1997) w. MAT-
LAB (The Mathworks, Inc)) were displayed on a 21 in. monitor
placed 25 cm in front of the animal. The experiments were per-
formed in accordance with the Norwegian Animal Welfare Act and
the European Convention for the Protection of Vertebrate Animals
used for Experimental and Other Scientific Purposes.

Recordings were converted to floats in units of mV and post-
processed offline in Python. For spike detection and to reduce
spurious signals common to all electrode channels, the spatial mean

raw potentials, i.e., mean potential across all channels, at each time
step was  subtracted from each electrode channel, prior to band-
pass filtering (cf. Section 2.7). After filtering, peaks in the power
spectrum caused by noise, i.e., 50 Hz line noise, 62 Hz screen refresh

http://github.com/espenhgn/ViSAPy
http://www.python.org
http://gnu.org/licenses/gpl.html
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Table 1
Default parameters for conductance-based synapses.

Symbol Unit Description Excitatory Inhibitory

EE, EI mV Reversal potential 0 −80
gmax,E, gmax,I �S Max. conductance 0.0125 0.025
�rise,E, �rise,I ms  Rise time-constant 1 1
86 E. Hagen et al. / Journal of Neuro

ate and associated harmonics, were attenuated by more than five
rders of magnitude. Some auxiliary steps to reduce noise in the
aw recordings used for generation of synthesized noise (cf. Sec-
ion 2.6) were taken, as mean subtraction as above did not give the
esired effect: An additional series of narrow, causal notch filters
ere applied to the raw recordings reducing spurious frequency
eaks present in the power spectral density (PSD) that we identified
y visual inspection. Band-stop Butterworth filters were designed
ith scipy.signal.iirdesign (1.5 dB minimum attenuation in

top-band, 0.5 dB maximum loss in pass-band, each centered at
 = [50, 62, 88, 100, 112, 150, 250, 1910] Hz, stop-band was  f ± 1 Hz,
ass-band f ± 5 Hz). A butterworth aliasing filter with 1 dB max-

mum loss in pass-band at 13 kHz, 9 dB minimum attenuation in
top-band at 14 kHz was applied.

.2. Multielectrode models

ViSAPy allows for single electrodes and multielectrodes with
rbitrary electrode numbers and three-dimensional layouts. Here,
e considered three commonly used multielectrode configurations

s examples.
Tetrode. We  emulated the layout of a NeuroNexus tetrode device

type Q1×1-10mm-50-177). The ncontacts = 4 electrode contacts
ere positioned 50 �m apart along the vertical z-axis. We  further

ssumed circular electrode contacts with radius rcontact = 7.5 �m
177 �m2 surface area). The electrode shaft (probe) had a rect-
ngular cross-section, i.e., 50 �m thick and 80 �m wide with the
ront-face of the shaft (where the contacts are placed) being cen-
ered along the z-axis. The shaft width was tapered to a tip starting
t the depth of the lowest electrode and ending 50 �m below, illus-
rated in Fig. 2c.

Polytrode. We  also emulated a polytrode geometry similar to
he electrode used to record our experimental data. This Neu-
oNexus device (A1×16-3mm-50-177-A16) has ncontacts = 16. As for
he tetrode, the electrode contacts were aligned along the vertical
xis with an inter-contact distance of 50 �m.  Electrode contacts
nd shaft profile were otherwise as for the tetrode.

Microelectrode array (MEA).  For benchmarking data emulating
n vitro recordings, we focused on the Hierlemann high-density

icroelectrode array (Frey et al., 2009, 2010; Hierlemann et al.,
011; Fiscella et al., 2012). This MEA  has 11,011 electrodes arranged

n a honeycomb pattern, from which up to 126 can be freely cho-
en and recorded from simultaneously. Each contact point diameter
s 7 �m,  and the inter-contact distance is 18 �m (Frey et al., 2009,
010). We  emulated this close-packed electrode arrangement with

 columns and 17 rows totaling 102 electrode contacts.

.3. In vivo cortical data for tetrodes and polytrodes

Neuron models.  For benchmarking data mimicking in vivo
etrode and polyelectrode recordings in cortex, we used biophysi-
ally detailed, multicompartment models of L5b pyramidal neurons
rom rat neocortex taken from a study by Hay et al. (2011). In
ay et al. (2011) these models were fitted using an evolutionary
ulti-objective optimization algorithm to reproduce intracellu-

ar responses obtained in whole-cell multi-patch recordings (Deb
nd Kalyanmoy, 2001; Druckmann et al., 2007; Van Geit et al.,
008; Hay et al., 2011, 2013; Bahl et al., 2012). The model files

3
ere downloaded from ModelDB (Hines et al., 2004). We  selected
hese models due to their ability of showing complex firing behav-
or including regular (tonic) spiking, spike bursts, Ca2+-spikes and
ackpropagating action potentials (Hay et al., 2011).

3 http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=139653
�decay,E, �decay,I ms  Decay time-constant 3 12
�E, �I �m−2 Synapse density 45 ± 4.5 20 ± 2.0

To achieve more heterogeneity in the simulated neuron popu-
lations, we utilized several parameter sets that in Hay et al.
(2011) all were found to reproduce essential features of the peri-
somatic behavior, meaning generation of action potentials (APs).
Two reconstructed morphologies were employed (Fig. 3a and b),
with corresponding model-neuron description files and channel
conductances, including passive membrane parameters, and three
choices of model parameters (cf. Table 3, Tables S1 and S2 in Hay
et al. (2011)) resulting in six possible combinations of channel
conductances and morphologies. Although these particular mod-
els were not constrained to reproduce extracellular potentials,
the resulting distributions of transmembrane currents during AP
events gave plausible extracellular spike waveforms in terms of
shape and amplitudes (cf. Section 3.1).

For the investigation of single-cell spike waveform variability,
the morphology shown in Fig. 3a combined with the model param-
eters in Table 3 of Hay et al. (2011), was  used. In the population
studies we  randomly selected neurons from the six possible com-
binations of morphology and model parameters.

Synapses. Conductance-based excitatory (AMPA) and inhibitory
(GABAA) synapses were modeled as a ‘difference of two expo-
nentials’ (Roth and van Rossum, 2009). Excitatory synapses were
distributed on dendritic segments only, inhibitory synapses were
assigned to both dendrites and soma. We  obtained plausible ampli-
tudes of single-input postsynaptic potentials, i.e., up to ∼ 9 mV  for
excitatory synaptic inputs onto proximal dendrites, and also rea-
sonable overall firing rates (∼ 0.3 − 20 s−1) when the neurons were
subjected to continuous synaptic drive (see Appendix A). This was
achieved by (1) manually specifying the mean synapse densities
per membrane area (�E, �I, 10 % standard deviation) and drawing
the number of synapses of each type from a normal distribution,
(2) positioning each individual synapse randomly across segments
with probabilities normalized according to target surface area, (3)
adjusting the maximum conductances (gmax,E, gmax,I), and (4) set-
ting synapse reversal potentials (EE, EI) and synapse rise/decay time
constants (�rise,E, �rise,E, �decay,E, �decay,I) similar to Hendrickson et al.
(2011). The synapse parameters are summarized in Table 1.

Population input from network. The incoming synaptic spike
times to the postsynaptic population corresponded to spikes gen-
erated by a structured two-population spiking neuron network
(Kriener et al., 2009), i.e., spike times of excitatory and inhibitory
neurons from the network were employed as event times for
excitatory or inhibitory synapses, respectively, reminiscent of the
approach in Lindén et al. (2011). Thus the synaptic drive onto
the spike-generating neurons was  determined by the dynamics of
the two-population spiking network. For the full network descrip-
tion, see Appendix A and Kriener et al. (2009). Alternatively (when
noted), synapse activation times were generated using stationary
Poisson processes with a fixed rate of 10 s−1.

Cortical populations. We  assigned somatic locations for all N
neurons in each population within cylindric volumes with height
hcylinder and radius rcylinder. The cylinders were aligned with the
axis of the recording device (the vertical z-axis). All neurons were

placed with their somas in z-locations between the outmost con-
tact points. Individual cell locations were set randomly using an
iterative procedure with the following constraints: a minimum

http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=139653
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Fig. 3. Neuron morphologies used to generate benchmarking data. (a, b) Morphologies of the layer 5b pyramidal cell models from Hay et al. (2011) used to generate
benchmarking data mimicking in vivo tetrode and polytrode recordings. (c) Subset of retinal ganglion cells (RGCs) used to generate benchmarking data mimicking in vitro
retinal MEA  recordings, taken from Sheasby and Fohlmeister (1999).

Table 2
Main simulation parameters for electrodes and populations for each set of benchmarking data.

Symbol Unit Description Tetrode Polytrode MEA

�e S m−1 Conductivity 0.3 0.3 0, 0.1, 1.5
ncontacts Number of contacts 4 16 102
rcontacts �m Contact point radius 7.5 7.5 7
N  Number of cells 6 16 56
rcylinder �m Outer population radius 50 50 –
hcylinder �m Population height 150 750 –
dss �m Min. soma-to-soma distance 25 25 –
dt  ms  Time resolution 0.03125 0.03125 0.03125
fs Hz Sampling frequency 32 000 32 000 32 000

16 16 16
401 401 401
0.01 0.01 0.01
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Table 3
Default spiking neuron network parameters.

Symbol Unit Description Value

h ms  Temporal resolution 0.03125
NE Number of excitatory cells 10 000
NI Number of inhibitory cells 2500
�mem ms  LIF neuron time constant 20
�refr ms  LIF neuron refractory period 2.0
�spike mV LIF neuron firing threshold 20
Vres mV LIF neuron reset potential 0
�  Number of connections 1250
g  Excitatory/inhibitory weight ratio 5.0
�  ms  Transmission delay 2.0
JE mV EPSP amplitude 0.05
JI mV IPSP amplitude −gJE
Jnoise mV EPSP of stat. Poissonian noise 0.05
Jext.noise mV EPSP of non-stat. Poissonian noise 0.5
�noise Hz Stationary Poisson process rate 900
�ext.noise Hz Non-stat. Poisson processes rate 40
next.noise Number of non-stat. Poisson proc. NE + NI
nbumps Cosine bump count
ntaps Filter length 

˛  Log-bump param. 

oma-to-soma inter-distance of dss = 25 �m (as computed from the
enter of each soma segment), and minimum proximity of somatic
egments of 25 �m to the volume occupied by the recording device,
.e., electrode shaft (cf. Section 2.2). Neurons were aligned with
heir apical dendrite parallel to the z-axis, with a random rotation.
s dendritic segments typically contribute less to the extracellu-

ar potential than their somatic counterpart (Lindén et al., 2010),
e here allowed dendritic sections to lie within the volume occu-
ied by the electrode, however, dendrites were not allowed too
lose to the electrode contacts themselves, see Section 2.5. Popu-
ation parameters are summarized in Table 2. The benchmarking
ata mimicking in vivo results discussed here was  obtained with
he locations of each neuron and contact points fixed throughout
imulations. However, ViSAPy is also able to emulate vertical elec-
rode drift by shifting the z-locations of the electrode contact points
n fixed steps at regular time intervals.
.4. In vitro retinal data for microelectrode arrays (MEAs)

For MEA  benchmarking data we emulated salamander retinal-
lice recordings, the subject matter of several recent studies, e.g.,

�noise ms  Transmission delay non-stat. Poisson proc. h
	n rad Center of von Mises distribution, cell n 2
n

N − 


�n rad− 1
2 Dispersion of von Mises distribution 
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egev et al. (2004, 2006). A set of 53 biophysically detailed mod-
ls of salamander retinal ganglion cells were utilized (Sheasby
nd Fohlmeister, 1999), where the corresponding model files were
ownloaded from ModelDB.4 A subset of corresponding neuronal
econstructions are shown in Fig. 3c. Salamander retinas have reti-
al ganglion cell layers with a cell density on the order of 1400
ells per mm2 (Segev et al., 2004, 2006). With an ordered hexago-
al organization as used here, this density corresponds to a mean
ell spacing of 29 �m.  Random offsets with a standard deviation of

 5 �m were applied to each cell’s location along both planar axes.
ach cell was chosen randomly from the 53 available models.

In the MEA  setup, the retinal slice is placed onto the MEA  chip
nd covered with saline (Ness et al., 2015). Both the electrical con-
uctivity in the slice and the typical distance of the retinal ganglion
ells from the MEA  chip plane, each needed for forward-modeling of
EA  potentials (cf. Section 2.5 and Ness et al. (2015)), are not accu-

ately known. They were thus set as follows: The average height of
he somas above the electrode plane were adjusted such that the

odel reproduced experimentally observed spatial attenuation of
pike amplitudes when moving laterally in the electrode plane, i.e.,

 spatial exponential decay constant of ∼ 28 �m (Segev et al., 2004).
his procedure predicted an average soma to MEA-plane distance
f 15 �m.  We  thus placed the somas at an average vertical heights of
5 �m,  but to allow some jitter we added a random Gaussian spread
ith a standard deviation of 1 �m.  Further, the electrical conduc-

ivity in our 200 �m thick retinal model slice was  adjusted such
hat the spike amplitudes were comparable to experimental obser-
ations also in Segev et al. (2004) resulting in a tissue conductivity
f 0.1 S m−1.

The model retinal ganglion cells were activated by a simpli-
ed model for a graded synaptic input current (Palmer, 1999),

n the form of a time-varying synaptic conductance onto their
omatic compartments given by Isyn(t) = gsyn(t)(Vsoma − EE). For
ach cell, we created uncorrelated signals using a mean-reverting
rnstein–Uhlenbeck process (Uhlenbeck and Ornstein, 1930;
uckwell et al., 2002). Next, we assumed an exponentially decay-
ng soma-to-soma distance-dependence of the correlation of each
ignal using the form exp(− d/�d), where d is the distance between
ach cell pair and �d = 29 �m was chosen as space constant (simi-
ar to the mean cell spacing), in order to have a higher probability
f temporally overlapping spike waveforms generated by cells in
lose proximity of each other. We  made the signals correlated by
rst computing the Cholesky decomposition factor (see Section 2.6)
f the of the input correlation matrix, which in turn was multiplied
ith the matrix containing the uncorrelated signals. The output,

epresenting the synapse conductance gsyn(t) in each individual
ell, was scaled and shifted to have a mean value and standard
eviation of 2.00 ± 1.33 × 10−1 S m−2 in order to make all cells in
he population generate action potentials (at rates of ∼ 6 − 30 Hz).

.5. Forward models for extracellular potentials

From volume conductor theory it follows that under the
ssumption of an infinite, electrically linear and homogenous con-
uctive media, the contribution to the electrical potential measured
y a (virtual) point electrode positioned at �r is given by (Holt and
och, 1999; Lindén et al., 2014):(�r, t

)
= 1 I0 (t)∣ ∣ , (1)
4
�e ∣�r − �r0∣
here I0(t) denotes a point current source positioned at �r0. This

ormula represented the basis for the generation of our in vivo

4 http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=18501
e Methods 245 (2015) 182–204

benchmark data (i.e., tetrode and polyelectrode), and a scalar con-
ductivity �e = 0.3 S m−1 was  used (Hämäläinen et al., 1993, but see
Goto et al., 2010). In the presently used line-source approximation
(Holt and Koch, 1999; Gold et al., 2006, 2007, 2009; Pettersen et al.,
2008; Lindén et al., 2010, 2011, 2014) each dendritic segment is
represented as a line source with evenly distributed currents, and
for N multicompartmental model neurons, each discretized into nj
segments, the extracellular potential contribution is obtained by
integrating Eq. (1) along each segment i of each cell j:

˚
(�r, t

)
=
∑N

j=1

∑nj

i=1

Ij,i(t)
4
�e

∫
1

|�r − �rj,i|
d�rji. (2)

Here, Ij,i(t) is the transmembrane current of segment i of neuron j, �r
the location of the recording electrode contact, and �rj,i the location
of the segment. A simple formula found from evaluating the integral
Eq. (2) (see, e.g., Eq. (4) in Lindén et al., 2014) was used to compute
the contribution from each line segment. As the soma segment may
more realistically be approximated as a spherical current source if
its length-to-diameter ratio is approximately 1, we combined the
point-source approximation for the soma (Eq. (1)) with the line-
source approximation (Eq. (2)) for the dendritic segments to obtain
(Lindén et al., 2014):

˚(�r, t) =
∑N

j=1

1
4
�e

(
Ij,soma(t)

|�r − �rj,soma|
+
∑nj

i=2

∫
Ij,i(t)

|�r − �rj,i|
d�rj,i

)

=
∑N

j=1

1
4
�e

(
Ij,soma(t)

|�r − �rj,soma|
+
∑nj

i=2

Ij,i(t)

�sj,i
log

∣∣∣∣∣
√

h2
j,i

+ �2
j,i

− hj,i√
l2
j,i

+ �2
j,i

− lj,i

∣∣∣∣∣
)

.

(3)

Here �sj,i denotes compartment length, �j,i the perpendicular dis-
tance from the electrode point contact to the line compartment,
hj,i the longitudinal distance from one end of the compartment,
and lj,i = �sj,i + hj,i the longitudinal distance from the other compart-
ment end. If the distance between electrode contact and a dendritic
current source accidentally gets very small, i.e., smaller than the
radius of the dendritic segment, an unphysical singularity in our
line-source potential may  occur. In these cases singularities are
avoided by setting �j,i equal to the dendritic compartment radius.
Similarly for the point-source term (soma), we set |�r − �rj,soma| equal
to the soma compartment radius if the distance is smaller than
the soma radius. Contacts of real recording electrodes have finite
spatial extent and are not point contacts as assumed above. How-
ever, the recorded signal can be well approximated as the mean
of the potential across the uninsulated surface (Robinson, 1968;
Nelson et al., 2008; Nelson and Pouget, 2010; Ness et al., 2015), at
least for source distances further away than an electrode-contact
radius or so (Ness et al., 2015). Here we  employed this disc-electrode
approximation (Camuñas Mesa and Quiroga, 2013; Ness et al., 2015),
i.e.:

˚disc = 1
As

∫ ∫
S

˚(u,  0)d2u ≈ 1
m

∑m

i=1
˚(ui, 0),  (4)

and averaged the point-contact potential in Eq. (3) over m =100
random locations across the contact surface S, AS being the sur-
face area. The chosen locations were distributed with uniform
probability on circular disks representing each contact surface,
with surface vectors oriented perpendicular to the electrode axis
(or MEA  plane) (Lindén et al., 2014). Calculations of extracellular
potentials were facilitated by LFPy5 (Lindén et al., 2014), in which
NEURON is used for calculations of transmembrane currents (Hines

et al., 2009).

In the MEA  setup for in vitro slices the different electrical con-
ductivities of the MEA  chip, retinal slice, and saline bath imply

5 http://compneuro.umb.no/LFPy

http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=18501
http://compneuro.umb.no/LFPy
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hat the assumption of an infinite homogeneous volume conductor
s violated. However, as shown in Ness et al. (2015), the Method
f Images (MoI) from electrostatics (Barrera et al., 1978) can be
dapted to accurately approximate the electrostatic forward solu-
ion of electric potentials resulting from transmembrane currents,
ee Appendix B. In the simulations we assumed a fully insulating
EA  chip (�e = 0) and a tissue conductivity of �e = 0.1 S m−1 in the

00 �m thick retinal slice (see Section 2.4). For the saline bath a con-
uctivity of �e = 1.5 S m−1 was used (Nunez and Srinivasan, 2006;
ogothetis et al., 2007; Ness et al., 2015).

.6. Background noise

In real extracellular recordings, numerous sources of noise (elec-
ronic noise, line noise, spikes from neurons far away) add to the
ecorded extracellular potentials (Martinez et al., 2009; Lindén
t al., 2011; Thorbergsson et al., 2002; Camuñas Mesa and Quiroga,
013). To incorporate realistic noise in our benchmark data, we
hus developed a descriptive noise model that mimicked experi-

entally obtained signals in terms of frequency content, amplitude,
nd frequency-dependent covariance between recording channels.
his synthesized noise was then added to the computed extra-
ellular potentials from the spiking model population. From 15 s
xcerpts of in vivo mouse visual cortex recordings (see Section 2.1)
nd in vitro mouse retinal recordings obtained with a Hierlemann
EA  (Frey et al., 2009, 2010; Hierlemann et al., 2011; Fiscella et al.,

012), each with ncontacts contacts (i.e., tetrode, polytrode, MEA),
e concatenated signals with major spike events removed, using

 detection threshold of five times the signal standard deviation of
and-pass filtered data. A high spike-detection threshold was cho-
en as we found that removal from the signal of a large number
f putative spikes identified by a lower threshold, had unwanted
ffects on the low-frequency parts of the noise. We  then extrapo-
ated the power spectral density (PSD) in each channel by Welch’s
verage periodogram method (the fast Fourier transform (FFT) win-
ow length was 216, Hanning window function). A complex-valued
atrix was subsequently constructed, corresponding to the desired

umber of output channels ncontacts, duration and time resolution of
ur extracellular potential simulations in the Fourier domain. Each
atrix contained the product between each corresponding PSD
agnitude and a complex exponential exp(i�), � being a uniformly

istributed random phase angle on the interval [0, 2
〉. After apply-
ng an inverse discrete Fourier transform operation on the matrix,

e obtained ncontacts of uncorrelated noise signals with PSDs similar
o real noise. To introduce correlations between the channels, both
xperimental and uncorrelated model noise signals were frequency
esolved by a series of nbumps filter basis functions represented as
aised cosine ‘bumps’, on the form:

i(f ) = cos(log(f + ˛) − i) + 1
2

, (5)

o that for the frequency f we have that log(f + ˛) ∈ [i − 
, i + 
〉 and
 otherwise (Field, 1987; Pillow et al., 2008).  ̨ was  a chosen ‘stretch’
arameter, and the bump positions i distributed so that the basis
ectors summed to 1. The first bump was a half-bump, and each
quivalent filter was applied as discrete filters of length ntaps. These
arameters for the raised cosine bump filters are summarized for
ach set of benchmark data in Table 2. The Cholesky decomposition
actors of the covariance coefficient matrices between electrode
hannels were calculated for each frequency band of the real noise,
nd multiplied with the corresponding frequency-resolved model

oise. The cross-channel correlated frequency bands were then
uperimposed with each other, yielding multi-channel artificial
oise with comparable PSD and frequency-resolved cross-channel
ovariance similar to experimental data.
e Methods 245 (2015) 182–204 189

2.7. Benchmarking data analysis

Following standard procedure to facilitate detection of spike
events from experimental data, we  employed a two-step filter-
ing procedure on the computed extracellular potentials, by (1)
applying causal 1st order Butterworth band-pass filters with cutoff
frequencies [0.5, 8000] Hz for DC and sampling alias removal, and
(2) applying acausal 4th order Butterworth band-pass filters with
cutoffs [300, 5000] Hz.

The ground-truth spike times of all neurons were assessed from
the simulated somatic membrane potentials. An action-potential
detection threshold of −30 mV  was  used (well above t-type Na+-
channel activation), and the time step with the maximum slope
during spike onset was  chosen as the ground-truth spike time. The
fast sodium current influx during action potential onset determines
the peak of the extracellular spike waveform measured in proxim-
ity to the soma (Henze et al., 2000; Gold et al., 2006; Pettersen and
Einevoll, 2008). Ground-truth inter-spike interval (ISI) histograms
were calculated for ISI intervals between 1 and 1000 ms in 100
log-linear bins, unless stated otherwise.

To analyze the confidence of which model recordings could
be sorted, we  used the available ground-truth spike times
for spike detection, thus avoiding the detection and align-
ment problem (Lewicki, 1998). The Python SpikeSort package
(http://spikesort.org) was  used to cut and temporally align wave-
forms according to the time of the peak amplitudes. Each spiking
event was  cut as nchannels× 100 time steps (i.e., 3.2 ms), offset by
−20 time steps from the ground truth spike time. The tool was also
used to compute principal components (PCs) of observed waveforms
across electrode channels (Quiroga, 2007).

Spike-train correlations were computed from spike-time his-
tograms with 10 ms bin widths, using the definition of the Pearson
product-moment correlation coefficient, defined as

rij = c̃ij√
c̃iic̃jj

=
E[(xi − 	xi

)(xj − 	xj
)]√

E[(xi − 	xi
)2]E[(xj − 	xj

)2]
, (6)

where c̃ij is the covariance between the spike-time histograms xi
and xj for two  cells i and j, respectively, c̃ii the variance of xi, E the
expectation (i.e., the mean), and 	xi

the mean of xi, and similar for
xj (Tetzlaff and Diesmann, 2010).

3. Results

3.1. Single-cell spike waveform variability

Before embarking on the generation of benchmarking data from
neural populations, we  here first investigate generic issues related
to spikes and, in particular, spike waveform variability. In Fig. 4a
we show spike waveforms at various positions around the soma
of a L5b pyramidal cell model taken from Hay et al. (2011). Here
the action potential was  generated without explicit synaptic inputs,
but rather by raising the reversal potential of the passive leak chan-
nel across the neuron. An immediate observation is that the spike
waveform depends strongly on position, in particular its amplitude
(see color code), but also the shape (see, e.g., the spikes recorded
above the soma close to the apical dendrite). As expected the largest
spikes can be found close to the soma, and here the characteristic
shape with a sharp negative ‘sodium spike’ followed by a longer
positive ‘potassium bump’ is observed (Henze et al., 2000). Spike
waveforms recorded close to the thick apical dendrite have a dif-

ferent shape with a fast positive peak due to capacitive currents
preceding the sodium spike and potassium bump. These observa-
tions are in agreement with previous studies (Holt and Koch, 1999;
Gold et al., 2006, 2007; Pettersen and Einevoll, 2008).

http://spikesort.org
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Fig. 4. Position-dependent spike waveforms and effects of contact size for a L5b pyramidal model neuron. (a) Normalized spike waveforms color coded to their negative
peak  amplitude for a set of in-plane positions (for a plane passing through the soma center) superposed on neuronal morphology. Intracellular action potential shown in
upper  right inset. (b) Dependence of maximum absolute extracellular spike amplitude on lateral distance x and contact radius rcontact. (c) Spike waveforms normalized to the
negative peak as a function of distance along x-axis with fixed electrode contact radius rcontact = 7.5 �m.  (d) Spike width, defined as width of trough at 50% min-max amplitude
difference, as function of lateral distance and contact point radius. In panels (b–d), spike amplitudes and spike widths were along x-axis locations marked with asterisks in
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anel  (a). The chosen morphology and corresponds to the morphology cell 1 depic
2011). The action potential was generated by increasing the reversal potential of th
f  the references to color in this figure legend, the reader is referred to the web  ver

.1.1. Effect of electrode contact size
The results in Fig. 4a are for an ideal point-electrode contact.

eal electrodes of course have physical extensions, and in Fig. 4b
e illustrate how the amplitude of the recorded spike depends on

lectrode contact radius, rcontact, using the disc-electrode approx-
mation in Eq. (4). Results are shown for recordings along a
orizontal line extending out from the soma, see asterisks in Fig. 4a.
lectrode contact radii up to 20 �m are considered, and for these we
bserve that the contact size has a substantial effect on the ampli-
ude of the recorded spikes for the smallest lateral distances (i.e.,

 10–20 �m)  from the soma center: larger contacts give smaller
eak amplitudes as the averaging over large surfaces prevents a
trongly dominant contribution from a current source placed very
lose to a small contact. Note, that the disc-electrode approxima-
ion itself will be inaccurate for the largest electrode contacts and
hortest distances considered. However, comparison with results
rom Finite Element Modeling (FEM) (Larson and Bengzon, 2013)
uggests that only for distances less than half the electrode radius
r so will the error inherent in the approximation be larger than
0% (Ness et al., 2015).
In Fig. 4b we further observe that for lateral distances x
pproaching hundred micrometers, the amplitude decays roughly
nverse with the square of the distance, i.e., as 1/x2, in accordance

ith the dominance of the current-dipole contributions in the
 Fig. 3a while model parameters corresponds to the set listed in Table 3 in Hay et al.
ive leak channel from the default value of −90 mV  to −59.7 mV.  (For interpretation
f the article.)

far-field limit (Pettersen and Einevoll, 2008; Pettersen et al., 2012).
In addition to the amplitude, the spike shape also varies with lateral
distance, cf. Fig. 4c. Here we see that the spikes recorded fur-
ther away from the soma are blunter and wider (red) than spikes
recorded very close (blue). We  also observe that the spike widening
is mainly due to increased delay of the positive ‘potassium bump’
with distance, the times of negative sodium peaks are only slightly
delayed. In Fig. 4d the distance dependence of the spike width (see
definition in figure caption) is quantified, and a monotonic increase
is observed. This is in accordance with previous observation on
other model neurons (Gold et al., 2006; Pettersen and Einevoll,
2008) and can be understood in terms of the intrinsic dendritic fil-
tering effect where the high-frequency current dipole lengths are
reduced compared to the low-frequency dipole lengths due to the
capacitive properties of the neuronal membrane (Pettersen and
Einevoll, 2008; Lindén et al., 2010; Pettersen et al., 2012). In this
panel we  also see that the electrode size has a marginal effect on
the spike width for all distances considered.

3.1.2. Spike-shape variability from varying interspike

intervals (ISI)

Several experimental studies have demonstrated spike wave-
forms that depend on the time since the previous spike, i.e., the
interspike interval (ISI) (Fee et al., 1996; Quirk and Wilson, 1999;
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enze et al., 2000; Buzsáki, 2004; Stratton et al., 2012). Such wave-
orm variability poses a particular challenge on spike sorting and
hould thus be part of benchmarking data sets. For our model
euron in Fig. 4, a series of spikes induced by a fixed change of
he passive leak reversal potential without any synaptic inputs,
ill (after a possible initial transient) display identical waveforms.
owever, when the neuron instead was driven with noisy synap-

ic inputs, a prominent ISI-dependence of the spike waveform was
bserved.

Fig. 5 illustrates the spike waveform dependence on the ISI for
he model neuron in Fig. 4 when the neuron instead is driven by
ynaptic inputs (see figure caption for specification). Waveforms
t three distances from the soma along the x-axis are considered:

 = 10 �m,  50 �m,  and 100 �m,  respectively. Excerpts of the somatic
embrane potential and the extracellular potentials at these three

ositions are shown in Fig. 5a, with corresponding power spectral
ensities (PSD) depicted in Fig. 5b. The most prominent feature is
he strong decay of signal amplitude and power when moving for

 = 10 �m to x = 100 �m,  i.e., two orders of magnitude for the sig-
al (panel a) and four orders of magnitude for the power (panel b),
espectively. We  also note the sharper high-frequency decay in the
SDs of the soma membrane potential compared to the extracellu-
ar potential for the highest frequency, in accordance with previous
ndings (Pettersen and Einevoll, 2008; Pettersen et al., 2012, 2014;
indén et al., 2010).

More importantly, Fig. 5c shows the combined ISI distribution
rom simulation of 32 different synaptic realizations (see caption)
or a total duration of 120 s. A very broad ISI distribution is observed,
tretching from a few milliseconds up to a full second. The ISI dis-
ribution is further seen to have a bimodal distribution with a first
eak centered between 5 and 10 ms,  in accordance with the burst-

ng property (Le Bé et al., 2007) of the present model neuron (Hay
t al., 2011). Fig. 5d shows that the intracellular action-potential
AP) waveform depends strongly on the ISI. Higher amplitudes both
f the sodium depolarization peak and the later potassium after-
yperpolarization dip are associated with longer and intermediate

SIs. For the shortest ISIs corresponding to non-leading spikes in
 burst, much blunter AP signatures are observed, in accordance
ith Hay et al. (2011) and Le Bé et al. (2007). This point is further
ighlighted in Fig. 5e showing an inverse correlation between the
P peak-to-peak amplitude and the AP signal width.

The same trend, i.e., weaker and blunter signals for short ISIs,
s also seen for the extracellular waveforms: Fig. 5f illustrates the
SI-dependence of the raw spike waveform recorded very close to
he soma (x = 10 �m),  while Fig. 5g shows the same for band-pass
ltered waveforms (mimicking filtering done in a typical exper-

mental recording). The corresponding spike amplitude vs. spike
idth plot in Fig. 5j reveals a clear inverse relationship. The trend

s still present for x = 50 �m (Fig. 5k) but less distinct since the sig-
al amplitudes are much smaller and the relative noise level much
igher than for x = 10 �m.  For x = 100 �m a large waveform vari-
bility is still observed (Fig. 5l), but a clear relationship between
pike amplitude and spike width can no longer be discerned. This
bserved inverse relationship between spike amplitude for spike
idths observed for recording electrodes close to the soma, is

n accordance with experimental findings (Harris et al., 2000).
enze et al. (2000) further found that increased intracellular action-
otential amplitudes were associated with increased extracellular
pike amplitudes, and this positive correlation is also present in our
odel data, i.e., large intracellular and extracellular spike ampli-

udes are both associated with large ISIs (cf. panels d–l).
The positive correlation between extracellular spike amplitude
nd time since the last spike is further illustrated in the ampli-
ude vs. ISI plots in Fig. 5j–l, qualitatively similar to what was seen
n the experiments of Fee et al. (1996) (and also in accordance

ith the observation of a systematic reduction of spike amplitude
e Methods 245 (2015) 182–204 191

during bursting, see Harris et al., 2000). These panels also highlight
the considerable amplitude variability seen for the same ISI times,
reflecting that the model neuron was  targeted by a barrage of ran-
dom Poisson-distributed synaptic inputs. In fact, occasionally we
observed high-amplitude spikes preceded by smaller spikes even
at short ISIs. This variability reflects continuously varying levels of
membrane depolarization and effective membrane time constants
due to fluctuating synaptic and intrinsic channel conductances
(Destexhe and Paré, 1999; Destexhe et al., 2001).

The ISI-dependence of the spike waveform (both amplitude and
shape) represents a major challenge for spike-sorting algorithms
(Fee et al., 1996; Harris et al., 2000; Delescluse and Pouzat, 2006;
Einevoll et al., 2012). This is illustrated in Fig. 6 where the spikes in
Fig. 5 are recorded with a linear tetrode oriented in parallel with the
thick apical dendrites (i.e., in the z-direction) with a lateral displace-
ment of 20 �m from the soma center. The strong ISI-dependence
of the spike waveforms recorded in the four channels (positioned
at z = 100 �m,  50 �m,  0 �m,  and −50 �m,  respectively) is shown in
Fig. 6a. Spike-sorting algorithms are based on clustering of partic-
ular features of the waveform (Einevoll et al., 2012), and principal
components (PCs) are commonly used in combination with clus-
tering algorithms assuming Gaussian-shaped clusters. In Fig. 6b
we show the joint distributions of the two first PCs for each of the
four channels, revealing strong non-Gaussian features. As seen from
the color coding in these distribution plots, this non-Gaussianity
largely stems from the ISI-dependence of the waveform. Several
approaches have been tried to address this key challenge for spike
sorters (Fee et al., 1996; Rinberg et al., 1999; Harris et al., 2000;
Delescluse and Pouzat, 2006) and may  be tested on such bench-
marking data.

3.2. Benchmarking data mimicking tetrode recordings

3.2.1. Noise from experiments
To make benchmarking data mimicking in vivo spike recordings,

we fitted a descriptive noise model (see Section 2.6) to experi-
mentally recorded noise and later added this model noise to the
extracellular potentials generated by the neuronal model popu-
lation. Experimental recordings were done in vivo with a linear
multielectrode in mouse visual cortex, and an excerpt from a recor-
ding on four neighboring contacts is shown in Fig. 7a. The data
were preprocessed by removal of large-amplitude spike events and
spurious frequency peaks in the power spectral density (PSD). The
resulting signals were then used as experimental tetrode noise to
be mimicked in a statistical sense by our noise model.

The PSDs shown in Fig. 7b reveal that even if low-frequency
noise dominates, the noise also has substantial components at
higher frequencies with a sharp decay of noise power in the fre-
quency range relevant for spike detection, i.e., above a few hundred
hertz (Pettersen and Einevoll, 2008). Another immediate observa-
tion is the very strong correlation between the noise signals in the
four channels in Fig. 7a. Our descriptive noise model effectively
captured these features by use of 16 raised cosine ‘bump’ filters
covering different frequency bands (Fig. 7c) where the covariance
structure between the four channels were estimated for each of
the 16 filter bands separately (Fig. 7d). As seen here, the lowest fre-
quencies, i.e., the lowest-numbered bump-filter frequency bands,
show the highest correlation between the channels. The extracted
information was  sufficient to allow for the generation of synthetic
noise with very similar appearance as the experimental noise: the
model noise in Fig. 7e is essentially indistinguishable in its general
appearance from the in vivo experimental noise in Fig. 7a.
3.2.2. Presynaptic spike trains driving model population
In Section 3.1.2 we found that irregular synaptic inputs onto

a single model neuron produced ISI-dependent spike waveforms
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Fig. 5. Intrinsic spike waveform variability from a L5b pyramidal neuron receiving noisy synaptic inputs. (a) 500 ms excerpt of the soma membrane potential Vsoma and
extracellular potentials in contacts located in x = [10, 50, 100] �m and z = y = 0 �m from the soma, with rcontact = 7.5 �m.  (b) Frequency content in Vsoma (top trace) and
extracellular traces (traces below in the order x = 10, 50, 100 �m).  (c) Interspike interval (ISI) distribution in log-linear bins of all spike events from 120 s total simulation time.
(d)  Detected AP waveforms, each trace color coded for corresponding ISI. (e) AP amplitudes defined as max–min-difference vs. AP widths calculated at 50% of this max–min
difference computed for each AP waveform. (f) Raw extracellular spike waveforms proximally to soma (x = 10 �m).  (g–i) Band-pass filtered extracellular spike waveforms at
x  = [10, 50, 100] �m.  (j–l) Projections of spike amplitudes vs. spike widths for x = [10, 50, 100] �m.  (m–o) Spike amplitudes vs. interspike intervals (ISIs) for x = [10, 50, 100] �m.
The  neurons were driven with excitatory and inhibitory synapses (cf. Section 2.3) with increased density of excitatory synapses, �E = 47.5 ± 4.75 �m−2, compared to default
values in Table 1. Each synapse received uncorrelated spike trains with Poisson statistics with rates �noise = 10 s−1. 32 model realizations with unique synapse distributions
(resulting from different random seeds and standard deviation in �E and �I) were simulated in parallel for a total duration of 120 s real time resulting in approximately 1400
sampled spike events. Somatic membrane potentials, raw and filtered extracellular potentials sampled as described in Section 2.7. (For interpretation of the references to
color  in this and subsequent figures and legends, the reader is referred to the web  version of the article.)
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ig. 6. Effect of ISI-dependent extracellular waveform variability on features used in 

n  the z-direction with a lateral displacement of 20 �m from the soma center. Cha
ontact  size: rcontact = 7.5 �m.  (b) Projections and distributions of the first two princ

n accordance with what is seen in in vivo experiments. We  also
ant to have the opportunity to control the level of correlations

f synaptic inputs driving the different neuron models in our test
opulation. While this could be achieved by different means, we
mployed a two-population spiking neuron network model with

 ring topology where neighboring neurons on the ring naturally
ave more correlated spiking than neurons further apart (Kriener
t al., 2009, 2014), cf. Section 2.3 and Appendix A. The presynaptic
pike trains driving each of the postsynaptic neurons in our model
opulation are then drawn from partially overlapping sections of
he network topology so that the postsynaptic neurons receive
arying levels of shared and intrinsically correlated synaptic inputs.

In Fig. 8 we illustrate this procedure for our tetrode example,
hich here has six pyramidal model neurons generating extracel-

ular spikes. Raster plots of the presynaptic spike trains driving the

ix cells are shown for excitatory and inhibitory inputs in Figs. 8a
nd b, respectively. Note, the higher number of excitatory inputs
ompared to inhibitory inputs. The correlations between these
resynaptic spike trains are shown in Fig. 8c (excitatory inputs),
sorting. (a) Band-pass filtered spike waveforms recorded by a linear tetrode oriented
1–4 correspond to recordings by contact at z = [100, 50, 0, − 50] �m,  respectively.
mponents (PCs) across the four channels for the data in panel (a).

Fig. 8d (inhibitory inputs), and Fig. 8e (excitatory and inhibitory
inputs). In all three cases we  see that the correlations between
the synaptic inputs driving the same neurons is high (diagonals
in matrix plots) and then decay with distance, i.e., train 2 (driv-
ing cell 2) is quite correlated with train 1 (driving cell 1) as their
synapse activation times were drawn from overlapping regions of
the network topology, while train 3 and train 1 are less correlated,
etc. (Note that train 6 also is quite correlated with train 1 due to the
ring topology.)

The resulting activity in the postsynaptic population of six
model L5b pyramidal cells (Hay et al., 2011) (Fig. 3a and b) is
described in Fig. 8f–i. In this example, the six model neurons were
constructed by randomly combining one (of two) neuronal mor-
phologies with one (of three) sets of ion-channel densities, cf.
Section 2.3. In addition both the synaptic locations and synapse

activation times (cf. Fig. 8a and b) were different. Excerpts of the
soma membrane potentials of each neuron are shown in Fig. 8f
displaying substantial sub-threshold fluctuations and irregular
spiking at rates varying in the range ∼ 2–16 s−1. The spikes
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Fig. 7. Generation of synthetic noise similar to noise in in vivo cortical recordings. (a) In vivo recorded signals, treating four neighboring channels of a polytrode (linear
multielectrode) as a virtual tetrode, here shown with high-amplitude spike events removed. (b) Power spectral density (PSD) extracted from the experimental traces averaged
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cross channels. (c) Frequency response magnitudes of each discrete raised cosine ‘b
oise  signals in the four channels for each of the 16 ‘bump’ filter frequency bands
xtracted from in vivo tetrode recording.

xtracted from these intracellular traces in our excerpt are shown
n Fig. 8g, and the ISI distributions of all the spikes generated over

 period of 120 s are shown in Fig. 8h. Here a large variation is seen
mong the six neurons: For example, while cell 4 had a high firing
ate (15.5 s−1) and a clear bimodal ISI distribution with one of the
eaks at less than 10 ms  implying significant bursting behavior, cell

 had a firing rate of only 2.5 s−1 As seen in Fig. 8h this large variabil-
ty between the neuronal firing patterns also seems to be reflected
n weak cross-correlations in the spike times of the six postsynap-
ic neurons. Still, cells that received input from neighboring parts of
he ring network were on average, if only barely, more correlated,
.e., compare, e.g., cell 1 vs. cell 2 and cell 1 vs. cell 4.

.2.3. Tetrode benchmarking data
We now have all elements needed to construct our tetrode

enchmarking data for in vivo recordings, and the results for a pop-
lation of six pyramidal neurons with their somas placed within

 radial distance of 50 �m from an axis going through the linear
rray of electrode contacts (yet more than 25 �m away from the

olume occupied by the electrode shank), are shown in Fig. 9. The
xtracellular potentials generated by the neurons alone are seen in
ig. 9a to be much less noisy than typical in vivo data (as exem-
lified by the experimental noise recordings shown in Fig. 7a.)
filter. (d) Cross-channel covariance matrices calculated for the in vivo experimental
odel noise generated with frequency-dependent covariance and PSD information

However, with our synthesized model noise added (Fig. 9b), the
signal looks biologically realistic. In spike-sorting applications, raw
potentials recordings are typically band-pass filtered to remove
low (and high) frequency signal components prior to spike detec-
tion, and the results from corresponding filtering of our compound
model signals are shown in Fig. 9c. Again, the resulting signals looks
similar to experimental data, see, e.g., Fig. 1a.

Fig. 9b (raw signals) and c (band-pass filtered signals) illustrates
the type of benchmarking data that is produced by our biophysical
modeling scheme. Here we  know the ground truth about the spike
trains, i.e., what neuron fired when, and in Fig. 9d we show the
collection of spike waveforms for each neuron as recorded by the
four channels as well as the averaged traces or templates (Einevoll
et al., 2012). (This would correspond to the result from applying a
perfect spike sorter, i.e., a sorter perfectly detecting and sorting the
spikes, on our example data.) The observed spike amplitudes are
typically � 0.05 mV,  i.e., similar to what is encountered in in vivo
cortical recordings, see, e.g., Fig. 1. The absence of larger ampli-
tudes was assured by our rule to enforce neurons to be positioned

a certain minimum distance away from the recording electrodes
(Section 2.3).

In Fig. 9e the respective templates are shown superimposed at
the spike times of the source neurons on top of the (band-pass
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Fig. 8. Network-generated synaptic inputs and resulting spiking outputs in neuronal population producing in vivo tetrode benchmarking data. The duration of the simulation
was  120 s real time. (a) Synaptic spike trains activating excitatory synapses on the six cells in the postsynaptic population. Each row of dots corresponds to spikes from single
neurons in the network providing synaptic input, and the colors denote postsynaptic target cells. (b) Corresponding spike trains activating inhibitory synapses. (c) Correlation
coefficients (Eq. (6)) of excitatory synaptic input to each postsynaptic cell, calculated from spike-train histograms in 10 ms  bins. ‘train 1’ refers to spikes driving synapse on
‘cell  1’, etc. (d) Same as (c), for binned spike trains activating inhibitory synapses. (e) Same as (c), for (pooled) binned spike trains activating both excitatory and inhibitory
synapses. (f) Soma membrane potential of six cells in postsynaptic population. (g) Detected action potentials, i.e., the ground-truth spikes, for each postsynaptic cell with firing
rates  shown to the right. (h) Interspike interval (ISI) histograms in 100 log-linear bins for each cell. (i) Correlation coefficients between output spike trains, 10 ms  temporal
b o 0.1, 
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in  size. Note that upper color range value for reason of figure clarity has been set t
For  interpretation of the references to color in this figure and legend, the reader is

ltered) signal. This figure also illustrates the problem caused by
emporally overlapping spikes, e.g., the overlapping waveforms of

ells 2, 3 and 6 around t = 520 ms.

Fig. 10, showing projections of the first two  principal compo-
ents of the measured waveform for the four channels, illustrates
he large variability of the recorded spike shapes even when they
even if the autocorrelation coefficients (i.e., values on diagonal) by definition are 1.
ed to the web version of the article.)

come from the same neuron. It further highlights that while some
neurons form rather well-defined and well-isolated clusters, other

neuron clusters show substantial overlaps, as was also seen in our
example in vivo data in Fig. 1c. However, such overlaps can at
least partially be resolved by projecting additional waveform fea-
tures such as spike widths or peak-to-peak amplitudes (results not
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Fig. 9. Example benchmarking data for in vivo tetrode recordings. (a) Extracellular potential generated by population of six cortical pyramidal neurons in a simulation of
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20  s real time. (b) Raw benchmarking data found from superposition of populatio
corresponding to signals in (b)) facilitating spike sorting, see Section 2.7). (d) Coll
uperimposed, i.e., per cell averaged spike waveforms. (e) Excerpt of band-pass filte

hown). A few outliers are seen in Fig. 10, and such outliers can be
xpected to occur with temporally overlapping spikes where the
xtracted waveforms become substantially distorted, cf. Fig. 9e.

.3. Polytrode benchmarking data
As a second demonstration case, we consider benchmarking
ata for a 16 channel polytrode with 50 �m contact spacing, i.e.,
he type of multielectrode used to measure the present in vivo
xperimental data, cf. Section 2.1. The same procedure as for the
ntials (from panel a) and synthesized model noise. (c) Filtered benchmarking data
 of extracellular spike waveforms across channels for all neurons, with templates
tracellular potentials with templates superimposed at corresponding spike events.

tetrode data was  used to fit our noise model to data, except that
here 16 rather than four channels were used. As for the tetrode
benchmarking data, layer 5b pyramidal cell models from Hay et al.
(2011) were used, with the number of spiking neurons increased
from 6 to 16 reflecting the larger vertical extension of the polytrode.
As for the tetrode above, each cell was positioned less than 50 �m

away from an axis going through the electrode contacts, yet at least
25 �m away from electrode shaft. Further, synaptic activation was
provided by inputs from the two-population spiking ring network.
A one-second sample of the resulting example benchmarking data
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ig. 10. Projections of principal components (PCs) of spike waveforms for example t
y  the four tetrode channels. The colors depict different neurons, cf. Fig. 9. (For inter
ersion  of the article.)

s shown in Fig. 11, the somatic membrane potentials of each neu-
on in panel a and corresponding, band-pass filtered extracellular
otentials in panel b.

The resulting spike patterns of the 16 model neurons were found
o cover a wide spectrum: some cells were quite bursty (see, e.g.,
ell 10 in Fig. 11a), some cells produced well separated firing events.
e.g., cell 16), while some neurons had quite small firing rates (cells

 and 8 do not fire a single spike in the one-second excerpt consid-
red in Fig. 11), see the figure for overview of firing rates.

In Fig. 12 we show the collection of spike-triggered waveforms
cross all 16 channels for 8 of the 16 model neurons. Typically the
pikes can be observed on between three and six contacts. For
ome neurons, in particular, those positioned close to the poly-
rode shank, an inversion of the spike waveform can be clearly
een between two contacts, e.g., between contacts 5 and 6 for cell
3. At these contacts the spike amplitude is also seen to be largest
Somogyvári et al., 2005). Channels below the soma location dis-
layed a negative initial peak (expectedly due to the dominance
f fast inward Na+ current in the soma in driving the extracellular
otentials) while channels above displayed a positive initial peak
expectedly due to the dominance of reactive, capacitive membrane
urrents along the main apical dendrites of the neurons) (Pettersen
nd Einevoll, 2008; Pettersen et al., 2008).

.4. Microelectrode array (MEA) benchmarking data
As the final example of benchmarking data sets we consider
igh-density microelectrode array (MEA) data mimicking recor-
ings of spikes from salamander retina (Segev et al., 2004). Here
e benchmarking data set. Projection of two first PCs of spike waveforms as recorded
tion of the references to color in this figure legend, the reader is referred to the web

a total of 53 salamander retinal ganglion cells (Sheasby and
Fohlmeister, 1999) were distributed across a virtual MEA  chip span-
ning 102 recording electrodes as depicted in Fig. 13a. The large
number of neurons and contacts employed here also serves to illus-
trate that the present simulation methodology is scalable to large
systems. Despite of practical limitations in terms of system memory
when increasing the number of electrode channels, we here suc-
cessfully generated 1-min long benchmarking data sets including
more than a hundred recording channels. Synthesized noise signals
were produced based on in vitro mouse retinal recordings obtained
with a Hierlemann MEA  (Hierlemann et al., 2011; Frey et al., 2009,
2010; Fiscella et al., 2012) (as we  did not have access to correspond-
ing salamander recordings). However, for the present purposes of
benchmarking data production, we judge this to be adequate. Fur-
ther, the extracellular forward model was adapted by the method
of images to incorporate the different extracellular conductivities
of the retinal tissue, MEA  chip, and saline bath (Ness et al., 2015);
see Section 2.4.

An example of an averaged spike waveform for an example reti-
nal ganglion cell across all included channels, is shown in Fig. 13b.
As seen here, the spike can be clearly discerned at more than 10 of
the closely spaced contacts (18 �m contact distance). Interestingly,
the amplitude decay in the lateral direction was  found to follow an
approximately exponential fall-off with a fitted decay constant of
�d = 27.1 �m (Fig. 13c), very close to previous experimental obser-

vations, i.e., �d = 28 ± 1 �m (Segev et al., 2004). However, as the
morphologies of the cell models in the population were differ-
ent, their lateral amplitude-decay space constants showed some
variability (not shown).
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Fig. 11. Excerpts of intracellular and extracellular recordings for the 16 cells included in the example 16-channel polytrode benchmarking data set. (a) Somatic membrane
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otentials. Firing rates of cells 1–16 averaged over the 120 s real-time duration of th
rom  all neurons and model noise, after band-pass filtering.

The retinal ganglion cells were activated by a simplified model
f noisy synaptic input currents (cf. Section 2.4) resulting in spike
rains with a substantial spread in interspike intervals (ISIs), cf.
ig. 13d. The excerpt of our example benchmarking data (Fig. 13e)
howing both intracellular and extracellular signals corresponding
o firing of an example cell, shows that its spikes are observed at
everal neighboring contacts.

. Discussion

In this paper we have presented ViSAPy (Virtual Spiking
ctivity in Python), a general simulation tool for generating
enchmarking data for evaluation of spike-sorting algorithms.
he tool is based on a well-established biophysical forward-
odeling scheme (Holt and Koch, 1999; Einevoll et al., 2013a)
nd is implemented as a Python package building on top of the
euronal simulator NEURON (Hines et al., 2009) and the Python
ool LFPy for calculating extracellular potentials (Lindén et al.,
014), while NEST was used for simulating point-neuron networks
lation are listed on the right hand side. (b) Superposition of extracellular potentials

(Gewaltig and Diesmann, 2007) providing noisy synaptic input
times to the test population. ViSAPy allows for arbitrary combi-
nations of multicompartmental neuron models and geometries
of recording electrodes and goes beyond presently available tools
in several ways. For example, the tool allows for (i) addition of
biologically realistic model noise extracted from experiments,
(ii) activation of model neurons by controlled noisy synaptic
inputs from recurrent spike networks generating in vivo like vari-
ation in spike shapes, (iii) inclusion of finite-sized disc-electrode
contacts, and (iv) going beyond the common assumption of
assuming infinite homogeneous volume conductors around the
spiking model neurons allowing for generation of benchmarking
data relevant for the in vitro microelectrode array (MEA) sit-
uation. Importantly, ViSAPy has been optimized to allow for
generation of long time series of benchmarking data, spanning

minutes of biological time, by parallel execution on multi-core
computers.

We  first investigated in detail how the recorded spike wave-
form depends on recording distance and size of electrode contacts.
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ig. 12. Extracellular spike waveforms from polytrode benchmarking data set. Raw
or  eight (of 16) representative model neurons. The number below each cell design

n agreement with previous findings we found that spike width
ncreases with lateral distance x from the soma (Gold et al., 2006;
ettersen and Einevoll, 2008) and that for large x the spike ampli-
udes decayed with distance as ∼ x−2 (as for a current dipole), cf.
ig. 4 (Pettersen and Einevoll, 2008). We  further found that for
omas positioned very close to the electrode (� 20 − 30 �m for
ur layer 5b pyramidal neuron model (Hay et al., 2011)), a finite-
ized disc electrode contact will both reduce the spike amplitude
nd increase the spike width, cf. Fig. 4. For larger distances, the
ffects of the physical extension of the electrodes were seen to be
inor.
Experimental data, in particular in vivo recordings, are typi-

ally quite noisy, and benchmarking data must incorporate this
n order to be a proper test bed for spike-sorting algorithms
Einevoll et al., 2012). Previously, this has been added in model-
ased benchmarking data by including noise generated by distant
odel neurons as well as thermal noise (Martinez et al., 2009;

empka et al., 0450; Thorbergsson et al., 2002; Camuñas Mesa
nd Quiroga, 2013). Another alternative is to use experimen-
ally recorded noise (Harris et al., 2000; Einevoll et al., 2012),
nd here we have implemented a new method for generat-
ng model noise extracted from experiments. As exemplified
y the results in Fig. 7 for in vivo cortical noise, the gener-
ted model noise is very similar to the experimentally recorded
oise, both in terms of frequency content and correlations across
hannels.

In order to increase the low-frequency variability of the spike
ring in the ring network driving our multicompartmental model
eurons, we added extra excitatory synaptic input to the network at
pike times generated by non-stationary Poisson processes. These
oisson processes were in turn modulated by the synthetic model
oise, cf. Appendix A. Without this extra input we observed that the

pike rates lacked much of the frequency power at lower frequen-
ies and irregularity that may  occur in biological networks. While
rregular noisy spike patterns also can be obtained in spatially
nstructured networks (Brunel, 2000), we found that it was  easier
ed lines) and spike-averaged (black lines) waveforms across 16 polytrode channels
orresponds to spike count during 120 s simulation period.

to control the synaptic inputs onto the spike-generating multicom-
partmental model neurons (in particular the correlation structure)
with the present structured network (Kriener et al., 2009). Note,
however, that we here put no particular biological significance to
the ring-network model and its non-stationary input itself, it was
simply a practical tool for driving the multicompartmental neurons
to give biologically plausible characteristics of firing rates and spike
waveform variability.

We considered three example benchmarking data sets, i.e.,
tetrode and polytrode data mimicking in vivo cortical recordings
and MEA  recordings of in vitro activity in salamander retinas. In
the generation of the cortical data we used biophysically detailed
layer 5b pyramidal neuron models previously shown to exhibit
both regular (tonic) and bursting spiking behavior (Hay et al.,
2011). In combination with the present network-generated noisy
synaptic input, the resulting benchmarking data were found to
exhibit key features seen in experimental spike recordings, i.e., a
large variability in spike waveforms and a large variation in neu-
ral firing rates. In particular the former feature represents a main
challenge in the development of automatic spike-sorting methods
(Einevoll et al., 2012). Specifically, the benchmarking data exhib-
ited a clear dependence of the spike waveform on the time since
the previous spike of the same neuron, i.e., the interspike interval
(ISI): short ISIs, like follow-up spikes in bursts, had substantially
smaller spike amplitudes than spikes preceded by long ISIs. This is
in accordance with experimental findings (Fee et al., 1996; Quirk
and Wilson, 1999; Henze et al., 2000; Buzsáki, 2004; Stratton et al.,
2012).

The benchmarking data mimicking in vitro recordings from
salamander retinas was  tuned to be similar to the experimental
MEA  recordings in Segev et al. (2004). In fact, with the recon-
structed salamander retinal ganglion cells placed about 15 �m

above the MEA  chip surface, essentially the same decay of the
recorded spike amplitude with lateral distance was  seen in our
model benchmarking data (Fig. 13) as in the experiments (Segev
et al., 2004).
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Fig. 13. Illustration of setup for generation of benchmarking data for in vitro retinal recording with high-density MEAs. (a) Electrode contacts (dots) and population of
salamander retinal ganglion cells (stars). (b) Illustration of neuronal morphology (red) of retinal ganglion cell marked with red star in (a). The spike-averaged waveform of
the  same cell is also shown. (c) Dependence of spike amplitude from red example ganglion cell with lateral distance in the MEA  plane. Black straight line represents best fit to
exponentially decaying function (fitted using quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) method) with a spatial decay constant �d = 27.1 �m. (d) Histogram
o ) Som
c ottom
i to the

c
b
b
a
a
c
t
(
t
e
e

t
e
t
p
r
m
(

f  ISI distribution for the red example cell for a simulation lasting 60 s real time. (e
losest electrode channels (black traces) to the example cell, ordered from top to b
nterpretation of the references to color in this figure legend, the reader is referred 

While we here have produced benchmarking data sets for
ommon in vivo and in vitro spike-recording situations, it should
e emphasized that our approach for generating spike-sorting
enchmarking data is open-ended. For example, spiking from an
rbitrary combination of different model neurons, both excitatory
nd inhibitory, can be considered. Further, our electrode models
an be extended to take into account other multielectrode geome-
ries (Buzsáki, 2004), shadowing effects from the electrode shank
Mechler and Victor, 2011), or include more complicated geome-
ries and inhomogeneous electrical conductivities in MEAs (Ness
t al., 2015). The scheme can also easily be adapted to include spatial
lectrode drift (Franke et al., 2010).

To facilitate new applications, ViSAPy has been designed so
hat each main component, e.g., models for synaptic activation,
xtracellular noise, individual neurons and neural popula-
ions, are represented as Python class objects. The classes are

art of a Python package released under GPLv3, and should
un on most platforms, though preferably on high perfor-
ance computing facilities. The code is available on GitHub

https://github.com/espenhgn/ViSAPy).
a membrane potential (red trace) and filtered extracellular potentials in the seven
 according to distance between MEA  contact and soma center (red star in (a)). (For

 web  version of the article.)

Our focus here has been on generating benchmarking data
for testing of spike-sorting algorithms. However, ViSAPy can, of
course, also be used to get direct explanatory insight into the link
between neural activity and what is measured with extracellular
electrodes (Holt and Koch, 1999; Gold et al., 2006; Pettersen et al.,
2008, 2012; Pettersen and Einevoll, 2008; Lindén et al., 2010, 2011;
Einevoll et al., 2013a,b; Łęski et al., 2013; Reimann et al., 2013).
The present observation that the salamander retinal ganglion cells
appears to be located about 15 �m above the MEA  surface in the
experiments of Segev et al. (2004), is an example of this. Note
also that the biophysical forward-modeling scheme in ViSAPy is
equally valid for calculating the low-frequency components of the
extracellular potential, i.e., the local field potential (Einevoll et al.,
2013a,b).

Presently, there are several large-scale neuroscience research
initiatives such as the EU Human Brain Project (http://

humanbrainproject.eu), the US BRAIN initiative (Insel et al.,
2013; Devor et al., 2013) and Project MindScope at the Allen Brain
Institute (https://www.alleninstitute.org/our-research/research-
science/mindscope), on the way. One of the ambitions is to develop

https://github.com/espenhgn/ViSAPy
http://humanbrainproject.eu
http://humanbrainproject.eu
https://www.alleninstitute.org/our-research/research-science/mindscope
https://www.alleninstitute.org/our-research/research-science/mindscope
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ew multielectrodes to record spikes from unprecedented large
umber of neurons, thousands or more. However, this potential
an only be realized if advances in electrode hardware are followed
p by development of validated automatic spike-sorting meth-
ds (Einevoll et al., 2012). This development has been severely
ampered by lack of benchmarking data sets with known ground
ruth against which the various spike-sorting algorithms can be
ested.

Validation of spike-sorting methods will require two main
omponents: (i) a suite of benchmarking data where the ground
ruth is known (whether modeled as here or obtained directly
rom experiments (Harris et al., 2000)) and (ii) a virtual meet-
ng place where benchmarking data can meet spike-sorting
lgorithms (Denker et al., 2014). A first prototype of such

 virtual meeting place is presently available at the German
ational node of International Neuroinformatics Coordinating
acility (INCF, http://spike.g-node.org). It is indeed our belief and
ope that much needed reliable, efficient and accurate auto-
atic spike-sorting algorithms can be developed by a community

ffort.
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ppendix A. Spiking neuron network model for in vivo like
ynaptic activation

For the benchmarking data emulating in vivo recordings, we
sed a structured spiking neuron network with a 1D ring topol-
gy adapted from Kriener et al. (2009) in order to generate synapse
ctivation times. The network comprised 12 500 leaky integrate-
nd-fire (LIF) neurons, with NE = 10 000 excitatory neurons and
I = 2500 inhibitory neurons, connected such that every fifth neu-

on on the ring was inhibitory. Each neuron was  connected to its �
earest neighbors with current-based synapses (ı-currents). For a

ull network description, see Kriener et al. (2009). The parameters
re summarized in Table 3. The network simulations were imple-
ented in NEST (Gewaltig and Diesmann, 2007) using PyNEST

Eppler et al., 2008).
In addition to the recurrent interactions in the network, each of

he ring-network neurons received additional spiking input gen-
rated by non-stationary Poisson processes (Brown et al., 2002),
(t), with mean rate expectation of �ext.noise. The rate function of
he Poisson process for the excitatory population, �E(t), was cal-
ulated from the synthesized noise traces (cf. Section 2.6), that

e a priori averaged over the spatial dimension (i.e., across elec-

rode contacts), band-pass filtered (using a 2nd order Butterworth
andpass filter with cutoff frequencies of 1 and 25 Hz), nor-
alized between zero and one, inverted, and multiplied with
e Methods 245 (2015) 182–204 201

2�ext.noise. For the inhibitory cells, �I(t) = 2�ext.noise − �E(t). The
procedure effectively increased network-population firing rates
during downward deflections of extracellular noise, and the over-
all excitatory synaptic input to the multicompartment target
neurons.

The network simulation was  run for the entire duration of
the corresponding benchmarking data, and all spike events in the
excitatory and inhibitory populations were recorded and stored in
sqlite3 databases, i.e., so that we  could efficiently request spike
trains of individual neurons later. In order to connect spike trains
occurring in some part of the network to each n out of the the N
post-synaptic, multicompartmental model neurons, we drew for
each cell’s total number of synapses (nsyn,E + nsyn,I) random sam-
ples from a von Mises distribution (Mardia and Jupp, 2009). The
probability density function for an angle � was  here then defined
as

f (�|	n, �n) = exp(�n cos(� − 	n))
2
I0(�n)

. (A.1)

Here, �n is the reciprocal dispersion, 	n the center of the distribu-
tion corresponding to cell n, and I0 the 0th order modified Bessel
function.

The uniformly distributed random angles on the interval [0, 2
〉
radians for each postsynaptic cell n, were scaled to span the upper
and lower range of cell indices of inhibitory and excitatory popu-
lations in the network before rounding off to the nearest integer
value. Assuming an angular neuron density of 5000/
  rad−1 and
1250/
 rad−1, respectively, for the excitatory and inhibitory popu-
lations, that we multiplied with the random angles and rounded
off to the nearest integer values, output values served as indices
allowing us to pick synapse activation times for each synapse on
a postsynaptic cell from a spatially confined part of the ring net-
work topology. The parameters for the generation of non-stationary
Poisson spiketrains and the mapping of spike trains to synapses
are summarized in Table 3 for each set of generated benchmark
data.

Appendix B. Method of images

Given a single current point source I at position (x′, y′, z′) in a
three-layered medium, i.e., a lower, non-conducting glass electrode
plate, an electrically homogeneous brain tissue slice centered in
the xy-plane and with vertical extension from z = 0 to z = h, and an
infinitely thick saline layer covering the brain slice, the extracellular
potential at the electrode-slice boundary (z = 0) is given by Ness
et al. (2015) and Barrera et al. (1978) as

˚PS (x, y, 0) = 2˚h(x − x′, y − y′, −z′) + 2
∑∞

n=1

(
�T − �S

�T + �S

)n

×
(

˚h(x − x′, y − y′, −z′ + 2nh)

+ ˚h(x − x′, y − y′, −z′ − 2nh)
)

, (B.1)

where

˚h(u, v, w) ≡ I

4
�T (u2 + v2 + w2)1/2

is the potential generated around a current point source I positioned
at u = v = w = 0 in an infinite, homogenous electrical conductor
with the conductivity of the brain tissue �T. Further, �T is the con-
ductivity of the saline. The sum over N should in principle go to
infinity, but the series converges fast, and N = 20 is for practical

applications both sufficiently accurate and fast to compute (Ness
et al., 2015).

Eq. (B.1) assumes that the transmembrane currents from each
compartment can be treated as point sources. The corresponding

http://spike.g-node.org
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ine source equation (Holt and Koch, 1999), for a compartment
xtending from (x′

0, y′
0, z′

0) to (x′
1, y′

1, z′
1), takes the form:

LS(x, y, 0) = 2 ˜̊
h(x − x′

0, y − y′
0, −z′

0) + 2
∑∞

n=1

(
�T − �S

�T + �S

)n

×
(

˜̊
h(x − x′

0,y − y′
0, −z′

0 + 2nh)

+ ˜̊
h(x − x′

0, y − y′
0, −z′

0 − 2nh)
)

, (B.2)

here the auxiliary potential variable
∼
˚h is introduced as

˜
h(u, v, w) ≡ I

4
�T �s

 ln

(
�s2 − �(u, v, w)  + �s

√
�s2 − 2�(u, v, w)  + �(u, v, w)2

−�(u, v, w)  + �(u, v, w)�s

)
,

(B.3)

here

(u, v, w) ≡ u(x′
1 − x′

0) + v(y′
1 − y′

0) + w(z′
1 − z′

0), (B.4)

(u, v, w)  ≡ (u2 + v2 + w2)
1/2

, (B.5)

nd

s  ≡ ((x′
1 − x′

0)2 + (y′
1 − y′

0)2 + (z′
1 − z′

0)2)
1/2

(B.6)

s the length of the axis of the cylindrical compartment.
Again, we summed over 20 terms (N = 20), although Eq. (B.1) and

B.2) involves a sum over an infinite series.

ppendix C. ViSAPy Python package

All simulation codes have been made available on GitHub,
ttps://github.com/espenhgn/ViSAPy. For information on installa-
ion and usage, refer to the provided documentation and example
les.

Generated benchmark data are stored using platform-
ndependent HDF5 format (The HDF Group, 2000–2010) for
urther distribution. The main output files contain two  datasets:
ata is an ntimesteps times nchannels array of floats with the electric
otentials in units of mV,  the sampling rate srate is an integer
r float value in Hz. The file containing the ground-truth spiking
imes is pure text, containing two space-separated columns of
ntegers, the first column is cell index, the second column the spike
ime index (cf. Section 2.7).
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