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Abstract. We present here a novel method for the classical task of find-
ing and extracting recurring spatiotemporal patterns in recorded spik-
ing activity of neuronal populations. In contrast to previously proposed
methods it does not seek to classify exactly recurring patterns, but rather
approximate versions possibly differing by a certain number of missed,
shifted or excess spikes. We achieve this by fitting large Hopfield networks
to windowed, binned spiking activity in an unsupervised way using min-
imum probability flow parameter estimation and then collect Hopfield
memories over the raw data. This procedure results in a drastic reduction
of pattern counts and can be exploited to identify prominently recurring
spatiotemporal patterns. Modeling furthermore the sequence of occur-
ring Hopfield memories over the original data as a Markov process, we
are able to extract low-dimensional representations of neural population
activity on longer time scales. We demonstrate the approach on a data
set obtained in rat barrel cortex and show that it is able to extract a
remarkably low-dimensional, yet accurate representation of population
activity observed during the experiment.
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1 Introduction

Finding recurring spatiotemporal patterns (STP) in recorded spiking activity
of neuronal populations is a classical problem in the data analysis of parallel
spike trains, and quite a number of approaches to detect and classify recurring
spatiotemporal patterns of neural population activity have been proposed [3,6].
Yet, most published methods so far either focus solely on synchrony detection
[15,16,18] or assume a more or less noiseless scenario, seeking to classify exactly
recurring STP in neuronal activity (apart from allowing some jitter in spike
timing), see e.g. [5].
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Given the usually high variability of population responses to stimuli, the
re-occurrence of such exactly repeating STP becomes more and more unlikely
with increasing population size though. Despite this variability, there is strong
experimental evidence that neural populations code information about stimuli
in some form of STP, see e.g. [1,2]. Thus, a much more plausible situation is that
some underlying STP appears in several “corrupted” variants, both expressing
jitter in spike times and differing in a few missing or excess spikes. To find and
classify recurring STP in parallel spike trains, we fit Hopfield networks (HN)
to windowed, binned spiking activity of a population of cells using minimum
probability flow [19] (MPF), a novel probabilistic learning rule for HN with many
desirable properties [8,10]. We then use Hopfield network dynamics to classify
the raw data and identify recurring STP. The presented method is robust to
the aforementioned variability in the signal and able to extract the underlying
recurring patterns, even for seldom occurring STP and large population sizes.

Modeling furthermore the sequence of occurring Hopfield memories as a
Markov process, we are able to extract low-dimensional representations of neural
population activity. We demonstrate the approach on a data set obtained from
rat barrel cortex [14] and show that it is able to extract a remarkably low-
dimensional, yet accurate representation of the average population response to
whisker stimulation.

The paper is organized as follows. In Sect.2 we give a short overview of
the theoretical background, namely Hopfield networks and minimum probability
flow parameter estimation. We then present our method in Sect. 3, followed by
a demonstration of the method in Sect.4. We conclude in Sect. 5.

2 Background

Hopfield networks [11] are a well-known model of memory and collective process-
ing in networks of abstract McCulloch-Pitts [13] neurons.

The possible states of a HN are the same as those of a non-ferromagnetic
Ising model, a classical model in statistical physics [12]. This discrete probability
distribution has as states all binary vectors of length n, with the probability of
a particular state x = (z1,...,2,) € {0,1}" being

1 1
Px = — exp Z Jijxix; — ;019@ = exp (—Ex), (1)

1<j

in which J € R"*™ is a real symmetric matrix with zero diagonal (the coupling
matriz), the vector 6 € R™ is a bias or threshold term, and Z = ) exp(—FEx)
is the partition function (which normalizes p = (px)xefo,1}» to sum to 1). Typ-
ically, the expression inside the exponential of (1) is viewed as the negative of a
quadratic energy function,

1
Ey = —§XTJX +607x. (2)
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Thus, states x with low energy (2) appear most often under sampling from (1).
It follows from basic theory (e.g. [4]) that the distribution defined by (1) is the
maximum entropy distribution on binary vectors given its first and second order
statistics (mean and covariance).

A HN is a recurrent network of binary nodes (representing spiking neurons)
with deterministic dynamics. Formally, a HN on n nodes {1,...,n} consists of
a symmetric coupling matrix J € R™*™ and a threshold vector 8 € R™.

An asynchronous dynamics update of state x in a HN consists of iteratively
replacing each x; in x with a new value

1 if Zj;éi Ji]‘l‘j > 0,
0 otherwise.

The update given by Eq. (3) is inspired by computations exhibited in neurons [13]
and a model neuron with such an update rule is often called a McCulloch-
Pitts neuron. A fundamental property of HNs is that an asynchronous dynamics
update given by Eq. (3) does not increase the energy given by Eq. (2). Thus,
after a finite number of updates, each initial state x converges to a fized-point
x* (also called stable-point or memory) of the dynamics. Intuitively, we may
interpret the dynamics as an inference technique, producing the most probable
nearby memory given a noisy version. See Fig. 1 for an example of a small HN
and its energy landscape.

A basic problem is to construct Hopfield networks with a given set D of
binary patterns as memories (i.e. local minima of Ex). Such networks are useful
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Fig. 1. Small Hopfield network. A 3-node Hopfield network with coupling matrix
J and zero threshold vector 6. A state vector x = (1,22, 23) has energy Ex as labeled
on the y-axis of the diagram. Arrows represent one iteration of the network dynamics;
i.e. x1, T2, and z3 are updated by Eq. (3) in the order of the clockwise arrow. Resulting
fixed-points x* are indicated by blue circles (Color figure online).
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for memory denoising and retrieval since corrupted versions of patterns in D will
converge through the dynamics to the originals.

In contrast to traditional rules used for this task such as the outer-product
learning rule [11] (OPR) and the perceptron learning rule [17) (PER) that face
a number of limitations such as low memory capacity, bad generalization prop-
erties and high computational cost, we here use minimum probability flow [19]
(MPF) to estimate the parameters of a Hopfield network. Applied to estimat-
ing the parameters in an Ising model/Hopfield network, Eq. (1), the minimum
probability flow objective function [8,19] is:

=3 ¥ exp< E"’). (4)

x€D x'eN(x)

Here, the neighborhood N(x) of x consists of those binary vectors which are
Hamming distance 1 away from x. The function in (4) is infinitely differentiable,
jointly convex in the parameters, consists of only order O(|D|n) terms, and can
be minimized using standard methods such as gradient descent. Notice also that
when Kp is small, the energy differences Fx — Fy between points x in the dataset
D and patterns x’ in single-flip neighborhoods A (x) will be negative, making
x a fixed-point of the Hopfield dynamics. Importantly to applications, much
more is true: minimizing (4) given a storable set of patterns D will determine a
Hopfield network storing those patterns as robust memories [8]. Moreover, the
MPF objective function can naturally be turned into an online, neurologically
plausible learning rule [9].

3 Our Method

The training data X are obtained by sliding a window of given length L over
a binary matrix of dimension N x T representing the binned spiking activity of
N cells over a time period of T bins, yielding T'— L binary vectors of length N L
as training data, see Fig. 2.

After fitting a HN with N L nodes on the data using MPF, we converge each
window of the raw, binned spiking data to its Hopfield memory.

We label the sequence of occurring memories by natural numbers in the order
of their appearance so that we obtain a memory sequence S = (s1,...,87-1),
with s; € {mq,...,mp} = M, k <T — L, where M denotes the set of all distinct
memories in S.

Note that usually k¥ < |S]|, as STP occurring in the raw data that have
low Hamming distances are likely to converge to the same memory under the
Hopfield dynamics as a result of fitting the network with MPF.

For each memory m; € M we compute all pairwise one-step Markov transi-
tion probabilities to m; € M (1 < j < k) using data from S and the entropy
over this probability distribution for each m;, which we call the entropy of the
memory m; and denote by H(m;).

The entropy of a memory is a measure for how predictable the following
network state is, according to the observed data. Memories with a more restricted
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Fig.2. Windowing of binned neural activity. To generate training data for the
Hopfield network, spiking data of N cells are first binned and then training vectors are
extracted using a sliding window. Windows of length L are shifted by d bins (here, we
take d = 1) resulting in training vectors of dimension n = NL. The above illustration
shows five overlapping windows.

set of following network states have lower entropy, ones with less predictable
states have higher entropy. H(m;) can therefore be seen as a local measure (in
time) for how deterministic the network dynamics evolve from that memory.

We then construct a directed graph with the elements of M as nodes. Two
nodes m;, m; are connected by an edge (m;,m;) of weight w if their Markov
transition probability w = P(m;|m;) obtained from S is non-zero. We call this
graph the Markov graph G of S. Paths and cycles (i.e. simple closed paths)
in Gy along nodes with low entropy correspond to sequences of memory labels
and thus sequences of STP of spiking activity that are prominently and reliably
generated by the neuronal population.

4 Application to Data

We applied the proposed method to spiking data of recorded in the rat barrel
cortex during repeated whisker stimulation [14] (N = 16,7 = 3.4 - 10%, L = 10,
1ms bins), see Fig.3 for a raster plot of 50 trials of the experiment. For each
trial, recorded spiking activity measured in 16 electrodes (multi unit activity,
MUA) is shown. Whisker stimulation is performed at 1000 ms within each trial.

The number of different 160-dimensional patterns (corresponding to 10 ms
of network activity) in the raw data is 161,171. After fitting a Hopfield network
to the raw data and collecting the memories over the input data we obtain 577
distinct Hopfield memories, a 280-fold reduction in count, see also Fig.4. The
Markov transition probability matrix for the 577 memories is shown in Fig. 5,
their probabilities and entropies in Fig. 6.

To ease data analysis, we further restrict the number of memories considered
to the 50 memories of highest rank from this point on. The Markov Graph
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Fig. 3. Raster plots of 16 cells over 50 trials. Binned into 1 ms bins, stimulation of
primary whisker at 1000 ms. White dots denote spiking activity. Horizontal axis shows
time, vertical axis units/trials.
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Fig. 4. Ranks of raw and Hopfield patterns of 10 ms length.

Gy is pruned accordingly, but node entropies are calculated on the full set of
memories. To each Hopfield memory we associate memory triggered averages
(MTAs, computed as the average of all raw patterns converging to the given
Hopfield memory); these are shown in Fig. 7.

For this data set we find a ‘central’ node m,, (corresponding to memory label
1) in the Markov Graph G that has a high degree (sum of in- and out-degrees).
This is characteristic for a situation in which the node is the termination (resp.
starting) point of prominently occurring STP of network activity. Interestingly,
the memory m, occurs very frequently in the data (p > 0.9) and the node
has low entropy. This we expect from a network’s low-energy base state that
it prominently rests in and repeatedly returns to. Using the information of the
stimulus protocol, we indeed found that m, corresponds to the resting state of
the network (see top left MTA in Fig. 7).

We now look at cycles (i.e. closed, simple paths) in the Markov Graph G s
starting and terminating in some given node. We expect that cycles in Gy
starting in m, can give insight on how the network is driven out of its resting
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Fig. 5. Markov transition probabilities of all Hopfield memories (577) observed in the
raw data.
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Fig. 6. Occurrence probabilities and entropies of Hopfield memories. Left:
Occurrence probabilities of memories observed in raw data (cut at 1072). Right:
Entropies of memories (calculated for each memory from its Markov transition proba-
bilities) observed in raw data.

state by some stimulus and enters a transient sequence of excited states before
falling back to the resting state. See Fig. 8 for the distribution of cycle lengths in
the restricted Markov graph. Note that windows overlap by 9ms in the present
case, making the approximation of longer time-scale network dynamics via a first
order Markov process (as paths in the Markov Graph) rather robust.

Tracing such cycles in G (and scoring them by their entropy, obtained
as a weighted sum of the entropies of the cycle’s nodes as a measure for how
reliably that cycle is “visited” by the network dynamics), we find that the most
STP associated with low entropy cycles indeed correspond closely to the average
network response to whisker stimulation (that we computed from the raw data
using knowledge of the simulation protocol), see Fig.9. Note that our method
was able to reconstruct the average network response without any knowledge of
the stimulus protocol.
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Fig. 7. Memory triggered averages. Memory triggered averages of 50 memories
with highest rank observed in the raw data (ordered by decreasing rank, top left to
bottom right). Each plot shows one MTA encoding a prominent STP of length 10 ms;
a white pixel denotes high (1) spiking probability of a given neuron at a given time, a
black pixel low spiking probability (0).
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Fig. 8. Distribution of cycle lengths around base node 0in reduced Markov
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Fig. 9. Reconstruction of stable network response. Left: Stimulus triggered aver-
age obtained from raw data obtained using knowledge of stimulus protocol. Right:
Likely network response reconstructed by our method, corresponding to a low entropy
path in the Markov graph, not using any knowledge of the stimulus protocol.
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5 Conclusion

We presented here a method for identifying and classifying recurring spatiotem-
poral patterns in parallel neural spike trains based on Hopfield networks. In
contrast to previously proposed methods [5,6,15,16,18], it does not solely focus
on (partial) synchrony detection or finding exactly recurring patterns, nor does it
face combinatorial explosion in the number of neurons or time steps considered.

The trained Hopfield networks denoise the data, grouping similar patterns
together in a way that respects the underlying statistics of the data. They are
thus able to identify prominent patterns reoccurring in the dataset, possibly
corrupted by noise, and eliminate the large number of spurious patterns occur-
ring rarely. In its memories the network encodes different structural aspects of
the spiking data such as prominent temporal firing sequences that usually are
very difficult to identify in the raw data or using standard methods. Modeling
the sequence of occurring memories as a Markov chain, we have shown that
the method is able to extract salient features of parallel spike trains in a fully
unsupervised way.

We thus propose the method as a novel tool in mining parallel spike trains for
possibly low-dimensional underlying network dynamics. An open source software
in form of a Python package [7] allowing for the wider application of the method
is currently in beta test and to be released soon.

Acknowledgements. The authors would like to thank Yuri Campbell for helpful
comments on an earlier version of this manuscript.
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